3D Agent that is used in navigation to reach a location while avoiding static and dynamic obstacles. The dynamic obstacles are avoided using RVO collision avoidance. The agent needs navigation data to work correctly. [NavigationAgent3D] is physics safe.
[b]Note:[/b] After [method set_target_location] is used it is required to use the [method get_next_location] function once every physics frame to update the internal path logic of the NavigationAgent. The returned vector position from this function should be used as the next movement position for the agent's parent Node.
Returns the distance to the target location, using the agent's global position. The user must set the target location with [method set_target_location] in order for this to be accurate.
Returns the reachable final location in global coordinates. This can change if the navigation path is altered in any way. Because of this, it would be best to check this each frame.
Returns this agent's current path from start to finish in global coordinates. The path only updates when the target location is changed or the agent requires a repath. The path array is not intended to be used in direct path movement as the agent has its own internal path logic that would get corrupted by changing the path array manually. Use the intended [method get_next_location] once every physics frame to receive the next path point for the agents movement as this function also updates the internal path logic.
Returns the next location in global coordinates that can be moved to, making sure that there are no static objects in the way. If the agent does not have a navigation path, it will return the position of the agent's parent. The use of this function once every physics frame is required to update the internal path logic of the NavigationAgent.
Returns true if the target location is reached. The target location is set using [method set_target_location]. It may not always be possible to reach the target location. It should always be possible to reach the final location though. See [method get_final_location].
Sends the passed in velocity to the collision avoidance algorithm. It will adjust the velocity to avoid collisions. Once the adjustment to the velocity is complete, it will emit the [signal velocity_computed] signal.
The NavigationAgent height offset is subtracted from the y-axis value of any vector path position for this NavigationAgent. The NavigationAgent height offset does not change or influence the navigation mesh or pathfinding query result. Additional navigation maps that use regions with navigation meshes that the developer baked with appropriate agent radius or height values are required to support different-sized agents.
If [code]true[/code] the agent is registered for an RVO avoidance callback on the [NavigationServer3D]. When [method NavigationAgent3D.set_velocity] is used and the processing is completed a [code]safe_velocity[/code] Vector3 is received with a signal connection to [signal velocity_computed]. Avoidance processing with many registered agents has a significant performance cost and should only be enabled on agents that currently require it.
A bitfield determining what layers of navigation regions this agent will use to calculate path. Changing it runtime will clear current navigation path and generate new one, according to new layers.
The maximum distance the agent is allowed away from the ideal path to the final location. This can happen due to trying to avoid collisions. When the maximum distance is exceeded, it recalculates the ideal path.
The distance threshold before a target is considered to be reached. This will allow an agent to not have to hit a point on the path exactly, but in the area.
The minimal amount of time for which this agent's velocities, that are computed with the collision avoidance algorithm, are safe with respect to other agents. The larger the number, the sooner the agent will respond to other agents, but less freedom in choosing its velocities. Must be positive.