godot/servers/physics_2d/body_2d_sw.cpp

678 lines
19 KiB
C++
Raw Normal View History

2014-02-10 01:10:30 +00:00
/*************************************************************************/
/* body_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
2014-02-10 01:10:30 +00:00
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
2014-02-10 01:10:30 +00:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_2d_sw.h"
#include "area_2d_sw.h"
#include "body_direct_state_2d_sw.h"
#include "space_2d_sw.h"
void Body2DSW::_mass_properties_changed() {
if (get_space() && !mass_properties_update_list.in_list() && (calculate_inertia || calculate_center_of_mass)) {
get_space()->body_add_to_mass_properties_update_list(&mass_properties_update_list);
}
}
void Body2DSW::update_mass_properties() {
//update shapes and motions
switch (mode) {
case PhysicsServer2D::BODY_MODE_DYNAMIC: {
real_t total_area = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
total_area += get_shape_aabb(i).get_area();
}
if (calculate_center_of_mass) {
// We have to recompute the center of mass.
center_of_mass = Vector2();
if (total_area != 0.0) {
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
real_t area = get_shape_aabb(i).get_area();
real_t mass = area * this->mass / total_area;
// NOTE: we assume that the shape origin is also its center of mass.
center_of_mass += mass * get_shape_transform(i).get_origin();
}
center_of_mass /= mass;
}
}
if (calculate_inertia) {
inertia = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
const Shape2DSW *shape = get_shape(i);
real_t area = get_shape_aabb(i).get_area();
if (area == 0.0) {
continue;
}
real_t mass = area * this->mass / total_area;
Transform2D mtx = get_shape_transform(i);
Vector2 scale = mtx.get_scale();
Vector2 shape_origin = mtx.get_origin() - center_of_mass;
inertia += shape->get_moment_of_inertia(mass, scale) + mass * shape_origin.length_squared();
}
}
_inv_inertia = inertia > 0.0 ? (1.0 / inertia) : 0.0;
if (mass) {
_inv_mass = 1.0 / mass;
} else {
_inv_mass = 0;
}
} break;
case PhysicsServer2D::BODY_MODE_KINEMATIC:
case PhysicsServer2D::BODY_MODE_STATIC: {
_inv_inertia = 0;
_inv_mass = 0;
} break;
case PhysicsServer2D::BODY_MODE_DYNAMIC_LOCKED: {
_inv_inertia = 0;
_inv_mass = 1.0 / mass;
} break;
}
}
void Body2DSW::reset_mass_properties() {
calculate_inertia = true;
calculate_center_of_mass = true;
_mass_properties_changed();
}
void Body2DSW::set_active(bool p_active) {
if (active == p_active) {
return;
}
active = p_active;
if (active) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
// Static bodies can't be active.
active = false;
} else if (get_space()) {
get_space()->body_add_to_active_list(&active_list);
}
} else if (get_space()) {
get_space()->body_remove_from_active_list(&active_list);
}
}
void Body2DSW::set_param(PhysicsServer2D::BodyParameter p_param, const Variant &p_value) {
switch (p_param) {
case PhysicsServer2D::BODY_PARAM_BOUNCE: {
bounce = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_FRICTION: {
friction = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_MASS: {
real_t mass_value = p_value;
ERR_FAIL_COND(mass_value <= 0);
mass = mass_value;
if (mode >= PhysicsServer2D::BODY_MODE_DYNAMIC) {
_mass_properties_changed();
}
} break;
case PhysicsServer2D::BODY_PARAM_INERTIA: {
real_t inertia_value = p_value;
if (inertia_value <= 0.0) {
calculate_inertia = true;
if (mode == PhysicsServer2D::BODY_MODE_DYNAMIC) {
_mass_properties_changed();
}
} else {
calculate_inertia = false;
inertia = inertia_value;
if (mode == PhysicsServer2D::BODY_MODE_DYNAMIC) {
_inv_inertia = 1.0 / inertia;
}
}
} break;
case PhysicsServer2D::BODY_PARAM_CENTER_OF_MASS: {
calculate_center_of_mass = false;
center_of_mass = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_GRAVITY_SCALE: {
gravity_scale = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_LINEAR_DAMP: {
linear_damp = p_value;
} break;
case PhysicsServer2D::BODY_PARAM_ANGULAR_DAMP: {
angular_damp = p_value;
} break;
default: {
}
}
}
Variant Body2DSW::get_param(PhysicsServer2D::BodyParameter p_param) const {
switch (p_param) {
case PhysicsServer2D::BODY_PARAM_BOUNCE: {
return bounce;
}
case PhysicsServer2D::BODY_PARAM_FRICTION: {
return friction;
}
case PhysicsServer2D::BODY_PARAM_MASS: {
return mass;
}
case PhysicsServer2D::BODY_PARAM_INERTIA: {
return inertia;
}
case PhysicsServer2D::BODY_PARAM_CENTER_OF_MASS: {
return center_of_mass;
}
case PhysicsServer2D::BODY_PARAM_GRAVITY_SCALE: {
return gravity_scale;
}
case PhysicsServer2D::BODY_PARAM_LINEAR_DAMP: {
return linear_damp;
}
case PhysicsServer2D::BODY_PARAM_ANGULAR_DAMP: {
return angular_damp;
}
default: {
}
}
return 0;
}
void Body2DSW::set_mode(PhysicsServer2D::BodyMode p_mode) {
PhysicsServer2D::BodyMode prev = mode;
mode = p_mode;
switch (p_mode) {
//CLEAR UP EVERYTHING IN CASE IT NOT WORKS!
case PhysicsServer2D::BODY_MODE_STATIC:
case PhysicsServer2D::BODY_MODE_KINEMATIC: {
_set_inv_transform(get_transform().affine_inverse());
_inv_mass = 0;
_inv_inertia = 0;
_set_static(p_mode == PhysicsServer2D::BODY_MODE_STATIC);
set_active(p_mode == PhysicsServer2D::BODY_MODE_KINEMATIC && contacts.size());
linear_velocity = Vector2();
angular_velocity = 0;
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC && prev != mode) {
first_time_kinematic = true;
}
} break;
case PhysicsServer2D::BODY_MODE_DYNAMIC: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
if (!calculate_inertia) {
_inv_inertia = 1.0 / inertia;
}
_mass_properties_changed();
_set_static(false);
set_active(true);
} break;
case PhysicsServer2D::BODY_MODE_DYNAMIC_LOCKED: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = 0;
angular_velocity = 0;
_set_static(false);
set_active(true);
}
}
}
PhysicsServer2D::BodyMode Body2DSW::get_mode() const {
return mode;
}
void Body2DSW::_shapes_changed() {
_mass_properties_changed();
wakeup_neighbours();
}
void Body2DSW::set_state(PhysicsServer2D::BodyState p_state, const Variant &p_variant) {
switch (p_state) {
case PhysicsServer2D::BODY_STATE_TRANSFORM: {
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
new_transform = p_variant;
//wakeup_neighbours();
set_active(true);
if (first_time_kinematic) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
first_time_kinematic = false;
}
} else if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
wakeup_neighbours();
} else {
Transform2D t = p_variant;
t.orthonormalize();
new_transform = get_transform(); //used as old to compute motion
if (t == new_transform) {
break;
}
_set_transform(t);
_set_inv_transform(get_transform().inverse());
}
wakeup();
} break;
case PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY: {
linear_velocity = p_variant;
constant_linear_velocity = linear_velocity;
wakeup();
} break;
case PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY: {
angular_velocity = p_variant;
constant_angular_velocity = angular_velocity;
wakeup();
} break;
case PhysicsServer2D::BODY_STATE_SLEEPING: {
if (mode == PhysicsServer2D::BODY_MODE_STATIC || mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
break;
}
bool do_sleep = p_variant;
if (do_sleep) {
linear_velocity = Vector2();
//biased_linear_velocity=Vector3();
angular_velocity = 0;
//biased_angular_velocity=Vector3();
set_active(false);
} else {
if (mode != PhysicsServer2D::BODY_MODE_STATIC) {
set_active(true);
}
}
} break;
case PhysicsServer2D::BODY_STATE_CAN_SLEEP: {
can_sleep = p_variant;
if (mode >= PhysicsServer2D::BODY_MODE_DYNAMIC && !active && !can_sleep) {
set_active(true);
}
} break;
}
}
Variant Body2DSW::get_state(PhysicsServer2D::BodyState p_state) const {
switch (p_state) {
case PhysicsServer2D::BODY_STATE_TRANSFORM: {
return get_transform();
}
case PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY: {
return linear_velocity;
}
case PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY: {
return angular_velocity;
}
case PhysicsServer2D::BODY_STATE_SLEEPING: {
return !is_active();
}
case PhysicsServer2D::BODY_STATE_CAN_SLEEP: {
return can_sleep;
}
}
return Variant();
}
void Body2DSW::set_space(Space2DSW *p_space) {
if (get_space()) {
wakeup_neighbours();
if (mass_properties_update_list.in_list()) {
get_space()->body_remove_from_mass_properties_update_list(&mass_properties_update_list);
}
if (active_list.in_list()) {
get_space()->body_remove_from_active_list(&active_list);
}
if (direct_state_query_list.in_list()) {
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
}
}
_set_space(p_space);
if (get_space()) {
_mass_properties_changed();
if (active) {
get_space()->body_add_to_active_list(&active_list);
}
}
}
void Body2DSW::_compute_area_gravity_and_damping(const Area2DSW *p_area) {
Vector2 area_gravity;
p_area->compute_gravity(get_transform().get_origin(), area_gravity);
gravity += area_gravity;
area_linear_damp += p_area->get_linear_damp();
2016-03-08 23:00:52 +00:00
area_angular_damp += p_area->get_angular_damp();
}
void Body2DSW::integrate_forces(real_t p_step) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
return;
}
Area2DSW *def_area = get_space()->get_default_area();
2015-12-14 01:56:11 +00:00
// Area2DSW *damp_area = def_area;
ERR_FAIL_COND(!def_area);
int ac = areas.size();
2015-12-14 01:56:11 +00:00
bool stopped = false;
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
if (ac) {
areas.sort();
const AreaCMP *aa = &areas[0];
2015-12-14 01:56:11 +00:00
// damp_area = aa[ac-1].area;
for (int i = ac - 1; i >= 0 && !stopped; i--) {
PhysicsServer2D::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode();
2015-12-14 01:56:11 +00:00
switch (mode) {
case PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE:
case PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: {
_compute_area_gravity_and_damping(aa[i].area);
stopped = mode == PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE;
2015-12-14 01:56:11 +00:00
} break;
case PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE:
case PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: {
gravity = Vector2(0, 0);
2015-12-14 01:56:11 +00:00
area_angular_damp = 0;
area_linear_damp = 0;
_compute_area_gravity_and_damping(aa[i].area);
stopped = mode == PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE;
2015-12-14 01:56:11 +00:00
} break;
default: {
}
}
}
}
if (!stopped) {
_compute_area_gravity_and_damping(def_area);
}
gravity *= gravity_scale;
// If less than 0, override dampenings with that of the Body2D
if (angular_damp >= 0) {
area_angular_damp = angular_damp;
}
/*
else
area_angular_damp=damp_area->get_angular_damp();
*/
if (linear_damp >= 0) {
area_linear_damp = linear_damp;
}
/*
else
area_linear_damp=damp_area->get_linear_damp();
*/
Vector2 motion;
bool do_motion = false;
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
//compute motion, angular and etc. velocities from prev transform
motion = new_transform.get_origin() - get_transform().get_origin();
linear_velocity = constant_linear_velocity + motion / p_step;
real_t rot = new_transform.get_rotation() - get_transform().get_rotation();
angular_velocity = constant_angular_velocity + remainder(rot, 2.0 * Math_PI) / p_step;
do_motion = true;
/*
for(int i=0;i<get_shape_count();i++) {
set_shape_kinematic_advance(i,Vector2());
set_shape_kinematic_retreat(i,0);
}
*/
} else {
if (!omit_force_integration) {
//overridden by direct state query
Vector2 force = gravity * mass;
force += applied_force;
real_t torque = applied_torque;
real_t damp = 1.0 - p_step * area_linear_damp;
if (damp < 0) { // reached zero in the given time
damp = 0;
}
real_t angular_damp = 1.0 - p_step * area_angular_damp;
if (angular_damp < 0) { // reached zero in the given time
angular_damp = 0;
}
linear_velocity *= damp;
angular_velocity *= angular_damp;
linear_velocity += _inv_mass * force * p_step;
angular_velocity += _inv_inertia * torque * p_step;
}
if (continuous_cd_mode != PhysicsServer2D::CCD_MODE_DISABLED) {
motion = linear_velocity * p_step;
do_motion = true;
}
}
//motion=linear_velocity*p_step;
biased_angular_velocity = 0;
biased_linear_velocity = Vector2();
if (do_motion) { //shapes temporarily extend for raycast
_update_shapes_with_motion(motion);
}
2020-04-01 23:20:12 +00:00
// damp_area=nullptr; // clear the area, so it is set in the next frame
def_area = nullptr; // clear the area, so it is set in the next frame
contact_count = 0;
}
void Body2DSW::integrate_velocities(real_t p_step) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC) {
return;
}
if (fi_callback_data || body_state_callback) {
get_space()->body_add_to_state_query_list(&direct_state_query_list);
}
if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
_set_transform(new_transform, false);
_set_inv_transform(new_transform.affine_inverse());
if (contacts.size() == 0 && linear_velocity == Vector2() && angular_velocity == 0) {
set_active(false); //stopped moving, deactivate
}
return;
}
real_t total_angular_velocity = angular_velocity + biased_angular_velocity;
Vector2 total_linear_velocity = linear_velocity + biased_linear_velocity;
real_t angle = get_transform().get_rotation() + total_angular_velocity * p_step;
Vector2 pos = get_transform().get_origin() + total_linear_velocity * p_step;
real_t center_of_mass_distance = center_of_mass.length();
if (center_of_mass_distance > CMP_EPSILON) {
// Calculate displacement due to center of mass offset.
real_t prev_angle = get_transform().get_rotation();
real_t angle_base = Math::atan2(center_of_mass.y, center_of_mass.x);
Vector2 point1(Math::cos(angle_base + prev_angle), Math::sin(angle_base + prev_angle));
Vector2 point2(Math::cos(angle_base + angle), Math::sin(angle_base + angle));
pos += center_of_mass_distance * (point1 - point2);
}
_set_transform(Transform2D(angle, pos), continuous_cd_mode == PhysicsServer2D::CCD_MODE_DISABLED);
_set_inv_transform(get_transform().inverse());
if (continuous_cd_mode != PhysicsServer2D::CCD_MODE_DISABLED) {
new_transform = get_transform();
}
}
void Body2DSW::wakeup_neighbours() {
for (const Pair<Constraint2DSW *, int> &E : constraint_list) {
const Constraint2DSW *c = E.first;
Body2DSW **n = c->get_body_ptr();
int bc = c->get_body_count();
for (int i = 0; i < bc; i++) {
if (i == E.second) {
continue;
}
Body2DSW *b = n[i];
if (b->mode < PhysicsServer2D::BODY_MODE_DYNAMIC) {
continue;
}
if (!b->is_active()) {
b->set_active(true);
}
}
}
}
void Body2DSW::call_queries() {
if (fi_callback_data) {
if (!fi_callback_data->callable.get_object()) {
set_force_integration_callback(Callable());
} else {
Variant direct_state_variant = get_direct_state();
const Variant *vp[2] = { &direct_state_variant, &fi_callback_data->udata };
Callable::CallError ce;
Variant rv;
if (fi_callback_data->udata.get_type() != Variant::NIL) {
fi_callback_data->callable.call(vp, 2, rv, ce);
} else {
fi_callback_data->callable.call(vp, 1, rv, ce);
}
}
}
if (body_state_callback) {
(body_state_callback)(body_state_callback_instance, get_direct_state());
}
}
bool Body2DSW::sleep_test(real_t p_step) {
if (mode == PhysicsServer2D::BODY_MODE_STATIC || mode == PhysicsServer2D::BODY_MODE_KINEMATIC) {
return true;
} else if (!can_sleep) {
return false;
}
2017-07-08 15:12:18 +00:00
if (Math::abs(angular_velocity) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) {
still_time += p_step;
return still_time > get_space()->get_body_time_to_sleep();
} else {
still_time = 0; //maybe this should be set to 0 on set_active?
return false;
}
}
void Body2DSW::set_state_sync_callback(void *p_instance, PhysicsServer2D::BodyStateCallback p_callback) {
body_state_callback_instance = p_instance;
body_state_callback = p_callback;
}
void Body2DSW::set_force_integration_callback(const Callable &p_callable, const Variant &p_udata) {
if (p_callable.get_object()) {
if (!fi_callback_data) {
fi_callback_data = memnew(ForceIntegrationCallbackData);
}
fi_callback_data->callable = p_callable;
fi_callback_data->udata = p_udata;
} else if (fi_callback_data) {
memdelete(fi_callback_data);
fi_callback_data = nullptr;
}
}
PhysicsDirectBodyState2DSW *Body2DSW::get_direct_state() {
if (!direct_state) {
direct_state = memnew(PhysicsDirectBodyState2DSW);
direct_state->body = this;
}
return direct_state;
}
Body2DSW::Body2DSW() :
CollisionObject2DSW(TYPE_BODY),
active_list(this),
mass_properties_update_list(this),
direct_state_query_list(this) {
_set_static(false);
}
Body2DSW::~Body2DSW() {
if (fi_callback_data) {
memdelete(fi_callback_data);
}
if (direct_state) {
memdelete(direct_state);
}
}