2017-09-12 20:42:36 +00:00
<?xml version="1.0" encoding="UTF-8" ?>
2020-02-01 01:03:48 +00:00
<class name= "Vector3" version= "4.0" >
2017-09-12 20:42:36 +00:00
<brief_description >
2020-02-24 16:00:40 +00:00
Vector used for 3D math using floating point coordinates.
2017-09-12 20:42:36 +00:00
</brief_description>
<description >
2019-08-05 01:50:28 +00:00
3-element structure that can be used to represent positions in 3D space or any other pair of numeric values.
2020-06-21 15:16:10 +00:00
It uses floating-point coordinates. See [Vector3i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector3 will evaluate to [code]false[/code] if it's equal to [code]Vector3(0, 0, 0)[/code]. Otherwise, a Vector3 will always evaluate to [code]true[/code].
2017-09-12 20:42:36 +00:00
</description>
<tutorials >
2020-08-05 12:43:40 +00:00
<link title= "Math tutorial index" > https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
2020-10-01 08:34:47 +00:00
<link title= "Vector math" > https://docs.godotengine.org/en/latest/tutorials/math/vector_math.html</link>
<link title= "Advanced vector math" > https://docs.godotengine.org/en/latest/tutorials/math/vectors_advanced.html</link>
<link title= "3Blue1Brown Essence of Linear Algebra" > https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
<link title= "Matrix Transform Demo" > https://godotengine.org/asset-library/asset/584</link>
<link title= "All 3D Demos" > https://github.com/godotengine/godot-demo-projects/tree/master/3d</link>
2017-09-12 20:42:36 +00:00
</tutorials>
<methods >
2020-02-24 16:00:40 +00:00
<method name= "Vector3" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "from" type= "Vector3i" >
</argument>
<description >
Constructs a new [Vector3] from [Vector3i].
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "Vector3" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "x" type= "float" >
</argument>
<argument index= "1" name= "y" type= "float" >
</argument>
<argument index= "2" name= "z" type= "float" >
</argument>
<description >
2020-02-24 16:00:40 +00:00
Returns a [Vector3] with the given components.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "abs" >
<return type= "Vector3" >
</return>
<description >
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name= "angle_to" >
<return type= "float" >
</return>
<argument index= "0" name= "to" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the minimum angle to the given vector, in radians.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "bounce" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "n" type= "Vector3" >
</argument>
<description >
2018-05-13 00:58:45 +00:00
Returns the vector "bounced off" from a plane defined by the given normal.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "ceil" >
<return type= "Vector3" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns a new vector with all components rounded up (towards positive infinity).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "cross" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the cross product of this vector and [code]b[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "cubic_interpolate" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<argument index= "1" name= "pre_a" type= "Vector3" >
</argument>
<argument index= "2" name= "post_b" type= "Vector3" >
</argument>
<argument index= "3" name= "t" type= "float" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
2017-09-12 20:42:36 +00:00
</description>
</method>
2019-03-27 10:51:05 +00:00
<method name= "direction_to" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
Returns the normalized vector pointing from this vector to [code]b[/code].
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "distance_squared_to" >
<return type= "float" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the squared distance between this vector and [code]b[/code].
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "distance_to" >
<return type= "float" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the distance between this vector and [code]b[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "dot" >
<return type= "float" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the dot product of this vector and [code]b[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
2020-07-17 22:46:23 +00:00
The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "floor" >
<return type= "Vector3" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns a new vector with all components rounded down (towards negative infinity).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "inverse" >
<return type= "Vector3" >
</return>
<description >
2018-05-13 00:58:45 +00:00
Returns the inverse of the vector. This is the same as [code]Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
2019-11-08 07:33:48 +00:00
<method name= "is_equal_approx" >
<return type= "bool" >
</return>
<argument index= "0" name= "v" type= "Vector3" >
</argument>
<description >
2019-11-30 20:08:50 +00:00
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "is_normalized" >
<return type= "bool" >
</return>
<description >
2020-09-24 16:00:22 +00:00
Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "length" >
<return type= "float" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns the length (magnitude) of this vector.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "length_squared" >
<return type= "float" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
2017-09-12 20:42:36 +00:00
</description>
</method>
2020-03-16 09:07:33 +00:00
<method name= "lerp" >
2017-09-12 20:42:36 +00:00
<return type= "Vector3" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<argument index= "1" name= "t" type= "float" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "max_axis" >
<return type= "int" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "min_axis" >
<return type= "int" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
2017-09-12 20:42:36 +00:00
</description>
</method>
2019-04-07 21:40:56 +00:00
<method name= "move_toward" >
<return type= "Vector3" >
</return>
2019-06-01 10:34:29 +00:00
<argument index= "0" name= "to" type= "Vector3" >
2019-04-07 21:40:56 +00:00
</argument>
2019-06-01 10:34:29 +00:00
<argument index= "1" name= "delta" type= "float" >
2019-04-07 21:40:56 +00:00
</argument>
<description >
2020-07-21 18:07:00 +00:00
Moves this vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
2019-04-07 21:40:56 +00:00
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "normalized" >
<return type= "Vector3" >
</return>
<description >
2018-05-13 00:58:45 +00:00
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "outer" >
<return type= "Basis" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
2018-05-13 00:58:45 +00:00
Returns the outer product with [code]b[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
2019-08-05 01:50:28 +00:00
<method name= "posmod" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "mod" type= "float" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]mod[/code].
2019-08-05 01:50:28 +00:00
</description>
</method>
<method name= "posmodv" >
<return type= "Vector3" >
</return>
2019-08-29 13:33:52 +00:00
<argument index= "0" name= "modv" type= "Vector3" >
2019-08-05 01:50:28 +00:00
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]modv[/code]'s components.
2019-08-05 01:50:28 +00:00
</description>
</method>
2018-08-20 22:35:30 +00:00
<method name= "project" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns this vector projected onto another vector [code]b[/code].
2018-08-20 22:35:30 +00:00
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "reflect" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "n" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns this vector reflected from a plane defined by the given normal.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "rotated" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "axis" type= "Vector3" >
</argument>
<argument index= "1" name= "phi" type= "float" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Rotates this vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
2017-09-12 20:42:36 +00:00
</description>
</method>
2018-05-12 07:38:00 +00:00
<method name= "round" >
<return type= "Vector3" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns this vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
2018-05-12 07:38:00 +00:00
</description>
</method>
2019-08-05 01:50:28 +00:00
<method name= "sign" >
<return type= "Vector3" >
</return>
<description >
2020-07-21 18:07:00 +00:00
Returns a vector with each component set to one or negative one, depending on the signs of this vector's components, or zero if the component is zero, by calling [method @GDScript.sign] on each component.
2019-08-05 01:50:28 +00:00
</description>
</method>
2018-05-12 00:14:39 +00:00
<method name= "slerp" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "b" type= "Vector3" >
</argument>
<argument index= "1" name= "t" type= "float" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
2019-06-21 23:04:47 +00:00
[b]Note:[/b] Both vectors must be normalized.
2018-05-12 00:14:39 +00:00
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "slide" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "n" type= "Vector3" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns this vector slid along a plane defined by the given normal.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "snapped" >
<return type= "Vector3" >
</return>
2018-02-03 18:09:16 +00:00
<argument index= "0" name= "by" type= "Vector3" >
2017-09-12 20:42:36 +00:00
</argument>
<description >
2020-07-21 18:07:00 +00:00
Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "to_diagonal_matrix" >
<return type= "Basis" >
</return>
<description >
2017-10-22 20:43:35 +00:00
Returns a diagonal matrix with the vector as main diagonal.
2020-07-21 18:07:00 +00:00
This is equivalent to a Basis with no rotation or shearing and this vector's components set as the scale.
2017-09-12 20:42:36 +00:00
</description>
</method>
</methods>
<members >
2019-06-29 10:38:01 +00:00
<member name= "x" type= "float" setter= "" getter= "" default= "0.0" >
2019-06-21 23:04:47 +00:00
The vector's X component. Also accessible by using the index position [code][0][/code].
2017-09-12 20:42:36 +00:00
</member>
2019-06-29 10:38:01 +00:00
<member name= "y" type= "float" setter= "" getter= "" default= "0.0" >
2019-06-21 23:04:47 +00:00
The vector's Y component. Also accessible by using the index position [code][1][/code].
2017-09-12 20:42:36 +00:00
</member>
2019-06-29 10:38:01 +00:00
<member name= "z" type= "float" setter= "" getter= "" default= "0.0" >
2019-06-21 23:04:47 +00:00
The vector's Z component. Also accessible by using the index position [code][2][/code].
2017-09-12 20:42:36 +00:00
</member>
</members>
<constants >
2017-11-24 22:16:30 +00:00
<constant name= "AXIS_X" value= "0" >
2018-05-13 00:58:45 +00:00
Enumerated value for the X axis. Returned by [method max_axis] and [method min_axis].
2017-09-12 20:42:36 +00:00
</constant>
2017-11-24 22:16:30 +00:00
<constant name= "AXIS_Y" value= "1" >
2019-08-29 13:33:52 +00:00
Enumerated value for the Y axis. Returned by [method max_axis] and [method min_axis].
2017-09-12 20:42:36 +00:00
</constant>
2017-11-24 22:16:30 +00:00
<constant name= "AXIS_Z" value= "2" >
2019-08-29 13:33:52 +00:00
Enumerated value for the Z axis. Returned by [method max_axis] and [method min_axis].
2017-09-12 20:42:36 +00:00
</constant>
2018-08-20 22:35:30 +00:00
<constant name= "ZERO" value= "Vector3( 0, 0, 0 )" >
2020-07-21 18:07:00 +00:00
Zero vector, a vector with all components set to [code]0[/code].
2018-10-06 18:13:41 +00:00
</constant>
<constant name= "ONE" value= "Vector3( 1, 1, 1 )" >
2020-07-21 18:07:00 +00:00
One vector, a vector with all components set to [code]1[/code].
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "INF" value= "Vector3( inf, inf, inf )" >
2020-07-21 18:07:00 +00:00
Infinity vector, a vector with all components set to [constant @GDScript.INF].
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "LEFT" value= "Vector3( -1, 0, 0 )" >
2020-07-21 18:07:00 +00:00
Left unit vector. Represents the local direction of left, and the global direction of west.
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "RIGHT" value= "Vector3( 1, 0, 0 )" >
2020-07-21 18:07:00 +00:00
Right unit vector. Represents the local direction of right, and the global direction of east.
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "UP" value= "Vector3( 0, 1, 0 )" >
2018-08-26 22:31:09 +00:00
Up unit vector.
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "DOWN" value= "Vector3( 0, -1, 0 )" >
2018-08-26 22:31:09 +00:00
Down unit vector.
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "FORWARD" value= "Vector3( 0, 0, -1 )" >
2020-07-21 18:07:00 +00:00
Forward unit vector. Represents the local direction of forward, and the global direction of north.
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "BACK" value= "Vector3( 0, 0, 1 )" >
2020-07-21 18:07:00 +00:00
Back unit vector. Represents the local direction of back, and the global direction of south.
2018-08-20 22:35:30 +00:00
</constant>
2017-09-12 20:42:36 +00:00
</constants>
</class>