544 lines
14 KiB
GLSL
544 lines
14 KiB
GLSL
[compute]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
#define NO_CHILDREN 0xFFFFFFFF
|
|
#define GREY_VEC vec3(0.33333,0.33333,0.33333)
|
|
|
|
struct CellChildren {
|
|
uint children[8];
|
|
};
|
|
|
|
layout(set=0,binding=1,std430) buffer CellChildrenBuffer {
|
|
CellChildren data[];
|
|
} cell_children;
|
|
|
|
struct CellData {
|
|
uint position; // xyz 10 bits
|
|
uint albedo; //rgb albedo
|
|
uint emission; //rgb normalized with e as multiplier
|
|
uint normal; //RGB normal encoded
|
|
};
|
|
|
|
layout(set=0,binding=2,std430) buffer CellDataBuffer {
|
|
CellData data[];
|
|
} cell_data;
|
|
|
|
#define LIGHT_TYPE_DIRECTIONAL 0
|
|
#define LIGHT_TYPE_OMNI 1
|
|
#define LIGHT_TYPE_SPOT 2
|
|
|
|
#ifdef MODE_COMPUTE_LIGHT
|
|
|
|
struct Light {
|
|
|
|
uint type;
|
|
float energy;
|
|
float radius;
|
|
float attenuation;
|
|
|
|
vec3 color;
|
|
float spot_angle_radians;
|
|
|
|
vec3 position;
|
|
float spot_attenuation;
|
|
|
|
vec3 direction;
|
|
bool has_shadow;
|
|
};
|
|
|
|
|
|
layout(set=0,binding=3,std140) uniform Lights {
|
|
Light data[MAX_LIGHTS];
|
|
} lights;
|
|
|
|
|
|
|
|
#endif // MODE COMPUTE LIGHT
|
|
|
|
|
|
#ifdef MODE_SECOND_BOUNCE
|
|
|
|
layout (set=0,binding=5) uniform texture3D color_texture;
|
|
layout (set=0,binding=6) uniform sampler texture_sampler;
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
layout (set=0,binding=7) uniform texture3D aniso_pos_texture;
|
|
layout (set=0,binding=8) uniform texture3D aniso_neg_texture;
|
|
#endif // MODE ANISOTROPIC
|
|
|
|
#endif // MODE_SECOND_BOUNCE
|
|
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
|
ivec3 limits;
|
|
uint stack_size;
|
|
|
|
float emission_scale;
|
|
float propagation;
|
|
float dynamic_range;
|
|
|
|
uint light_count;
|
|
uint cell_offset;
|
|
uint cell_count;
|
|
float aniso_strength;
|
|
uint pad;
|
|
|
|
} params;
|
|
|
|
|
|
layout(set=0,binding=4,std430) buffer Outputs {
|
|
vec4 data[];
|
|
} outputs;
|
|
|
|
#ifdef MODE_WRITE_TEXTURE
|
|
|
|
layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
layout (r16ui,set=0,binding=6) uniform restrict writeonly uimage3D aniso_pos_tex;
|
|
layout (r16ui,set=0,binding=7) uniform restrict writeonly uimage3D aniso_neg_tex;
|
|
|
|
#endif
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_COMPUTE_LIGHT
|
|
|
|
uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
|
|
|
|
uint result = NO_CHILDREN;
|
|
|
|
ivec3 size = ivec3(max(max(params.limits.x,params.limits.y),params.limits.z));
|
|
|
|
while (distance > -distance_adv) { //use this to avoid precision errors
|
|
|
|
uint cell = 0;
|
|
|
|
ivec3 pos = ivec3(from);
|
|
|
|
if (all(greaterThanEqual(pos,ivec3(0))) && all(lessThan(pos,size))) {
|
|
|
|
ivec3 ofs = ivec3(0);
|
|
ivec3 half_size = size / 2;
|
|
|
|
for (int i = 0; i < params.stack_size - 1; i++) {
|
|
|
|
bvec3 greater = greaterThanEqual(pos,ofs+half_size);
|
|
|
|
ofs += mix(ivec3(0),half_size,greater);
|
|
|
|
uint child = 0; //wonder if this can be done faster
|
|
if (greater.x) {
|
|
child|=1;
|
|
}
|
|
if (greater.y) {
|
|
child|=2;
|
|
}
|
|
if (greater.z) {
|
|
child|=4;
|
|
}
|
|
|
|
cell = cell_children.data[cell].children[child];
|
|
if (cell == NO_CHILDREN)
|
|
break;
|
|
|
|
half_size >>= ivec3(1);
|
|
}
|
|
|
|
if ( cell != NO_CHILDREN) {
|
|
return cell; //found cell!
|
|
}
|
|
|
|
}
|
|
|
|
from += direction * distance_adv;
|
|
distance -= distance_adv;
|
|
}
|
|
|
|
return NO_CHILDREN;
|
|
}
|
|
|
|
bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) {
|
|
|
|
|
|
if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) {
|
|
|
|
light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
|
|
attenuation = 1.0;
|
|
|
|
} else {
|
|
|
|
light_pos = lights.data[light].position;
|
|
float distance = length(pos - light_pos);
|
|
if (distance >= lights.data[light].radius) {
|
|
return false;
|
|
}
|
|
|
|
|
|
attenuation = pow( clamp( 1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation );
|
|
|
|
|
|
if (lights.data[light].type==LIGHT_TYPE_SPOT) {
|
|
|
|
vec3 rel = normalize(pos - light_pos);
|
|
float angle = acos(dot(rel,lights.data[light].direction));
|
|
if (angle > lights.data[light].spot_angle_radians) {
|
|
return false;
|
|
}
|
|
|
|
float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
|
|
attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
float get_normal_advance(vec3 p_normal) {
|
|
|
|
vec3 normal = p_normal;
|
|
vec3 unorm = abs(normal);
|
|
|
|
if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
|
|
// x code
|
|
unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
|
|
} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
|
|
// y code
|
|
unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
|
|
} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
|
|
// z code
|
|
unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
|
|
} else {
|
|
// oh-no we messed up code
|
|
// has to be
|
|
unorm = vec3(1.0, 0.0, 0.0);
|
|
}
|
|
|
|
return 1.0 / dot(normal,unorm);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void main() {
|
|
|
|
uint cell_index = gl_GlobalInvocationID.x;;
|
|
if (cell_index >= params.cell_count) {
|
|
return;
|
|
}
|
|
cell_index += params.cell_offset;
|
|
|
|
uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21);
|
|
vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
|
|
|
|
/////////////////COMPUTE LIGHT///////////////////////////////
|
|
|
|
#ifdef MODE_COMPUTE_LIGHT
|
|
|
|
vec3 pos = vec3(posu) + vec3(0.5);
|
|
|
|
vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission&0x3FF,(cell_data.data[cell_index].emission>>10)&0x7FF,cell_data.data[cell_index].emission>>21)) * params.emission_scale;
|
|
vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
|
|
const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
|
|
#else
|
|
vec3 accum = vec3(0.0);
|
|
#endif
|
|
|
|
for(uint i=0;i<params.light_count;i++) {
|
|
|
|
float attenuation;
|
|
vec3 light_pos;
|
|
|
|
if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) {
|
|
continue;
|
|
}
|
|
|
|
vec3 light_dir = pos - light_pos;
|
|
float distance = length(light_dir);
|
|
light_dir=normalize(light_dir);
|
|
|
|
if (length(normal.xyz) > 0.2 && dot(normal.xyz,light_dir)>=0) {
|
|
continue; //not facing the light
|
|
}
|
|
|
|
if (lights.data[i].has_shadow) {
|
|
|
|
float distance_adv = get_normal_advance(light_dir);
|
|
|
|
|
|
distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
|
|
|
|
vec3 from = pos - light_dir * distance; //approximate
|
|
from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion
|
|
|
|
|
|
|
|
uint result = raymarch(distance,distance_adv,from,light_dir);
|
|
|
|
if (result != cell_index) {
|
|
continue; //was occluded
|
|
}
|
|
}
|
|
|
|
vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy;
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
for(uint j=0;j<6;j++) {
|
|
|
|
accum[j]+=max(0.0,dot(accum_dirs[j],-light_dir))*light+emission;
|
|
}
|
|
#else
|
|
if (length(normal.xyz) > 0.2) {
|
|
accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission;
|
|
} else {
|
|
//all directions
|
|
accum+=light+emission;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
|
|
outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
|
|
outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
|
|
outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
|
|
outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
|
|
outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
|
|
#else
|
|
outputs.data[cell_index]=vec4(accum,0.0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif //MODE_COMPUTE_LIGHT
|
|
|
|
/////////////////SECOND BOUNCE///////////////////////////////
|
|
#ifdef MODE_SECOND_BOUNCE
|
|
vec3 pos = vec3(posu) + vec3(0.5);
|
|
ivec3 ipos = ivec3(posu);
|
|
vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
vec3 accum[6];
|
|
const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
|
|
|
|
/*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
|
|
vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
|
|
vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb;
|
|
accum[0]=src_col * src_aniso_pos.x;
|
|
accum[1]=src_col * src_aniso_neg.x;
|
|
accum[2]=src_col * src_aniso_pos.y;
|
|
accum[3]=src_col * src_aniso_neg.y;
|
|
accum[4]=src_col * src_aniso_pos.z;
|
|
accum[5]=src_col * src_aniso_neg.z;*/
|
|
|
|
accum[0] = outputs.data[cell_index*6+0].rgb;
|
|
accum[1] = outputs.data[cell_index*6+1].rgb;
|
|
accum[2] = outputs.data[cell_index*6+2].rgb;
|
|
accum[3] = outputs.data[cell_index*6+3].rgb;
|
|
accum[4] = outputs.data[cell_index*6+4].rgb;
|
|
accum[5] = outputs.data[cell_index*6+5].rgb;
|
|
|
|
#else
|
|
vec3 accum = outputs.data[cell_index].rgb;
|
|
|
|
#endif
|
|
|
|
if (length(normal.xyz) > 0.2) {
|
|
|
|
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, normal.xyz));
|
|
vec3 bitangent = normalize(cross(tangent, normal.xyz));
|
|
mat3 normal_mat = mat3(tangent, bitangent, normal.xyz);
|
|
|
|
#define MAX_CONE_DIRS 6
|
|
|
|
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
|
vec3(0.0, 0.0, 1.0),
|
|
vec3(0.866025, 0.0, 0.5),
|
|
vec3(0.267617, 0.823639, 0.5),
|
|
vec3(-0.700629, 0.509037, 0.5),
|
|
vec3(-0.700629, -0.509037, 0.5),
|
|
vec3(0.267617, -0.823639, 0.5));
|
|
|
|
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
|
|
float tan_half_angle = 0.577;
|
|
|
|
for (int i = 0; i < MAX_CONE_DIRS; i++) {
|
|
|
|
vec3 direction = normal_mat * cone_dirs[i];
|
|
vec4 color = vec4(0.0);
|
|
{
|
|
|
|
float dist = 1.5;
|
|
float max_distance = length(vec3(params.limits));
|
|
vec3 cell_size = 1.0 / vec3(params.limits);
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
vec3 aniso_normal = mix(direction,normal.xyz,params.aniso_strength);
|
|
#endif
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
float half_diameter = diameter * 0.5;
|
|
//check if outside, then break
|
|
//if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) {
|
|
// break;
|
|
//}
|
|
|
|
float log2_diameter = log2(diameter);
|
|
vec4 scolor = textureLod(sampler3D(color_texture,texture_sampler), uvw_pos, log2_diameter);
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
|
|
vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
|
|
|
|
scolor.rgb*=dot(max(vec3(0.0),(aniso_normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-aniso_normal * aniso_neg)),vec3(1.0));
|
|
#endif
|
|
float a = (1.0 - color.a);
|
|
color += a * scolor;
|
|
dist += half_diameter;
|
|
|
|
}
|
|
|
|
}
|
|
color *= cone_weights[i] * params.dynamic_range; //restore range
|
|
#ifdef MODE_ANISOTROPIC
|
|
for(uint j=0;j<6;j++) {
|
|
|
|
accum[j]+=max(0.0,dot(accum_dirs[j],direction))*color.rgb;
|
|
}
|
|
#else
|
|
accum+=color.rgb;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
|
|
outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
|
|
outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
|
|
outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
|
|
outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
|
|
outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
|
|
#else
|
|
outputs.data[cell_index]=vec4(accum,0.0);
|
|
|
|
#endif
|
|
|
|
#endif // MODE_SECOND_BOUNCE
|
|
/////////////////UPDATE MIPMAPS///////////////////////////////
|
|
|
|
#ifdef MODE_UPDATE_MIPMAPS
|
|
|
|
{
|
|
#ifdef MODE_ANISOTROPIC
|
|
vec3 light_accum[6] = vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
|
|
#else
|
|
vec3 light_accum = vec3(0.0);
|
|
#endif
|
|
float count = 0.0;
|
|
for(uint i=0;i<8;i++) {
|
|
uint child_index = cell_children.data[cell_index].children[i];
|
|
if (child_index==NO_CHILDREN) {
|
|
continue;
|
|
}
|
|
#ifdef MODE_ANISOTROPIC
|
|
light_accum[0] += outputs.data[child_index*6+0].rgb;
|
|
light_accum[1] += outputs.data[child_index*6+1].rgb;
|
|
light_accum[2] += outputs.data[child_index*6+2].rgb;
|
|
light_accum[3] += outputs.data[child_index*6+3].rgb;
|
|
light_accum[4] += outputs.data[child_index*6+4].rgb;
|
|
light_accum[5] += outputs.data[child_index*6+5].rgb;
|
|
|
|
#else
|
|
light_accum += outputs.data[child_index].rgb;
|
|
|
|
#endif
|
|
|
|
count+=1.0;
|
|
}
|
|
|
|
float divisor = mix(8.0,count,params.propagation);
|
|
#ifdef MODE_ANISOTROPIC
|
|
outputs.data[cell_index*6+0]=vec4(light_accum[0] / divisor,0.0);
|
|
outputs.data[cell_index*6+1]=vec4(light_accum[1] / divisor,0.0);
|
|
outputs.data[cell_index*6+2]=vec4(light_accum[2] / divisor,0.0);
|
|
outputs.data[cell_index*6+3]=vec4(light_accum[3] / divisor,0.0);
|
|
outputs.data[cell_index*6+4]=vec4(light_accum[4] / divisor,0.0);
|
|
outputs.data[cell_index*6+5]=vec4(light_accum[5] / divisor,0.0);
|
|
|
|
#else
|
|
outputs.data[cell_index]=vec4(light_accum / divisor,0.0);
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
#endif
|
|
|
|
///////////////////WRITE TEXTURE/////////////////////////////
|
|
|
|
#ifdef MODE_WRITE_TEXTURE
|
|
{
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
vec3 accum_total = vec3(0.0);
|
|
accum_total += outputs.data[cell_index*6+0].rgb;
|
|
accum_total += outputs.data[cell_index*6+1].rgb;
|
|
accum_total += outputs.data[cell_index*6+2].rgb;
|
|
accum_total += outputs.data[cell_index*6+3].rgb;
|
|
accum_total += outputs.data[cell_index*6+4].rgb;
|
|
accum_total += outputs.data[cell_index*6+5].rgb;
|
|
|
|
float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001);
|
|
vec3 iso_positive = vec3(dot(outputs.data[cell_index*6+0].rgb,GREY_VEC),dot(outputs.data[cell_index*6+2].rgb,GREY_VEC),dot(outputs.data[cell_index*6+4].rgb,GREY_VEC))/vec3(accum_total_energy);
|
|
vec3 iso_negative = vec3(dot(outputs.data[cell_index*6+1].rgb,GREY_VEC),dot(outputs.data[cell_index*6+3].rgb,GREY_VEC),dot(outputs.data[cell_index*6+5].rgb,GREY_VEC))/vec3(accum_total_energy);
|
|
|
|
|
|
{
|
|
uint aniso_pos = uint(clamp(iso_positive.b * 31.0,0.0,31.0));
|
|
aniso_pos |= uint(clamp(iso_positive.g * 63.0,0.0,63.0))<<5;
|
|
aniso_pos |= uint(clamp(iso_positive.r * 31.0,0.0,31.0))<<11;
|
|
imageStore(aniso_pos_tex,ivec3(posu),uvec4(aniso_pos));
|
|
}
|
|
|
|
{
|
|
uint aniso_neg = uint(clamp(iso_negative.b * 31.0,0.0,31.0));
|
|
aniso_neg |= uint(clamp(iso_negative.g * 63.0,0.0,63.0))<<5;
|
|
aniso_neg |= uint(clamp(iso_negative.r * 31.0,0.0,31.0))<<11;
|
|
imageStore(aniso_neg_tex,ivec3(posu),uvec4(aniso_neg));
|
|
}
|
|
|
|
imageStore(color_tex,ivec3(posu),vec4(accum_total / params.dynamic_range ,albedo.a));
|
|
|
|
#else
|
|
|
|
imageStore(color_tex,ivec3(posu),vec4(outputs.data[cell_index].rgb / params.dynamic_range,albedo.a));
|
|
|
|
#endif
|
|
|
|
|
|
}
|
|
#endif
|
|
}
|