godot/servers/visual/rasterizer_rd/shaders/giprobe.glsl

544 lines
14 KiB
Plaintext
Raw Normal View History

2019-10-03 20:39:08 +00:00
[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#define NO_CHILDREN 0xFFFFFFFF
#define GREY_VEC vec3(0.33333,0.33333,0.33333)
struct CellChildren {
uint children[8];
};
layout(set=0,binding=1,std430) buffer CellChildrenBuffer {
CellChildren data[];
} cell_children;
struct CellData {
uint position; // xyz 10 bits
uint albedo; //rgb albedo
uint emission; //rgb normalized with e as multiplier
uint normal; //RGB normal encoded
};
layout(set=0,binding=2,std430) buffer CellDataBuffer {
CellData data[];
} cell_data;
#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2
#ifdef MODE_COMPUTE_LIGHT
struct Light {
uint type;
float energy;
float radius;
float attenuation;
vec3 color;
float spot_angle_radians;
vec3 position;
float spot_attenuation;
vec3 direction;
bool has_shadow;
};
layout(set=0,binding=3,std140) uniform Lights {
Light data[MAX_LIGHTS];
} lights;
#endif // MODE COMPUTE LIGHT
#ifdef MODE_SECOND_BOUNCE
layout (set=0,binding=5) uniform texture3D color_texture;
layout (set=0,binding=6) uniform sampler texture_sampler;
#ifdef MODE_ANISOTROPIC
layout (set=0,binding=7) uniform texture3D aniso_pos_texture;
layout (set=0,binding=8) uniform texture3D aniso_neg_texture;
#endif // MODE ANISOTROPIC
#endif // MODE_SECOND_BOUNCE
layout(push_constant, binding = 0, std430) uniform Params {
ivec3 limits;
uint stack_size;
float emission_scale;
float propagation;
float dynamic_range;
uint light_count;
uint cell_offset;
uint cell_count;
float aniso_strength;
uint pad;
} params;
layout(set=0,binding=4,std430) buffer Outputs {
vec4 data[];
} outputs;
#ifdef MODE_WRITE_TEXTURE
layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
#ifdef MODE_ANISOTROPIC
layout (r16ui,set=0,binding=6) uniform restrict writeonly uimage3D aniso_pos_tex;
layout (r16ui,set=0,binding=7) uniform restrict writeonly uimage3D aniso_neg_tex;
#endif
#endif
#ifdef MODE_COMPUTE_LIGHT
uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
uint result = NO_CHILDREN;
ivec3 size = ivec3(max(max(params.limits.x,params.limits.y),params.limits.z));
while (distance > -distance_adv) { //use this to avoid precision errors
uint cell = 0;
ivec3 pos = ivec3(from);
if (all(greaterThanEqual(pos,ivec3(0))) && all(lessThan(pos,size))) {
ivec3 ofs = ivec3(0);
ivec3 half_size = size / 2;
for (int i = 0; i < params.stack_size - 1; i++) {
bvec3 greater = greaterThanEqual(pos,ofs+half_size);
ofs += mix(ivec3(0),half_size,greater);
uint child = 0; //wonder if this can be done faster
if (greater.x) {
child|=1;
}
if (greater.y) {
child|=2;
}
if (greater.z) {
child|=4;
}
cell = cell_children.data[cell].children[child];
if (cell == NO_CHILDREN)
break;
half_size >>= ivec3(1);
}
if ( cell != NO_CHILDREN) {
return cell; //found cell!
}
}
from += direction * distance_adv;
distance -= distance_adv;
}
return NO_CHILDREN;
}
bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) {
if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) {
light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
attenuation = 1.0;
} else {
light_pos = lights.data[light].position;
float distance = length(pos - light_pos);
if (distance >= lights.data[light].radius) {
return false;
}
attenuation = pow( clamp( 1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation );
if (lights.data[light].type==LIGHT_TYPE_SPOT) {
vec3 rel = normalize(pos - light_pos);
float angle = acos(dot(rel,lights.data[light].direction));
if (angle > lights.data[light].spot_angle_radians) {
return false;
}
float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
}
}
return true;
}
float get_normal_advance(vec3 p_normal) {
vec3 normal = p_normal;
vec3 unorm = abs(normal);
if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
// x code
unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
// y code
unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
// z code
unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
} else {
// oh-no we messed up code
// has to be
unorm = vec3(1.0, 0.0, 0.0);
}
return 1.0 / dot(normal,unorm);
}
#endif
void main() {
uint cell_index = gl_GlobalInvocationID.x;;
if (cell_index >= params.cell_count) {
return;
}
cell_index += params.cell_offset;
uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21);
vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
/////////////////COMPUTE LIGHT///////////////////////////////
#ifdef MODE_COMPUTE_LIGHT
vec3 pos = vec3(posu) + vec3(0.5);
vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission&0x3FF,(cell_data.data[cell_index].emission>>10)&0x7FF,cell_data.data[cell_index].emission>>21)) * params.emission_scale;
vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
#ifdef MODE_ANISOTROPIC
vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
#else
vec3 accum = vec3(0.0);
#endif
for(uint i=0;i<params.light_count;i++) {
float attenuation;
vec3 light_pos;
if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) {
continue;
}
vec3 light_dir = pos - light_pos;
float distance = length(light_dir);
light_dir=normalize(light_dir);
if (length(normal.xyz) > 0.2 && dot(normal.xyz,light_dir)>=0) {
continue; //not facing the light
}
if (lights.data[i].has_shadow) {
float distance_adv = get_normal_advance(light_dir);
distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
vec3 from = pos - light_dir * distance; //approximate
from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion
uint result = raymarch(distance,distance_adv,from,light_dir);
if (result != cell_index) {
continue; //was occluded
}
}
vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy;
#ifdef MODE_ANISOTROPIC
for(uint j=0;j<6;j++) {
accum[j]+=max(0.0,dot(accum_dirs[j],-light_dir))*light+emission;
}
#else
if (length(normal.xyz) > 0.2) {
accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission;
} else {
//all directions
accum+=light+emission;
}
#endif
}
#ifdef MODE_ANISOTROPIC
outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
#else
outputs.data[cell_index]=vec4(accum,0.0);
#endif
#endif //MODE_COMPUTE_LIGHT
/////////////////SECOND BOUNCE///////////////////////////////
#ifdef MODE_SECOND_BOUNCE
vec3 pos = vec3(posu) + vec3(0.5);
ivec3 ipos = ivec3(posu);
vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
#ifdef MODE_ANISOTROPIC
vec3 accum[6];
const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
/*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb;
accum[0]=src_col * src_aniso_pos.x;
accum[1]=src_col * src_aniso_neg.x;
accum[2]=src_col * src_aniso_pos.y;
accum[3]=src_col * src_aniso_neg.y;
accum[4]=src_col * src_aniso_pos.z;
accum[5]=src_col * src_aniso_neg.z;*/
accum[0] = outputs.data[cell_index*6+0].rgb;
accum[1] = outputs.data[cell_index*6+1].rgb;
accum[2] = outputs.data[cell_index*6+2].rgb;
accum[3] = outputs.data[cell_index*6+3].rgb;
accum[4] = outputs.data[cell_index*6+4].rgb;
accum[5] = outputs.data[cell_index*6+5].rgb;
#else
vec3 accum = outputs.data[cell_index].rgb;
#endif
if (length(normal.xyz) > 0.2) {
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal.xyz));
vec3 bitangent = normalize(cross(tangent, normal.xyz));
mat3 normal_mat = mat3(tangent, bitangent, normal.xyz);
#define MAX_CONE_DIRS 6
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.0, 0.0, 1.0),
vec3(0.866025, 0.0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
float tan_half_angle = 0.577;
for (int i = 0; i < MAX_CONE_DIRS; i++) {
vec3 direction = normal_mat * cone_dirs[i];
vec4 color = vec4(0.0);
{
float dist = 1.5;
float max_distance = length(vec3(params.limits));
vec3 cell_size = 1.0 / vec3(params.limits);
#ifdef MODE_ANISOTROPIC
vec3 aniso_normal = mix(direction,normal.xyz,params.aniso_strength);
#endif
while (dist < max_distance && color.a < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
vec3 uvw_pos = (pos + dist * direction) * cell_size;
float half_diameter = diameter * 0.5;
//check if outside, then break
//if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) {
// break;
//}
float log2_diameter = log2(diameter);
vec4 scolor = textureLod(sampler3D(color_texture,texture_sampler), uvw_pos, log2_diameter);
#ifdef MODE_ANISOTROPIC
vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
scolor.rgb*=dot(max(vec3(0.0),(aniso_normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-aniso_normal * aniso_neg)),vec3(1.0));
#endif
float a = (1.0 - color.a);
color += a * scolor;
dist += half_diameter;
}
}
color *= cone_weights[i] * params.dynamic_range; //restore range
#ifdef MODE_ANISOTROPIC
for(uint j=0;j<6;j++) {
accum[j]+=max(0.0,dot(accum_dirs[j],direction))*color.rgb;
}
#else
accum+=color.rgb;
#endif
}
}
#ifdef MODE_ANISOTROPIC
outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
#else
outputs.data[cell_index]=vec4(accum,0.0);
#endif
#endif // MODE_SECOND_BOUNCE
/////////////////UPDATE MIPMAPS///////////////////////////////
#ifdef MODE_UPDATE_MIPMAPS
{
#ifdef MODE_ANISOTROPIC
vec3 light_accum[6] = vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
#else
vec3 light_accum = vec3(0.0);
#endif
float count = 0.0;
for(uint i=0;i<8;i++) {
uint child_index = cell_children.data[cell_index].children[i];
if (child_index==NO_CHILDREN) {
continue;
}
#ifdef MODE_ANISOTROPIC
light_accum[0] += outputs.data[child_index*6+0].rgb;
light_accum[1] += outputs.data[child_index*6+1].rgb;
light_accum[2] += outputs.data[child_index*6+2].rgb;
light_accum[3] += outputs.data[child_index*6+3].rgb;
light_accum[4] += outputs.data[child_index*6+4].rgb;
light_accum[5] += outputs.data[child_index*6+5].rgb;
#else
light_accum += outputs.data[child_index].rgb;
#endif
count+=1.0;
}
float divisor = mix(8.0,count,params.propagation);
#ifdef MODE_ANISOTROPIC
outputs.data[cell_index*6+0]=vec4(light_accum[0] / divisor,0.0);
outputs.data[cell_index*6+1]=vec4(light_accum[1] / divisor,0.0);
outputs.data[cell_index*6+2]=vec4(light_accum[2] / divisor,0.0);
outputs.data[cell_index*6+3]=vec4(light_accum[3] / divisor,0.0);
outputs.data[cell_index*6+4]=vec4(light_accum[4] / divisor,0.0);
outputs.data[cell_index*6+5]=vec4(light_accum[5] / divisor,0.0);
#else
outputs.data[cell_index]=vec4(light_accum / divisor,0.0);
#endif
}
#endif
///////////////////WRITE TEXTURE/////////////////////////////
#ifdef MODE_WRITE_TEXTURE
{
#ifdef MODE_ANISOTROPIC
vec3 accum_total = vec3(0.0);
accum_total += outputs.data[cell_index*6+0].rgb;
accum_total += outputs.data[cell_index*6+1].rgb;
accum_total += outputs.data[cell_index*6+2].rgb;
accum_total += outputs.data[cell_index*6+3].rgb;
accum_total += outputs.data[cell_index*6+4].rgb;
accum_total += outputs.data[cell_index*6+5].rgb;
float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001);
vec3 iso_positive = vec3(dot(outputs.data[cell_index*6+0].rgb,GREY_VEC),dot(outputs.data[cell_index*6+2].rgb,GREY_VEC),dot(outputs.data[cell_index*6+4].rgb,GREY_VEC))/vec3(accum_total_energy);
vec3 iso_negative = vec3(dot(outputs.data[cell_index*6+1].rgb,GREY_VEC),dot(outputs.data[cell_index*6+3].rgb,GREY_VEC),dot(outputs.data[cell_index*6+5].rgb,GREY_VEC))/vec3(accum_total_energy);
{
uint aniso_pos = uint(clamp(iso_positive.b * 31.0,0.0,31.0));
aniso_pos |= uint(clamp(iso_positive.g * 63.0,0.0,63.0))<<5;
aniso_pos |= uint(clamp(iso_positive.r * 31.0,0.0,31.0))<<11;
imageStore(aniso_pos_tex,ivec3(posu),uvec4(aniso_pos));
}
{
uint aniso_neg = uint(clamp(iso_negative.b * 31.0,0.0,31.0));
aniso_neg |= uint(clamp(iso_negative.g * 63.0,0.0,63.0))<<5;
aniso_neg |= uint(clamp(iso_negative.r * 31.0,0.0,31.0))<<11;
imageStore(aniso_neg_tex,ivec3(posu),uvec4(aniso_neg));
}
imageStore(color_tex,ivec3(posu),vec4(accum_total / params.dynamic_range ,albedo.a));
#else
imageStore(color_tex,ivec3(posu),vec4(outputs.data[cell_index].rgb / params.dynamic_range,albedo.a));
#endif
}
#endif
}