Update zstd to 1.3.4

This commit is contained in:
volzhs 2018-05-16 02:45:22 +09:00
parent 3b8bd50b41
commit 5c5918a52d
32 changed files with 5648 additions and 3257 deletions

View File

@ -480,7 +480,7 @@ Files extracted from upstream source:
## zstd
- Upstream: https://github.com/facebook/zstd
- Version: 1.3.3
- Version: 1.3.4
- License: BSD-3-Clause
Files extracted from upstream source:

View File

@ -426,7 +426,7 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not read beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */

View File

@ -63,6 +63,31 @@
# endif
#endif
/* target attribute */
#ifndef __has_attribute
#define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
#endif
#if defined(__GNUC__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else
# define TARGET_ATTRIBUTE(target)
#endif
/* Enable runtime BMI2 dispatch based on the CPU.
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
*/
#ifndef DYNAMIC_BMI2
#if (defined(__clang__) && __has_attribute(__target__)) \
|| (defined(__GNUC__) \
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) \
&& (defined(__x86_64__) || defined(_M_X86)) \
&& !defined(__BMI2__)
# define DYNAMIC_BMI2 1
#else
# define DYNAMIC_BMI2 0
#endif
#endif
/* prefetch */
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */

216
thirdparty/zstd/common/cpu.h vendored Normal file
View File

@ -0,0 +1,216 @@
/*
* Copyright (c) 2018-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMMON_CPU_H
#define ZSTD_COMMON_CPU_H
/**
* Implementation taken from folly/CpuId.h
* https://github.com/facebook/folly/blob/master/folly/CpuId.h
*/
#include <string.h>
#include "mem.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
typedef struct {
U32 f1c;
U32 f1d;
U32 f7b;
U32 f7c;
} ZSTD_cpuid_t;
MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
U32 f1c = 0;
U32 f1d = 0;
U32 f7b = 0;
U32 f7c = 0;
#ifdef _MSC_VER
int reg[4];
__cpuid((int*)reg, 0);
{
int const n = reg[0];
if (n >= 1) {
__cpuid((int*)reg, 1);
f1c = (U32)reg[2];
f1d = (U32)reg[3];
}
if (n >= 7) {
__cpuidex((int*)reg, 7, 0);
f7b = (U32)reg[1];
f7c = (U32)reg[2];
}
}
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
/* The following block like the normal cpuid branch below, but gcc
* reserves ebx for use of its pic register so we must specially
* handle the save and restore to avoid clobbering the register
*/
U32 n;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(n)
: "a"(0)
: "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
: "a"(1)
:);
}
if (n >= 7) {
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"movl %%ebx, %%eax\n\r"
"popl %%ebx"
: "=a"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
U32 n;
__asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
}
if (n >= 7) {
U32 f7a;
__asm__("cpuid"
: "=a"(f7a), "=b"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#endif
{
ZSTD_cpuid_t cpuid;
cpuid.f1c = f1c;
cpuid.f1d = f1d;
cpuid.f7b = f7b;
cpuid.f7c = f7c;
return cpuid;
}
}
#define X(name, r, bit) \
MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
return ((cpuid.r) & (1U << bit)) != 0; \
}
/* cpuid(1): Processor Info and Feature Bits. */
#define C(name, bit) X(name, f1c, bit)
C(sse3, 0)
C(pclmuldq, 1)
C(dtes64, 2)
C(monitor, 3)
C(dscpl, 4)
C(vmx, 5)
C(smx, 6)
C(eist, 7)
C(tm2, 8)
C(ssse3, 9)
C(cnxtid, 10)
C(fma, 12)
C(cx16, 13)
C(xtpr, 14)
C(pdcm, 15)
C(pcid, 17)
C(dca, 18)
C(sse41, 19)
C(sse42, 20)
C(x2apic, 21)
C(movbe, 22)
C(popcnt, 23)
C(tscdeadline, 24)
C(aes, 25)
C(xsave, 26)
C(osxsave, 27)
C(avx, 28)
C(f16c, 29)
C(rdrand, 30)
#undef C
#define D(name, bit) X(name, f1d, bit)
D(fpu, 0)
D(vme, 1)
D(de, 2)
D(pse, 3)
D(tsc, 4)
D(msr, 5)
D(pae, 6)
D(mce, 7)
D(cx8, 8)
D(apic, 9)
D(sep, 11)
D(mtrr, 12)
D(pge, 13)
D(mca, 14)
D(cmov, 15)
D(pat, 16)
D(pse36, 17)
D(psn, 18)
D(clfsh, 19)
D(ds, 21)
D(acpi, 22)
D(mmx, 23)
D(fxsr, 24)
D(sse, 25)
D(sse2, 26)
D(ss, 27)
D(htt, 28)
D(tm, 29)
D(pbe, 31)
#undef D
/* cpuid(7): Extended Features. */
#define B(name, bit) X(name, f7b, bit)
B(bmi1, 3)
B(hle, 4)
B(avx2, 5)
B(smep, 7)
B(bmi2, 8)
B(erms, 9)
B(invpcid, 10)
B(rtm, 11)
B(mpx, 14)
B(avx512f, 16)
B(avx512dq, 17)
B(rdseed, 18)
B(adx, 19)
B(smap, 20)
B(avx512ifma, 21)
B(pcommit, 22)
B(clflushopt, 23)
B(clwb, 24)
B(avx512pf, 26)
B(avx512er, 27)
B(avx512cd, 28)
B(sha, 29)
B(avx512bw, 30)
B(avx512vl, 31)
#undef B
#define C(name, bit) X(name, f7c, bit)
C(prefetchwt1, 0)
C(avx512vbmi, 1)
#undef C
#undef X
#endif /* ZSTD_COMMON_CPU_H */

View File

@ -29,6 +29,7 @@ const char* ERR_getErrorString(ERR_enum code)
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
case PREFIX(init_missing): return "Context should be init first";
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";

View File

@ -345,7 +345,7 @@ size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* s
*/
size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* workSpace);
/*! FSE_count_simple
/*! FSE_count_simple() :
* Same as FSE_countFast(), but does not use any additional memory (not even on stack).
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
*/

View File

@ -139,8 +139,8 @@ size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned
{ U32 u;
for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }

View File

@ -58,32 +58,32 @@ extern "C" {
#endif
/* *** simple functions *** */
/**
HUF_compress() :
Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
'dst' buffer must be already allocated.
Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
`srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
@return : size of compressed data (<= `dstCapacity`).
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single repeated byte symbol (RLE compression).
if HUF_isError(return), compression failed (more details using HUF_getErrorName())
*/
/* ========================== */
/* *** simple functions *** */
/* ========================== */
/** HUF_compress() :
* Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
* 'dst' buffer must be already allocated.
* Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
* `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
* @return : size of compressed data (<= `dstCapacity`).
* Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
* if HUF_isError(return), compression failed (more details using HUF_getErrorName())
*/
HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/**
HUF_decompress() :
Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
into already allocated buffer 'dst', of minimum size 'dstSize'.
`originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
Note : in contrast with FSE, HUF_decompress can regenerate
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
because it knows size to regenerate.
@return : size of regenerated data (== originalSize),
or an error code, which can be tested using HUF_isError()
*/
/** HUF_decompress() :
* Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
* into already allocated buffer 'dst', of minimum size 'dstSize'.
* `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
* Note : in contrast with FSE, HUF_decompress can regenerate
* RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
* because it knows size to regenerate (originalSize).
* @return : size of regenerated data (== originalSize),
* or an error code, which can be tested using HUF_isError()
*/
HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize);
@ -100,39 +100,32 @@ HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error c
/* *** Advanced function *** */
/** HUF_compress2() :
* Same as HUF_compress(), but offers direct control over `maxSymbolValue` and `tableLog`.
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
* Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
* `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog);
/** HUF_compress4X_wksp() :
* Same as HUF_compress2(), but uses externally allocated `workSpace`.
* `workspace` must have minimum alignment of 4, and be at least as large as following macro */
* `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */
#define HUF_WORKSPACE_SIZE (6 << 10)
#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX2_wksp() and HUF_readDTableX4_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize);
#endif /* HUF_H_298734234 */
/* ******************************************************************
* WARNING !!
* The following section contains advanced and experimental definitions
* which shall never be used in the context of dll
* which shall never be used in the context of a dynamic library,
* because they are not guaranteed to remain stable in the future.
* Only consider them in association with static linking.
*******************************************************************/
* *****************************************************************/
#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
#define HUF_H_HUF_STATIC_LINKING_ONLY
@ -141,11 +134,11 @@ HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, const
/* *** Constants *** */
#define HUF_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
#define HUF_SYMBOLVALUE_MAX 255
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !"
#endif
@ -192,24 +185,23 @@ size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
/* ****************************************
* HUF detailed API
******************************************/
/*!
HUF_compress() does the following:
1. count symbol occurrence from source[] into table count[] using FSE_count()
2. (optional) refine tableLog using HUF_optimalTableLog()
3. build Huffman table from count using HUF_buildCTable()
4. save Huffman table to memory buffer using HUF_writeCTable()
5. encode the data stream using HUF_compress4X_usingCTable()
* HUF detailed API
* ****************************************/
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and regenerate 'CTable' using external methods.
*/
/* FSE_count() : find it within "fse.h" */
/*! HUF_compress() does the following:
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
* 2. (optional) refine tableLog using HUF_optimalTableLog()
* 3. build Huffman table from count using HUF_buildCTable()
* 4. save Huffman table to memory buffer using HUF_writeCTable()
* 5. encode the data stream using HUF_compress4X_usingCTable()
*
* The following API allows targeting specific sub-functions for advanced tasks.
* For example, it's possible to compress several blocks using the same 'CTable',
* or to save and regenerate 'CTable' using external methods.
*/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits);
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
@ -219,46 +211,65 @@ typedef enum {
HUF_repeat_valid /**< Can use the previous table and it is asumed to be valid */
} HUF_repeat;
/** HUF_compress4X_repeat() :
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
*/
#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize);
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
* Read compact Huffman tree, saved by HUF_writeCTable().
* `huffWeight` is destination buffer.
* @return : size read from `src` , or an error Code .
* Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/** HUF_readCTable() :
* Loading a CTable saved with HUF_writeCTable() */
* Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
/*
HUF_decompress() does the following:
1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
2. build Huffman table from save, using HUF_readDTableXn()
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
*/
* HUF_decompress() does the following:
* 1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
* 2. build Huffman table from save, using HUF_readDTableX?()
* 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
*/
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-determined metrics.
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX2_wksp() and HUF_readDTableX4_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize);
@ -269,17 +280,23 @@ size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* c
size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
/* ====================== */
/* single stream variants */
/* ====================== */
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
/** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
@ -295,6 +312,14 @@ size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cS
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
/* BMI2 variants.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
size_t HUF_decompress1X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
#endif /* HUF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)

View File

@ -12,6 +12,7 @@
/* ====== Dependencies ======= */
#include <stddef.h> /* size_t */
#include "pool.h"
#include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
@ -193,32 +194,54 @@ static int isQueueFull(POOL_ctx const* ctx) {
}
}
void POOL_add(void* ctxVoid, POOL_function function, void *opaque) {
POOL_ctx* const ctx = (POOL_ctx*)ctxVoid;
if (!ctx) { return; }
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
{ POOL_job const job = {function, opaque};
static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
{
POOL_job const job = {function, opaque};
assert(ctx != NULL);
if (ctx->shutdown) return;
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && !ctx->shutdown) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
/* The queue is still going => there is space */
if (!ctx->shutdown) {
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
}
}
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
ZSTD_pthread_cond_signal(&ctx->queuePopCond);
}
#else /* ZSTD_MULTITHREAD not defined */
/* No multi-threading support */
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && (!ctx->shutdown)) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
/* We don't need any data, but if it is empty malloc() might return NULL. */
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
if (isQueueFull(ctx)) {
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 0;
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 1;
}
#else /* ZSTD_MULTITHREAD not defined */
/* ========================== */
/* No multi-threading support */
/* ========================== */
/* We don't need any data, but if it is empty, malloc() might return NULL. */
struct POOL_ctx_s {
int dummy;
};
@ -240,11 +263,17 @@ void POOL_free(POOL_ctx* ctx) {
(void)ctx;
}
void POOL_add(void* ctx, POOL_function function, void* opaque) {
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
return 1;
}
size_t POOL_sizeof(POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
assert(ctx == &g_ctx);

View File

@ -17,7 +17,8 @@ extern "C" {
#include <stddef.h> /* size_t */
#include "zstd_internal.h" /* ZSTD_customMem */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
#include "zstd.h"
typedef struct POOL_ctx_s POOL_ctx;
@ -27,35 +28,43 @@ typedef struct POOL_ctx_s POOL_ctx;
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx *POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx *POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem);
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem);
/*! POOL_free() :
Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx *ctx);
void POOL_free(POOL_ctx* ctx);
/*! POOL_sizeof() :
return memory usage of pool returned by POOL_create().
*/
size_t POOL_sizeof(POOL_ctx *ctx);
size_t POOL_sizeof(POOL_ctx* ctx);
/*! POOL_function :
The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void *);
typedef void (*POOL_function)(void*);
/*! POOL_add_function :
The function type for a generic thread pool add function.
*/
typedef void (*POOL_add_function)(void *, POOL_function, void *);
typedef void (*POOL_add_function)(void*, POOL_function, void*);
/*! POOL_add() :
Add the job `function(opaque)` to the thread pool.
Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
Possibly blocks until there is room in the queue.
Note : The function may be executed asynchronously, so `opaque` must live until the function has been completed.
*/
void POOL_add(void *ctx, POOL_function function, void *opaque);
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() :
Add the job `function(opaque)` to the thread pool if a worker is available.
return immediately otherwise.
@return : 1 if successful, 0 if not.
*/
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
#if defined (__cplusplus)

View File

@ -45,15 +45,15 @@ extern "C" {
/* mutex */
#define ZSTD_pthread_mutex_t CRITICAL_SECTION
#define ZSTD_pthread_mutex_init(a, b) (InitializeCriticalSection((a)), 0)
#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0)
#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a))
#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a))
#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a))
/* condition variable */
#define ZSTD_pthread_cond_t CONDITION_VARIABLE
#define ZSTD_pthread_cond_init(a, b) (InitializeConditionVariable((a)), 0)
#define ZSTD_pthread_cond_destroy(a) /* No delete */
#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a))
#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
@ -100,17 +100,17 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
/* No multithreading support */
typedef int ZSTD_pthread_mutex_t;
#define ZSTD_pthread_mutex_init(a, b) ((void)a, 0)
#define ZSTD_pthread_mutex_destroy(a)
#define ZSTD_pthread_mutex_lock(a)
#define ZSTD_pthread_mutex_unlock(a)
#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_mutex_destroy(a) ((void)(a))
#define ZSTD_pthread_mutex_lock(a) ((void)(a))
#define ZSTD_pthread_mutex_unlock(a) ((void)(a))
typedef int ZSTD_pthread_cond_t;
#define ZSTD_pthread_cond_init(a, b) ((void)a, 0)
#define ZSTD_pthread_cond_destroy(a)
#define ZSTD_pthread_cond_wait(a, b)
#define ZSTD_pthread_cond_signal(a)
#define ZSTD_pthread_cond_broadcast(a)
#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b))
#define ZSTD_pthread_cond_signal(a) ((void)(a))
#define ZSTD_pthread_cond_broadcast(a) ((void)(a))
/* do not use ZSTD_pthread_t */

View File

@ -35,12 +35,20 @@ extern "C" {
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
#endif
/*-****************************************
* error codes list
* note : this API is still considered unstable
* and shall not be used with a dynamic library.
* only static linking is allowed
******************************************/
/*-*********************************************
* Error codes list
*-*********************************************
* Error codes _values_ are pinned down since v1.3.1 only.
* Therefore, don't rely on values if you may link to any version < v1.3.1.
*
* Only values < 100 are considered stable.
*
* note 1 : this API shall be used with static linking only.
* dynamic linking is not yet officially supported.
* note 2 : Prefer relying on the enum than on its value whenever possible
* This is the only supported way to use the error list < v1.3.1
* note 3 : ZSTD_isError() is always correct, whatever the library version.
**********************************************/
typedef enum {
ZSTD_error_no_error = 0,
ZSTD_error_GENERIC = 1,
@ -61,9 +69,10 @@ typedef enum {
ZSTD_error_stage_wrong = 60,
ZSTD_error_init_missing = 62,
ZSTD_error_memory_allocation = 64,
ZSTD_error_workSpace_tooSmall= 66,
ZSTD_error_dstSize_tooSmall = 70,
ZSTD_error_srcSize_wrong = 72,
/* following error codes are not stable and may be removed or changed in a future version */
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
ZSTD_error_frameIndex_tooLarge = 100,
ZSTD_error_seekableIO = 102,
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */

View File

@ -132,14 +132,15 @@ typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingTy
#define Litbits 8
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define MaxML 52
#define MaxLL 35
#define DefaultMaxOff 28
#define MaxOff 31
#define MaxOff 31
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
@ -228,8 +229,6 @@ typedef struct {
BYTE* ofCode;
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
U32 longLengthPos;
U32 rep[ZSTD_REP_NUM];
U32 repToConfirm[ZSTD_REP_NUM];
} seqStore_t;
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */

View File

@ -248,7 +248,7 @@ static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
bitCount -= (count<max);
previous0 = (count==1);
if (remaining<1) return ERROR(GENERIC);
while (remaining<threshold) nbBits--, threshold>>=1;
while (remaining<threshold) { nbBits--; threshold>>=1; }
}
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
@ -292,7 +292,7 @@ size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalized
It doesn't use any additional memory.
But this function is unsafe : it doesn't check that all values within `src` can fit into `count`.
For this reason, prefer using a table `count` with 256 elements.
@return : count of most numerous element
@return : count of most numerous element.
*/
size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
@ -305,7 +305,10 @@ size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
memset(count, 0, (maxSymbolValue+1)*sizeof(*count));
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
while (ip<end) count[*ip++]++;
while (ip<end) {
assert(*ip <= maxSymbolValue);
count[*ip++]++;
}
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
@ -318,7 +321,8 @@ size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
/* FSE_count_parallel_wksp() :
* Same as FSE_count_parallel(), but using an externally provided scratch buffer.
* `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */
* `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`.
* @return : largest histogram frequency, or an error code (notably when histogram would be larger than *maxSymbolValuePtr). */
static size_t FSE_count_parallel_wksp(
unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
@ -333,7 +337,7 @@ static size_t FSE_count_parallel_wksp(
U32* const Counting3 = Counting2 + 256;
U32* const Counting4 = Counting3 + 256;
memset(Counting1, 0, 4*256*sizeof(unsigned));
memset(workSpace, 0, 4*256*sizeof(unsigned));
/* safety checks */
if (!sourceSize) {
@ -379,7 +383,9 @@ static size_t FSE_count_parallel_wksp(
if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
} }
{ U32 s; for (s=0; s<=maxSymbolValue; s++) {
{ U32 s;
if (maxSymbolValue > 255) maxSymbolValue = 255;
for (s=0; s<=maxSymbolValue; s++) {
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
if (count[s] > max) max = count[s];
} }
@ -393,9 +399,11 @@ static size_t FSE_count_parallel_wksp(
* Same as FSE_countFast(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= `1024` unsigned */
size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize, unsigned* workSpace)
const void* source, size_t sourceSize,
unsigned* workSpace)
{
if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
if (sourceSize < 1500) /* heuristic threshold */
return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
}
@ -540,7 +548,7 @@ static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count,
find max, then give all remaining points to max */
U32 maxV = 0, maxC = 0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) maxV=s, maxC=count[s];
if (count[s] > maxC) { maxV=s; maxC=count[s]; }
norm[maxV] += (short)ToDistribute;
return 0;
}
@ -548,7 +556,7 @@ static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count,
if (total == 0) {
/* all of the symbols were low enough for the lowOne or lowThreshold */
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
if (norm[s] > 0) ToDistribute--, norm[s]++;
if (norm[s] > 0) { ToDistribute--; norm[s]++; }
return 0;
}
@ -604,7 +612,7 @@ size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP) largestP=proba, largest=s;
if (proba > largestP) { largestP=proba; largest=s; }
normalizedCounter[s] = proba;
stillToDistribute -= proba;
} }

View File

@ -46,6 +46,7 @@
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
#include "fse.h" /* header compression */
#define HUF_STATIC_LINKING_ONLY
@ -322,7 +323,10 @@ static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
U32 const c = count[n];
U32 const r = BIT_highbit32(c+1) + 1;
U32 pos = rank[r].current++;
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) {
huffNode[pos] = huffNode[pos-1];
pos--;
}
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
@ -331,10 +335,10 @@ static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of HUF_CTABLE_WORKSPACE_SIZE_U32 unsigned.
*/
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
typedef nodeElt huffNodeTable[2*HUF_SYMBOLVALUE_MAX+1 +1];
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
nodeElt* const huffNode0 = (nodeElt*)workSpace;
@ -345,9 +349,10 @@ size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValu
U32 nodeRoot;
/* safety checks */
if (wkspSize < sizeof(huffNodeTable)) return ERROR(GENERIC); /* workSpace is not large enough */
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(huffNodeTable)) return ERROR(workSpace_tooSmall);
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
memset(huffNode0, 0, sizeof(huffNodeTable));
/* sort, decreasing order */
@ -405,6 +410,7 @@ size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValu
}
/** HUF_buildCTable() :
* @return : maxNbBits
* Note : count is used before tree is written, so they can safely overlap
*/
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
@ -432,13 +438,14 @@ static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, uns
return !bad;
}
static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
#define HUF_FLUSHBITS(s) BIT_flushBits(s)
#define HUF_FLUSHBITS_1(stream) \
@ -447,7 +454,10 @@ size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
#define HUF_FLUSHBITS_2(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
@ -491,8 +501,58 @@ size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, si
return BIT_closeCStream(&bitC);
}
#if DYNAMIC_BMI2
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
static TARGET_ATTRIBUTE("bmi2") size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
if (bmi2) {
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
}
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}
#else
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
(void)bmi2;
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
#endif
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, int bmi2)
{
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
const BYTE* ip = (const BYTE*) src;
@ -505,28 +565,31 @@ size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, si
if (srcSize < 12) return 0; /* no saving possible : too small input */
op += 6; /* jumpTable */
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart+2, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart+4, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable) );
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, iend-ip, CTable, bmi2) );
if (cSize==0) return 0;
op += cSize;
}
@ -534,15 +597,20 @@ size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, si
return op-ostart;
}
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
static size_t HUF_compressCTable_internal(
BYTE* const ostart, BYTE* op, BYTE* const oend,
const void* src, size_t srcSize,
unsigned singleStream, const HUF_CElt* CTable)
unsigned singleStream, const HUF_CElt* CTable, const int bmi2)
{
size_t const cSize = singleStream ?
HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) :
HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
HUF_compress1X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2) :
HUF_compress4X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2);
if (HUF_isError(cSize)) { return cSize; }
if (cSize==0) { return 0; } /* uncompressible */
op += cSize;
@ -551,86 +619,98 @@ static size_t HUF_compressCTable_internal(
return op-ostart;
}
typedef struct {
U32 count[HUF_SYMBOLVALUE_MAX + 1];
HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
huffNodeTable nodeTable;
} HUF_compress_tables_t;
/* `workSpace` must a table of at least 1024 unsigned */
/* HUF_compress_internal() :
* `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
static size_t HUF_compress_internal (
void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
unsigned singleStream,
void* workSpace, size_t wkspSize,
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat)
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
const int bmi2)
{
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
U32* count;
size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1);
HUF_CElt* CTable;
size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1);
/* checks & inits */
if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) return ERROR(GENERIC);
if (!srcSize) return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */
if (!dstSize) return 0; /* cannot fit within dst budget */
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
if (!srcSize) return 0; /* Uncompressed */
if (!dstSize) return 0; /* cannot fit anything within dst budget */
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
count = (U32*)workSpace;
workSpace = (BYTE*)workSpace + countSize;
wkspSize -= countSize;
CTable = (HUF_CElt*)workSpace;
workSpace = (BYTE*)workSpace + CTableSize;
wkspSize -= CTableSize;
/* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */
/* Heuristic : If old table is valid, use it for small inputs */
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, oldHufTable, bmi2);
}
/* Scan input and build symbol stats */
{ CHECK_V_F(largest, FSE_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, (U32*)workSpace) );
{ CHECK_V_F(largest, FSE_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->count) );
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */
if (largest <= (srcSize >> 7)+1) return 0; /* heuristic : probably not compressible enough */
}
/* Check validity of previous table */
if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) {
if ( repeat
&& *repeat == HUF_repeat_check
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
*repeat = HUF_repeat_none;
}
/* Heuristic : use existing table for small inputs */
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, oldHufTable, bmi2);
}
/* Build Huffman Tree */
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
{ CHECK_V_F(maxBits, HUF_buildCTable_wksp (CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize) );
{ CHECK_V_F(maxBits, HUF_buildCTable_wksp(table->CTable, table->count,
maxSymbolValue, huffLog,
table->nodeTable, sizeof(table->nodeTable)) );
huffLog = (U32)maxBits;
/* Zero the unused symbols so we can check it for validity */
memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt));
/* Zero unused symbols in CTable, so we can check it for validity */
memset(table->CTable + (maxSymbolValue + 1), 0,
sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
}
/* Write table description header */
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog) );
/* Check if using the previous table will be beneficial */
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
/* Check if using previous huffman table is beneficial */
if (repeat && *repeat != HUF_repeat_none) {
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue);
size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue);
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
}
}
/* Use the new table */
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, oldHufTable, bmi2);
} }
/* Use the new huffman table */
if (hSize + 12ul >= srcSize) { return 0; }
op += hSize;
if (repeat) { *repeat = HUF_repeat_none; }
if (oldHufTable) { memcpy(oldHufTable, CTable, CTableSize); } /* Save the new table */
if (oldHufTable)
memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
}
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable);
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, table->CTable, bmi2);
}
@ -639,52 +719,70 @@ size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0);
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 1 /*single stream*/,
workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/);
}
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 1 /*single stream*/,
workSpace, wkspSize, hufTable,
repeat, preferRepeat, bmi2);
}
size_t HUF_compress1X (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[1024];
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0);
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 0 /*4 streams*/,
workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/);
}
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 0 /* 4 streams */,
workSpace, wkspSize,
hufTable, repeat, preferRepeat, bmi2);
}
size_t HUF_compress2 (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[1024];
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_TABLELOG_DEFAULT);
return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
}

File diff suppressed because it is too large Load Diff

View File

@ -30,8 +30,14 @@ extern "C" {
/*-*************************************
* Constants
***************************************/
static const U32 g_searchStrength = 8;
#define HASH_READ_SIZE 8
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index 1 now means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionnally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be misdhandled after table re-use with a different strategy */
/*-*************************************
@ -43,7 +49,7 @@ typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
typedef struct ZSTD_prefixDict_s {
const void* dict;
size_t dictSize;
ZSTD_dictMode_e dictMode;
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
@ -51,7 +57,6 @@ typedef struct {
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
U32 workspace[HUF_WORKSPACE_SIZE_U32];
HUF_repeat hufCTable_repeatMode;
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
@ -93,12 +98,44 @@ typedef struct {
U32 staticPrices; /* prices follow a pre-defined cost structure, statistics are irrelevant */
} optState_t;
typedef struct {
ZSTD_entropyCTables_t entropy;
U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;
typedef struct {
BYTE const* nextSrc; /* next block here to continue on current prefix */
BYTE const* base; /* All regular indexes relative to this position */
BYTE const* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more data */
} ZSTD_window_t;
typedef struct {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary */
U32 nextToUpdate; /* index from which to continue table update */
U32 nextToUpdate3; /* index from which to continue table update */
U32 hashLog3; /* dispatch table : larger == faster, more memory */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
optState_t opt; /* optimal parser state */
} ZSTD_matchState_t;
typedef struct {
ZSTD_compressedBlockState_t* prevCBlock;
ZSTD_compressedBlockState_t* nextCBlock;
ZSTD_matchState_t matchState;
} ZSTD_blockState_t;
typedef struct {
U32 offset;
U32 checksum;
} ldmEntry_t;
typedef struct {
ZSTD_window_t window; /* State for the window round buffer management */
ldmEntry_t* hashTable;
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
U64 hashPower; /* Used to compute the rolling hash.
@ -111,60 +148,68 @@ typedef struct {
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */
U32 hashEveryLog; /* Log number of entries to skip */
U32 windowLog; /* Window log for the LDM */
} ldmParams_t;
typedef struct {
U32 offset;
U32 litLength;
U32 matchLength;
} rawSeq;
typedef struct {
rawSeq* seq; /* The start of the sequences */
size_t pos; /* The position where reading stopped. <= size. */
size_t size; /* The number of sequences. <= capacity. */
size_t capacity; /* The capacity of the `seq` pointer */
} rawSeqStore_t;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
int compressionLevel;
U32 forceWindow; /* force back-references to respect limit of
int disableLiteralCompression;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
/* Multithreading: used to pass parameters to mtctx */
U32 nbThreads;
unsigned nbWorkers;
unsigned jobSize;
unsigned overlapSizeLog;
/* Long distance matching parameters */
ldmParams_t ldmParams;
/* For use with createCCtxParams() and freeCCtxParams() only */
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
ZSTD_customMem customMem;
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
struct ZSTD_CCtx_s {
const BYTE* nextSrc; /* next block here to continue on current prefix */
const BYTE* base; /* All regular indexes relative to this position */
const BYTE* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more data */
U32 nextToUpdate; /* index from which to continue dictionary update */
U32 nextToUpdate3; /* index from which to continue dictionary update */
U32 hashLog3; /* dispatch table : larger == faster, more memory */
U32 loadedDictEnd; /* index of end of dictionary */
ZSTD_compressionStage_e stage;
U32 dictID;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
ZSTD_CCtx_params requestedParams;
ZSTD_CCtx_params appliedParams;
U32 dictID;
void* workSpace;
size_t workSpaceSize;
size_t blockSize;
U64 pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
U64 consumedSrcSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
unsigned long long producedCSize;
XXH64_state_t xxhState;
ZSTD_customMem customMem;
size_t staticSize;
seqStore_t seqStore; /* sequences storage ptrs */
optState_t optState;
ldmState_t ldmState; /* long distance matching state */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
ZSTD_entropyCTables_t* entropy;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
size_t maxNbLdmSequences;
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
/* streaming */
char* inBuff;
@ -191,6 +236,12 @@ struct ZSTD_CCtx_s {
};
typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
@ -359,10 +410,12 @@ MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* co
}
/** ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t ZSTD_count_2segments(const BYTE* ip, const BYTE* match, const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
@ -372,8 +425,8 @@ MEM_STATIC size_t ZSTD_count_2segments(const BYTE* ip, const BYTE* match, const
/*-*************************************
* Hashes
***************************************/
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
@ -411,6 +464,171 @@ MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
}
}
/*-*************************************
* Round buffer management
***************************************/
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX \
( ((U32)-1) /* Maximum ending current index */ \
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
/**
* ZSTD_window_clear():
* Clears the window containing the history by simply setting it to empty.
*/
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
size_t const endT = (size_t)(window->nextSrc - window->base);
U32 const end = (U32)endT;
window->lowLimit = end;
window->dictLimit = end;
}
/**
* ZSTD_window_hasExtDict():
* Returns non-zero if the window has a non-empty extDict.
*/
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
return window.lowLimit < window.dictLimit;
}
/**
* ZSTD_window_needOverflowCorrection():
* Returns non-zero if the indices are getting too large and need overflow
* protection.
*/
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
void const* srcEnd)
{
U32 const current = (U32)((BYTE const*)srcEnd - window.base);
return current > ZSTD_CURRENT_MAX;
}
/**
* ZSTD_window_correctOverflow():
* Reduces the indices to protect from index overflow.
* Returns the correction made to the indices, which must be applied to every
* stored index.
*
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
* NOTE: (maxDist & cycleMask) must be zero.
*/
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
* > (3<<29) - (1<<chainLog)
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29
*
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
* After correction, current is less than (1<<chainLog + 1<<windowLog).
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
* In 32-bit mode we are safe, because (chainLog <= 29), so
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
U32 const cycleMask = (1U << cycleLog) - 1;
U32 const current = (U32)((BYTE const*)src - window->base);
U32 const newCurrent = (current & cycleMask) + maxDist;
U32 const correction = current - newCurrent;
assert((maxDist & cycleMask) == 0);
assert(current > newCurrent);
/* Loose bound, should be around 1<<29 (see above) */
assert(correction > 1<<28);
window->base += correction;
window->dictBase += correction;
window->lowLimit -= correction;
window->dictLimit -= correction;
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
window->lowLimit);
return correction;
}
/**
* ZSTD_window_enforceMaxDist():
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
* This allows a simple check that index >= lowLimit to see if index is valid.
* This must be called before a block compression call, with srcEnd as the block
* source end.
* If loadedDictEndPtr is not NULL, we set it to zero once we update lowLimit.
* This is because dictionaries are allowed to be referenced as long as the last
* byte of the dictionary is in the window, but once they are out of range,
* they cannot be referenced. If loadedDictEndPtr is NULL, we use
* loadedDictEnd == 0.
*/
MEM_STATIC void ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
void const* srcEnd, U32 maxDist,
U32* loadedDictEndPtr)
{
U32 const current = (U32)((BYTE const*)srcEnd - window->base);
U32 loadedDictEnd = loadedDictEndPtr != NULL ? *loadedDictEndPtr : 0;
if (current > maxDist + loadedDictEnd) {
U32 const newLowLimit = current - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
if (window->dictLimit < window->lowLimit) {
DEBUGLOG(5, "Update dictLimit from %u to %u", window->dictLimit,
window->lowLimit);
window->dictLimit = window->lowLimit;
}
if (loadedDictEndPtr)
*loadedDictEndPtr = 0;
}
}
/**
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
* If it is not contiguous, the current prefix becomes the extDict, and we
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
void const* src, size_t srcSize)
{
BYTE const* const ip = (BYTE const*)src;
U32 contiguous = 1;
/* Check if blocks follow each other */
if (src != window->nextSrc) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u",
window->dictLimit);
window->lowLimit = window->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
window->dictLimit = (U32)distanceFromBase;
window->dictBase = window->base;
window->base = ip - distanceFromBase;
// ms->nextToUpdate = window->dictLimit;
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
contiguous = 0;
}
window->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ( (ip+srcSize > window->dictBase + window->lowLimit)
& (ip < window->dictBase + window->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
window->lowLimit = lowLimitMax;
}
return contiguous;
}
#if defined (__cplusplus)
}
#endif
@ -421,6 +639,13 @@ MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
* These prototypes shall only be called from within lib/compress
* ============================================================== */
/* ZSTD_getCParamsFromCCtxParams() :
* cParams are built depending on compressionLevel, src size hints,
* LDM and manually set compression parameters.
*/
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
@ -446,7 +671,7 @@ ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictMode_e dictMode,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize);
@ -459,4 +684,26 @@ size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
const void* dict,size_t dictSize,
ZSTD_CCtx_params params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapcity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
/* ZSTD_referenceExternalSequences() :
* Must be called before starting a compression operation.
* seqs must parse a prefix of the source.
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
* @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
#endif /* ZSTD_COMPRESS_H */

View File

@ -12,44 +12,58 @@
#include "zstd_double_fast.h"
void ZSTD_fillDoubleHashTable(ZSTD_CCtx* cctx, const void* end, const U32 mls)
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end)
{
U32* const hashLarge = cctx->hashTable;
U32 const hBitsL = cctx->appliedParams.cParams.hashLog;
U32* const hashSmall = cctx->chainTable;
U32 const hBitsS = cctx->appliedParams.cParams.chainLog;
const BYTE* const base = cctx->base;
const BYTE* ip = base + cctx->nextToUpdate;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const size_t fastHashFillStep = 3;
const U32 fastHashFillStep = 3;
while(ip <= iend) {
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
ip += fastHashFillStep;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const current = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0)
hashSmall[smHash] = current + i;
if (i == 0 || hashLarge[lgHash] == 0)
hashLarge[lgHash] = current + i;
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
const void* src, size_t srcSize,
const U32 mls)
size_t ZSTD_compressBlock_doubleFast_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize,
U32 const mls /* template */)
{
U32* const hashLong = cctx->hashTable;
const U32 hBitsL = cctx->appliedParams.cParams.hashLog;
U32* const hashSmall = cctx->chainTable;
const U32 hBitsS = cctx->appliedParams.cParams.chainLog;
seqStore_t* seqStorePtr = &(cctx->seqStore);
const BYTE* const base = cctx->base;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 lowestIndex = cctx->dictLimit;
const U32 lowestIndex = ms->window.dictLimit;
const BYTE* const lowest = base + lowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
/* init */
@ -76,7 +90,7 @@ size_t ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
/* favor repcode */
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else {
U32 offset;
if ( (matchIndexL > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip)) ) {
@ -99,14 +113,14 @@ size_t ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
} else {
ip += ((ip-anchor) >> g_searchStrength) + 1;
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
/* match found */
@ -129,61 +143,63 @@ size_t ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
{ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } }
/* save reps for next block */
seqStorePtr->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
seqStorePtr->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
const U32 mls = ctx->appliedParams.cParams.searchLength;
const U32 mls = cParams->searchLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4);
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 4);
case 5 :
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5);
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 5);
case 6 :
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6);
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 6);
case 7 :
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7);
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 7);
}
}
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
const void* src, size_t srcSize,
const U32 mls)
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize,
U32 const mls /* template */)
{
U32* const hashLong = ctx->hashTable;
U32 const hBitsL = ctx->appliedParams.cParams.hashLog;
U32* const hashSmall = ctx->chainTable;
U32 const hBitsS = ctx->appliedParams.cParams.chainLog;
seqStore_t* seqStorePtr = &(ctx->seqStore);
const BYTE* const base = ctx->base;
const BYTE* const dictBase = ctx->dictBase;
U32* const hashLong = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 lowestIndex = ctx->lowLimit;
const U32 lowestIndex = ms->window.lowLimit;
const BYTE* const dictStart = dictBase + lowestIndex;
const U32 dictLimit = ctx->dictLimit;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const lowPrefixPtr = base + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
U32 offset_1=rep[0], offset_2=rep[1];
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
@ -209,7 +225,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else {
if ((matchLongIndex > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* matchEnd = matchLongIndex < dictLimit ? dictEnd : iend;
@ -220,7 +236,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} else if ((matchIndex > lowestIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
@ -245,10 +261,10 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} else {
ip += ((ip-anchor) >> g_searchStrength) + 1;
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
@ -272,7 +288,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, lowPrefixPtr) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
@ -283,27 +299,29 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
} } }
/* save reps for next block */
seqStorePtr->repToConfirm[0] = offset_1; seqStorePtr->repToConfirm[1] = offset_2;
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx,
const void* src, size_t srcSize)
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
U32 const mls = ctx->appliedParams.cParams.searchLength;
U32 const mls = cParams->searchLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4);
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 4);
case 5 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5);
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 5);
case 6 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6);
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 6);
case 7 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7);
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 7);
}
}

View File

@ -16,11 +16,18 @@ extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd.h" /* ZSTD_CCtx, size_t */
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end);
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
void ZSTD_fillDoubleHashTable(ZSTD_CCtx* cctx, const void* end, const U32 mls);
size_t ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
#if defined (__cplusplus)
}

View File

@ -12,39 +12,48 @@
#include "zstd_fast.h"
void ZSTD_fillHashTable (ZSTD_CCtx* zc, const void* end, const U32 mls)
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end)
{
U32* const hashTable = zc->hashTable;
U32 const hBits = zc->appliedParams.cParams.hashLog;
const BYTE* const base = zc->base;
const BYTE* ip = base + zc->nextToUpdate;
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog;
U32 const mls = cParams->searchLength;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const size_t fastHashFillStep = 3;
const U32 fastHashFillStep = 3;
while(ip <= iend) {
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
ip += fastHashFillStep;
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const current = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const hash = ZSTD_hashPtr(ip + i, hBits, mls);
if (i == 0 || hashTable[hash] == 0)
hashTable[hash] = current + i;
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
const void* src, size_t srcSize,
const U32 mls)
size_t ZSTD_compressBlock_fast_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const hlog, U32 const stepSize, U32 const mls)
{
U32* const hashTable = cctx->hashTable;
U32 const hBits = cctx->appliedParams.cParams.hashLog;
seqStore_t* seqStorePtr = &(cctx->seqStore);
const BYTE* const base = cctx->base;
U32* const hashTable = ms->hashTable;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 lowestIndex = cctx->dictLimit;
const U32 lowestIndex = ms->window.dictLimit;
const BYTE* const lowest = base + lowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
/* init */
@ -57,7 +66,7 @@ size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
size_t const h = ZSTD_hashPtr(ip, hBits, mls);
size_t const h = ZSTD_hashPtr(ip, hlog, mls);
U32 const current = (U32)(ip-base);
U32 const matchIndex = hashTable[h];
const BYTE* match = base + matchIndex;
@ -66,21 +75,21 @@ size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else {
U32 offset;
if ( (matchIndex <= lowestIndex) || (MEM_read32(match) != MEM_read32(ip)) ) {
ip += ((ip-anchor) >> g_searchStrength) + 1;
if ( (matchIndex <= lowestIndex)
|| (MEM_read32(match) != MEM_read32(ip)) ) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
}
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
offset = (U32)(ip-match);
while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
{ U32 const offset = (U32)(ip-match);
while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} }
/* match found */
ip += mLength;
@ -88,8 +97,8 @@ size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
while ( (ip <= ilimit)
&& ( (offset_2>0)
@ -97,65 +106,67 @@ size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
{ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip-base);
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } }
/* save reps for next block */
seqStorePtr->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
seqStorePtr->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_fast(ZSTD_CCtx* ctx,
const void* src, size_t srcSize)
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
const U32 mls = ctx->appliedParams.cParams.searchLength;
U32 const hlog = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32 const stepSize = cParams->targetLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4);
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 4);
case 5 :
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5);
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 5);
case 6 :
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6);
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 6);
case 7 :
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7);
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 7);
}
}
static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
const void* src, size_t srcSize,
const U32 mls)
static size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const hlog, U32 const stepSize, U32 const mls)
{
U32* hashTable = ctx->hashTable;
const U32 hBits = ctx->appliedParams.cParams.hashLog;
seqStore_t* seqStorePtr = &(ctx->seqStore);
const BYTE* const base = ctx->base;
const BYTE* const dictBase = ctx->dictBase;
U32* hashTable = ms->hashTable;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 lowestIndex = ctx->lowLimit;
const U32 lowestIndex = ms->window.lowLimit;
const BYTE* const dictStart = dictBase + lowestIndex;
const U32 dictLimit = ctx->dictLimit;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const lowPrefixPtr = base + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
U32 offset_1=rep[0], offset_2=rep[1];
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t h = ZSTD_hashPtr(ip, hBits, mls);
const size_t h = ZSTD_hashPtr(ip, hlog, mls);
const U32 matchIndex = hashTable[h];
const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
@ -171,11 +182,12 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4;
ip++;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else {
if ( (matchIndex < lowestIndex) ||
(MEM_read32(match) != MEM_read32(ip)) ) {
ip += ((ip-anchor) >> g_searchStrength) + 1;
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
}
{ const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
@ -186,7 +198,7 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
offset = current - matchIndex;
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} }
/* found a match : store it */
@ -195,8 +207,8 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2;
hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2;
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
@ -207,8 +219,8 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, lowPrefixPtr) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = current2;
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue;
@ -217,27 +229,31 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
} } }
/* save reps for next block */
seqStorePtr->repToConfirm[0] = offset_1; seqStorePtr->repToConfirm[1] = offset_2;
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx,
const void* src, size_t srcSize)
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
U32 const mls = ctx->appliedParams.cParams.searchLength;
U32 const hlog = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32 const stepSize = cParams->targetLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4);
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 4);
case 5 :
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5);
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 5);
case 6 :
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6);
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 6);
case 7 :
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7);
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 7);
}
}

View File

@ -16,13 +16,17 @@ extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd.h" /* ZSTD_CCtx, size_t */
#include "zstd_compress_internal.h"
void ZSTD_fillHashTable(ZSTD_CCtx* zc, const void* end, const U32 mls);
size_t ZSTD_compressBlock_fast(ZSTD_CCtx* ctx,
const void* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx,
const void* src, size_t srcSize);
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end);
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}

View File

@ -15,76 +15,90 @@
/*-*************************************
* Binary Tree search
***************************************/
/** ZSTD_insertBt1() : add one or multiple positions to tree.
* ip : assumed <= iend-8 .
* @return : nb of positions added */
static U32 ZSTD_insertBt1(ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iend,
U32 nbCompares, U32 const mls, U32 const extDict)
void ZSTD_updateDUBT(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* iend,
U32 mls)
{
U32* const hashTable = zc->hashTable;
U32 const hashLog = zc->appliedParams.cParams.hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32* const bt = zc->chainTable;
U32 const btLog = zc->appliedParams.cParams.chainLog - 1;
U32* const hashTable = ms->hashTable;
U32 const hashLog = cParams->hashLog;
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
const BYTE* const base = ms->window.base;
U32 const target = (U32)(ip - base);
U32 idx = ms->nextToUpdate;
if (idx != target)
DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
idx, target, ms->window.dictLimit);
assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
(void)iend;
assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
for ( ; idx < target ; idx++) {
size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
U32 const matchIndex = hashTable[h];
U32* const nextCandidatePtr = bt + 2*(idx&btMask);
U32* const sortMarkPtr = nextCandidatePtr + 1;
DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
hashTable[h] = idx; /* Update Hash Table */
*nextCandidatePtr = matchIndex; /* update BT like a chain */
*sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
}
ms->nextToUpdate = target;
}
/** ZSTD_insertDUBT1() :
* sort one already inserted but unsorted position
* assumption : current >= btlow == (current - btmask)
* doesn't fail */
static void ZSTD_insertDUBT1(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
U32 current, const BYTE* inputEnd,
U32 nbCompares, U32 btLow, int extDict)
{
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const base = zc->base;
const BYTE* const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const ip = (current>=dictLimit) ? base + current : dictBase + current;
const BYTE* const iend = (current>=dictLimit) ? inputEnd : dictBase + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* match;
const U32 current = (U32)(ip-base);
const U32 btLow = btMask >= current ? 0 : current - btMask;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = smallerPtr + 1;
U32 matchIndex = *smallerPtr;
U32 dummy32; /* to be nullified at the end */
U32 const windowLow = zc->lowLimit;
U32 matchEndIdx = current+8+1;
size_t bestLength = 8;
#ifdef ZSTD_C_PREDICT
U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0);
U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1);
predictedSmall += (predictedSmall>0);
predictedLarge += (predictedLarge>0);
#endif /* ZSTD_C_PREDICT */
U32 const windowLow = ms->window.lowLimit;
DEBUGLOG(8, "ZSTD_insertBt1 (%u)", current);
assert(ip <= iend-8); /* required for h calculation */
hashTable[h] = current; /* Update Hash Table */
DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
current, dictLimit, windowLow);
assert(current >= btLow);
assert(ip < iend); /* condition for ZSTD_count */
while (nbCompares-- && (matchIndex > windowLow)) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(matchIndex < current);
#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */
const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */
if (matchIndex == predictedSmall) {
/* no need to check length, result known */
*smallerPtr = matchIndex;
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
predictedSmall = predictPtr[1] + (predictPtr[1]>0);
continue;
}
if (matchIndex == predictedLarge) {
*largerPtr = matchIndex;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
predictedLarge = predictPtr[0] + (predictPtr[0]>0);
continue;
}
#endif
if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
assert(matchIndex+matchLength >= dictLimit); /* might be wrong if extDict is incorrectly set to 0 */
match = base + matchIndex;
if ( (!extDict)
|| (matchIndex+matchLength >= dictLimit) /* both in current segment*/
|| (current < dictLimit) /* both in extDict */) {
const BYTE* const mBase = !extDict || ((matchIndex+matchLength) >= dictLimit) ? base : dictBase;
assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
|| (current < dictLimit) );
match = mBase + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
@ -93,11 +107,8 @@ static U32 ZSTD_insertBt1(ZSTD_CCtx* zc,
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
bestLength = matchLength;
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
}
DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
current, matchIndex, (U32)matchLength);
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
@ -108,6 +119,8 @@ static U32 ZSTD_insertBt1(ZSTD_CCtx* zc,
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
matchIndex, btLow, nextPtr[1]);
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
} else {
@ -115,184 +128,205 @@ static U32 ZSTD_insertBt1(ZSTD_CCtx* zc,
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
matchIndex, btLow, nextPtr[0]);
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
if (bestLength > 384) return MIN(192, (U32)(bestLength - 384)); /* speed optimization */
assert(matchEndIdx > current + 8);
return matchEndIdx - (current + 8);
}
FORCE_INLINE_TEMPLATE
void ZSTD_updateTree_internal(ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iend,
const U32 nbCompares, const U32 mls, const U32 extDict)
{
const BYTE* const base = zc->base;
U32 const target = (U32)(ip - base);
U32 idx = zc->nextToUpdate;
DEBUGLOG(7, "ZSTD_updateTree_internal, from %u to %u (extDict:%u)",
idx, target, extDict);
while(idx < target)
idx += ZSTD_insertBt1(zc, base+idx, iend, nbCompares, mls, extDict);
zc->nextToUpdate = target;
}
void ZSTD_updateTree(ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iend,
const U32 nbCompares, const U32 mls)
{
ZSTD_updateTree_internal(zc, ip, iend, nbCompares, mls, 0 /*extDict*/);
}
void ZSTD_updateTree_extDict(ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iend,
const U32 nbCompares, const U32 mls)
{
ZSTD_updateTree_internal(zc, ip, iend, nbCompares, mls, 1 /*extDict*/);
}
static size_t ZSTD_insertBtAndFindBestMatch (
ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iend,
size_t* offsetPtr,
U32 nbCompares, const U32 mls,
U32 extDict)
static size_t ZSTD_DUBT_findBestMatch (
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iend,
size_t* offsetPtr,
U32 const mls,
U32 const extDict)
{
U32* const hashTable = zc->hashTable;
U32 const hashLog = zc->appliedParams.cParams.hashLog;
U32* const hashTable = ms->hashTable;
U32 const hashLog = cParams->hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32* const bt = zc->chainTable;
U32 const btLog = zc->appliedParams.cParams.chainLog - 1;
U32 matchIndex = hashTable[h];
const BYTE* const base = ms->window.base;
U32 const current = (U32)(ip-base);
U32 const windowLow = ms->window.lowLimit;
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const base = zc->base;
const BYTE* const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const U32 current = (U32)(ip-base);
const U32 btLow = btMask >= current ? 0 : current - btMask;
const U32 windowLow = zc->lowLimit;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = bt + 2*(current&btMask) + 1;
U32 matchEndIdx = current+8+1;
U32 dummy32; /* to be nullified at the end */
size_t bestLength = 0;
U32 const btLow = (btMask >= current) ? 0 : current - btMask;
U32 const unsortLimit = MAX(btLow, windowLow);
U32* nextCandidate = bt + 2*(matchIndex&btMask);
U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
U32 nbCompares = 1U << cParams->searchLog;
U32 nbCandidates = nbCompares;
U32 previousCandidate = 0;
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", current);
assert(ip <= iend-8); /* required for h calculation */
hashTable[h] = current; /* Update Hash Table */
while (nbCompares-- && (matchIndex > windowLow)) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match;
/* reach end of unsorted candidates list */
while ( (matchIndex > unsortLimit)
&& (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
&& (nbCandidates > 1) ) {
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
matchIndex);
*unsortedMark = previousCandidate;
previousCandidate = matchIndex;
matchIndex = *nextCandidate;
nextCandidate = bt + 2*(matchIndex&btMask);
unsortedMark = bt + 2*(matchIndex&btMask) + 1;
nbCandidates --;
}
if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
match = base + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if ( (matchIndex > unsortLimit)
&& (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
matchIndex);
*nextCandidate = *unsortedMark = 0; /* nullify next candidate if it's still unsorted (note : simplification, detrimental to compression ratio, beneficial for speed) */
}
if (matchLength > bestLength) {
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex;
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
break; /* drop, to guarantee consistency (miss a little bit of compression) */
/* batch sort stacked candidates */
matchIndex = previousCandidate;
while (matchIndex) { /* will end on matchIndex == 0 */
U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
U32 const nextCandidateIdx = *nextCandidateIdxPtr;
ZSTD_insertDUBT1(ms, cParams, matchIndex, iend,
nbCandidates, unsortLimit, extDict);
matchIndex = nextCandidateIdx;
nbCandidates++;
}
/* find longest match */
{ size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = bt + 2*(current&btMask) + 1;
U32 matchEndIdx = current+8+1;
U32 dummy32; /* to be nullified at the end */
size_t bestLength = 0;
matchIndex = hashTable[h];
hashTable[h] = current; /* Update Hash Table */
while (nbCompares-- && (matchIndex > windowLow)) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match;
if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
match = base + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex;
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
break; /* drop, to guarantee consistency (miss a little bit of compression) */
}
}
if (match[matchLength] < ip[matchLength]) {
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
assert(matchEndIdx > current+8); /* ensure nextToUpdate is increased */
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
if (bestLength >= MINMATCH) {
U32 const mIndex = current - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex;
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
current, (U32)bestLength, (U32)*offsetPtr, mIndex);
}
if (match[matchLength] < ip[matchLength]) {
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
assert(matchEndIdx > current+8);
zc->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
return bestLength;
return bestLength;
}
}
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
static size_t ZSTD_BtFindBestMatch (
ZSTD_CCtx* zc,
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 maxNbAttempts, const U32 mls)
const U32 mls /* template */)
{
if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 0);
DEBUGLOG(7, "ZSTD_BtFindBestMatch");
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
ZSTD_updateDUBT(ms, cParams, ip, iLimit, mls);
return ZSTD_DUBT_findBestMatch(ms, cParams, ip, iLimit, offsetPtr, mls, 0);
}
static size_t ZSTD_BtFindBestMatch_selectMLS (
ZSTD_CCtx* zc, /* Index table will be updated */
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 maxNbAttempts, const U32 matchLengthSearch)
size_t* offsetPtr)
{
switch(matchLengthSearch)
switch(cParams->searchLength)
{
default : /* includes case 3 */
case 4 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
case 5 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
case 4 : return ZSTD_BtFindBestMatch(ms, cParams, ip, iLimit, offsetPtr, 4);
case 5 : return ZSTD_BtFindBestMatch(ms, cParams, ip, iLimit, offsetPtr, 5);
case 7 :
case 6 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
case 6 : return ZSTD_BtFindBestMatch(ms, cParams, ip, iLimit, offsetPtr, 6);
}
}
/** Tree updater, providing best match */
static size_t ZSTD_BtFindBestMatch_extDict (
ZSTD_CCtx* zc,
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 maxNbAttempts, const U32 mls)
const U32 mls)
{
if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 1);
DEBUGLOG(7, "ZSTD_BtFindBestMatch_extDict");
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
ZSTD_updateDUBT(ms, cParams, ip, iLimit, mls);
return ZSTD_DUBT_findBestMatch(ms, cParams, ip, iLimit, offsetPtr, mls, 1);
}
static size_t ZSTD_BtFindBestMatch_selectMLS_extDict (
ZSTD_CCtx* zc, /* Index table will be updated */
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 maxNbAttempts, const U32 matchLengthSearch)
size_t* offsetPtr)
{
switch(matchLengthSearch)
switch(cParams->searchLength)
{
default : /* includes case 3 */
case 4 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
case 5 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
case 4 : return ZSTD_BtFindBestMatch_extDict(ms, cParams, ip, iLimit, offsetPtr, 4);
case 5 : return ZSTD_BtFindBestMatch_extDict(ms, cParams, ip, iLimit, offsetPtr, 5);
case 7 :
case 6 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
case 6 : return ZSTD_BtFindBestMatch_extDict(ms, cParams, ip, iLimit, offsetPtr, 6);
}
}
@ -305,15 +339,17 @@ static size_t ZSTD_BtFindBestMatch_selectMLS_extDict (
/* Update chains up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls)
static U32 ZSTD_insertAndFindFirstIndex_internal(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, U32 const mls)
{
U32* const hashTable = zc->hashTable;
const U32 hashLog = zc->appliedParams.cParams.hashLog;
U32* const chainTable = zc->chainTable;
const U32 chainMask = (1 << zc->appliedParams.cParams.chainLog) - 1;
const BYTE* const base = zc->base;
U32* const hashTable = ms->hashTable;
const U32 hashLog = cParams->hashLog;
U32* const chainTable = ms->chainTable;
const U32 chainMask = (1 << cParams->chainLog) - 1;
const BYTE* const base = ms->window.base;
const U32 target = (U32)(ip - base);
U32 idx = zc->nextToUpdate;
U32 idx = ms->nextToUpdate;
while(idx < target) { /* catch up */
size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
@ -322,35 +358,42 @@ U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls)
idx++;
}
zc->nextToUpdate = target;
ms->nextToUpdate = target;
return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
}
U32 ZSTD_insertAndFindFirstIndex(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip)
{
return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, cParams->searchLength);
}
/* inlining is important to hardwire a hot branch (template emulation) */
FORCE_INLINE_TEMPLATE
size_t ZSTD_HcFindBestMatch_generic (
ZSTD_CCtx* zc, /* Index table will be updated */
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 maxNbAttempts, const U32 mls, const U32 extDict)
const U32 mls, const U32 extDict)
{
U32* const chainTable = zc->chainTable;
const U32 chainSize = (1 << zc->appliedParams.cParams.chainLog);
U32* const chainTable = ms->chainTable;
const U32 chainSize = (1 << cParams->chainLog);
const U32 chainMask = chainSize-1;
const BYTE* const base = zc->base;
const BYTE* const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const U32 lowLimit = zc->lowLimit;
const U32 lowLimit = ms->window.lowLimit;
const U32 current = (U32)(ip-base);
const U32 minChain = current > chainSize ? current - chainSize : 0;
int nbAttempts=maxNbAttempts;
U32 nbAttempts = 1U << cParams->searchLog;
size_t ml=4-1;
/* HC4 match finder */
U32 matchIndex = ZSTD_insertAndFindFirstIndex (zc, ip, mls);
U32 matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls);
for ( ; (matchIndex>lowLimit) & (nbAttempts>0) ; nbAttempts--) {
size_t currentMl=0;
@ -381,35 +424,33 @@ size_t ZSTD_HcFindBestMatch_generic (
FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_selectMLS (
ZSTD_CCtx* zc,
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* const iLimit,
size_t* offsetPtr,
const U32 maxNbAttempts, const U32 matchLengthSearch)
size_t* offsetPtr)
{
switch(matchLengthSearch)
switch(cParams->searchLength)
{
default : /* includes case 3 */
case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 0);
case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 0);
case 4 : return ZSTD_HcFindBestMatch_generic(ms, cParams, ip, iLimit, offsetPtr, 4, 0);
case 5 : return ZSTD_HcFindBestMatch_generic(ms, cParams, ip, iLimit, offsetPtr, 5, 0);
case 7 :
case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 0);
case 6 : return ZSTD_HcFindBestMatch_generic(ms, cParams, ip, iLimit, offsetPtr, 6, 0);
}
}
FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
ZSTD_CCtx* const zc,
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* const iLimit,
size_t* const offsetPtr,
U32 const maxNbAttempts, U32 const matchLengthSearch)
size_t* const offsetPtr)
{
switch(matchLengthSearch)
switch(cParams->searchLength)
{
default : /* includes case 3 */
case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 1);
case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 1);
case 4 : return ZSTD_HcFindBestMatch_generic(ms, cParams, ip, iLimit, offsetPtr, 4, 1);
case 5 : return ZSTD_HcFindBestMatch_generic(ms, cParams, ip, iLimit, offsetPtr, 5, 1);
case 7 :
case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 1);
case 6 : return ZSTD_HcFindBestMatch_generic(ms, cParams, ip, iLimit, offsetPtr, 6, 1);
}
}
@ -418,30 +459,29 @@ FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
* Common parser - lazy strategy
*********************************/
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
const void* src, size_t srcSize,
const U32 searchMethod, const U32 depth)
size_t ZSTD_compressBlock_lazy_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams,
const void* src, size_t srcSize,
const U32 searchMethod, const U32 depth)
{
seqStore_t* seqStorePtr = &(ctx->seqStore);
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ctx->base + ctx->dictLimit;
const BYTE* const base = ms->window.base + ms->window.dictLimit;
U32 const maxSearches = 1 << ctx->appliedParams.cParams.searchLog;
U32 const mls = ctx->appliedParams.cParams.searchLength;
typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit,
size_t* offsetPtr,
U32 maxNbAttempts, U32 matchLengthSearch);
typedef size_t (*searchMax_f)(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
searchMax_f const searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS;
U32 offset_1 = seqStorePtr->rep[0], offset_2 = seqStorePtr->rep[1], savedOffset=0;
U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
/* init */
ip += (ip==base);
ctx->nextToUpdate3 = ctx->nextToUpdate;
ms->nextToUpdate3 = ms->nextToUpdate;
{ U32 const maxRep = (U32)(ip-base);
if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
@ -462,13 +502,13 @@ size_t ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
/* first search (depth 0) */
{ size_t offsetFound = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
size_t const ml2 = searchMax(ms, cParams, ip, iend, &offsetFound);
if (ml2 > matchLength)
matchLength = ml2, start = ip, offset=offsetFound;
}
if (matchLength < 4) {
ip += ((ip-anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
continue;
}
@ -484,7 +524,7 @@ size_t ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
matchLength = mlRep, offset = 0, start = ip;
}
{ size_t offset2=99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
size_t const ml2 = searchMax(ms, cParams, ip, iend, &offset2);
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
if ((ml2 >= 4) && (gain2 > gain1)) {
@ -503,7 +543,7 @@ size_t ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
matchLength = ml2, offset = 0, start = ip;
}
{ size_t offset2=99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
size_t const ml2 = searchMax(ms, cParams, ip, iend, &offset2);
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
if ((ml2 >= 4) && (gain2 > gain1)) {
@ -528,7 +568,7 @@ size_t ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
/* store sequence */
_storeSequence:
{ size_t const litLength = start - anchor;
ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH);
anchor = ip = start + matchLength;
}
@ -538,73 +578,80 @@ _storeSequence:
/* store sequence */
matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
} }
/* Save reps for next block */
seqStorePtr->repToConfirm[0] = offset_1 ? offset_1 : savedOffset;
seqStorePtr->repToConfirm[1] = offset_2 ? offset_2 : savedOffset;
rep[0] = offset_1 ? offset_1 : savedOffset;
rep[1] = offset_2 ? offset_2 : savedOffset;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_btlazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 1, 2);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, cParams, src, srcSize, 1, 2);
}
size_t ZSTD_compressBlock_lazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 2);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, cParams, src, srcSize, 0, 2);
}
size_t ZSTD_compressBlock_lazy(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 1);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, cParams, src, srcSize, 0, 1);
}
size_t ZSTD_compressBlock_greedy(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 0);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, cParams, src, srcSize, 0, 0);
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
const void* src, size_t srcSize,
const U32 searchMethod, const U32 depth)
size_t ZSTD_compressBlock_lazy_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams,
const void* src, size_t srcSize,
const U32 searchMethod, const U32 depth)
{
seqStore_t* seqStorePtr = &(ctx->seqStore);
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ctx->base;
const U32 dictLimit = ctx->dictLimit;
const U32 lowestIndex = ctx->lowLimit;
const BYTE* const base = ms->window.base;
const U32 dictLimit = ms->window.dictLimit;
const U32 lowestIndex = ms->window.lowLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* const dictBase = ctx->dictBase;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const dictStart = dictBase + ctx->lowLimit;
const BYTE* const dictStart = dictBase + lowestIndex;
const U32 maxSearches = 1 << ctx->appliedParams.cParams.searchLog;
const U32 mls = ctx->appliedParams.cParams.searchLength;
typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit,
size_t* offsetPtr,
U32 maxNbAttempts, U32 matchLengthSearch);
typedef size_t (*searchMax_f)(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS_extDict : ZSTD_HcFindBestMatch_extDict_selectMLS;
U32 offset_1 = seqStorePtr->rep[0], offset_2 = seqStorePtr->rep[1];
U32 offset_1 = rep[0], offset_2 = rep[1];
/* init */
ctx->nextToUpdate3 = ctx->nextToUpdate;
ms->nextToUpdate3 = ms->nextToUpdate;
ip += (ip == prefixStart);
/* Match Loop */
@ -628,13 +675,13 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
/* first search (depth 0) */
{ size_t offsetFound = 99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
size_t const ml2 = searchMax(ms, cParams, ip, iend, &offsetFound);
if (ml2 > matchLength)
matchLength = ml2, start = ip, offset=offsetFound;
}
if (matchLength < 4) {
ip += ((ip-anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
continue;
}
@ -661,7 +708,7 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
/* search match, depth 1 */
{ size_t offset2=99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
size_t const ml2 = searchMax(ms, cParams, ip, iend, &offset2);
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
if ((ml2 >= 4) && (gain2 > gain1)) {
@ -691,7 +738,7 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
/* search match, depth 2 */
{ size_t offset2=99999999;
size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
size_t const ml2 = searchMax(ms, cParams, ip, iend, &offset2);
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
if ((ml2 >= 4) && (gain2 > gain1)) {
@ -713,7 +760,7 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
/* store sequence */
_storeSequence:
{ size_t const litLength = start - anchor;
ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH);
anchor = ip = start + matchLength;
}
@ -728,7 +775,7 @@ _storeSequence:
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
@ -737,29 +784,41 @@ _storeSequence:
} }
/* Save reps for next block */
seqStorePtr->repToConfirm[0] = offset_1; seqStorePtr->repToConfirm[1] = offset_2;
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 0);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 0, 0);
}
size_t ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 1);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 0, 1);
}
size_t ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 2);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 0, 2);
}
size_t ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 1, 2);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 1, 2);
}

View File

@ -15,22 +15,39 @@
extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd.h" /* ZSTD_CCtx, size_t */
#include "zstd_compress_internal.h"
U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls);
void ZSTD_updateTree(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls);
void ZSTD_updateTree_extDict(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls);
U32 ZSTD_insertAndFindFirstIndex(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip);
size_t ZSTD_compressBlock_btlazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). pre-emptively increase value of ZSTD_DUBT_UNSORTED_MARK */
size_t ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}

View File

@ -17,36 +17,45 @@
#define LDM_HASH_RLOG 7
#define LDM_HASH_CHAR_OFFSET 10
size_t ZSTD_ldm_initializeParameters(ldmParams_t* params, U32 enableLdm)
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams)
{
U32 const windowLog = cParams->windowLog;
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
params->enableLdm = enableLdm>0;
params->hashLog = 0;
params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
params->minMatchLength = LDM_MIN_MATCH_LENGTH;
params->hashEveryLog = ZSTD_LDM_HASHEVERYLOG_NOTSET;
return 0;
}
void ZSTD_ldm_adjustParameters(ldmParams_t* params, U32 windowLog)
{
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
if (cParams->strategy >= ZSTD_btopt) {
/* Get out of the way of the optimal parser */
U32 const minMatch = MAX(cParams->targetLength, params->minMatchLength);
assert(minMatch >= ZSTD_LDM_MINMATCH_MIN);
assert(minMatch <= ZSTD_LDM_MINMATCH_MAX);
params->minMatchLength = minMatch;
}
if (params->hashLog == 0) {
params->hashLog = MAX(ZSTD_HASHLOG_MIN, windowLog - LDM_HASH_RLOG);
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
}
if (params->hashEveryLog == ZSTD_LDM_HASHEVERYLOG_NOTSET) {
if (params->hashEveryLog == 0) {
params->hashEveryLog =
windowLog < params->hashLog ? 0 : windowLog - params->hashLog;
}
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}
size_t ZSTD_ldm_getTableSize(U32 hashLog, U32 bucketSizeLog) {
size_t const ldmHSize = ((size_t)1) << hashLog;
size_t const ldmBucketSizeLog = MIN(bucketSizeLog, hashLog);
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize =
((size_t)1) << (hashLog - ldmBucketSizeLog);
return ldmBucketSize + (ldmHSize * (sizeof(ldmEntry_t)));
((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t);
return params.enableLdm ? totalSize : 0;
}
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
}
/** ZSTD_ldm_getSmallHash() :
@ -167,6 +176,7 @@ static U64 ZSTD_ldm_ipow(U64 base, U64 exp)
}
U64 ZSTD_ldm_getHashPower(U32 minMatchLength) {
DEBUGLOG(4, "ZSTD_ldm_getHashPower: mml=%u", minMatchLength);
assert(minMatchLength >= ZSTD_LDM_MINMATCH_MIN);
return ZSTD_ldm_ipow(prime8bytes, minMatchLength - 1);
}
@ -205,21 +215,22 @@ static size_t ZSTD_ldm_countBackwardsMatch(
*
* The tables for the other strategies are filled within their
* block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_CCtx* zc, const void* end)
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end)
{
const BYTE* const iend = (const BYTE*)end;
const U32 mls = zc->appliedParams.cParams.searchLength;
switch(zc->appliedParams.cParams.strategy)
switch(cParams->strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(zc, iend, mls);
zc->nextToUpdate = (U32)(iend - zc->base);
ZSTD_fillHashTable(ms, cParams, iend);
ms->nextToUpdate = (U32)(iend - ms->window.base);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(zc, iend, mls);
zc->nextToUpdate = (U32)(iend - zc->base);
ZSTD_fillDoubleHashTable(ms, cParams, iend);
ms->nextToUpdate = (U32)(iend - ms->window.base);
break;
case ZSTD_greedy:
@ -268,69 +279,62 @@ static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state,
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
* if it is far way
* (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_CCtx* cctx, const BYTE* anchor)
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
U32 const current = (U32)(anchor - cctx->base);
if (current > cctx->nextToUpdate + 1024) {
cctx->nextToUpdate =
current - MIN(512, current - cctx->nextToUpdate - 1024);
U32 const current = (U32)(anchor - ms->window.base);
if (current > ms->nextToUpdate + 1024) {
ms->nextToUpdate =
current - MIN(512, current - ms->nextToUpdate - 1024);
}
}
typedef size_t (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize);
/* defined in zstd_compress.c */
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict);
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
const void* src, size_t srcSize)
static size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
ldmState_t* const ldmState = &(cctx->ldmState);
const ldmParams_t ldmParams = cctx->appliedParams.ldmParams;
const U64 hashPower = ldmState->hashPower;
const U32 hBits = ldmParams.hashLog - ldmParams.bucketSizeLog;
const U32 ldmBucketSize = ((U32)1 << ldmParams.bucketSizeLog);
const U32 ldmTagMask = ((U32)1 << ldmParams.hashEveryLog) - 1;
seqStore_t* const seqStorePtr = &(cctx->seqStore);
const BYTE* const base = cctx->base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 lowestIndex = cctx->dictLimit;
const BYTE* const lowest = base + lowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - MAX(ldmParams.minMatchLength, HASH_READ_SIZE);
const ZSTD_blockCompressor blockCompressor =
ZSTD_selectBlockCompressor(cctx->appliedParams.cParams.strategy, 0);
U32* const repToConfirm = seqStorePtr->repToConfirm;
U32 savedRep[ZSTD_REP_NUM];
/* LDM parameters */
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
U32 const minMatchLength = params->minMatchLength;
U64 const hashPower = ldmState->hashPower;
U32 const hBits = params->hashLog - params->bucketSizeLog;
U32 const ldmBucketSize = 1U << params->bucketSizeLog;
U32 const hashEveryLog = params->hashEveryLog;
U32 const ldmTagMask = (1U << params->hashEveryLog) - 1;
/* Prefix and extDict parameters */
U32 const dictLimit = ldmState->window.dictLimit;
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
BYTE const* const base = ldmState->window.base;
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
BYTE const* const lowPrefixPtr = base + dictLimit;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE);
/* Input positions */
BYTE const* anchor = istart;
BYTE const* ip = istart;
/* Rolling hash */
BYTE const* lastHashed = NULL;
U64 rollingHash = 0;
const BYTE* lastHashed = NULL;
size_t i, lastLiterals;
/* Save seqStorePtr->rep and copy repToConfirm */
for (i = 0; i < ZSTD_REP_NUM; i++)
savedRep[i] = repToConfirm[i] = seqStorePtr->rep[i];
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
while (ip <= ilimit) {
size_t mLength;
U32 const current = (U32)(ip - base);
size_t forwardMatchLength = 0, backwardMatchLength = 0;
ldmEntry_t* bestEntry = NULL;
if (ip != istart) {
rollingHash = ZSTD_ldm_updateHash(rollingHash, lastHashed[0],
lastHashed[ldmParams.minMatchLength],
lastHashed[minMatchLength],
hashPower);
} else {
rollingHash = ZSTD_ldm_getRollingHash(ip, ldmParams.minMatchLength);
rollingHash = ZSTD_ldm_getRollingHash(ip, minMatchLength);
}
lastHashed = ip;
/* Do not insert and do not look for a match */
if (ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashEveryLog) !=
ldmTagMask) {
if (ZSTD_ldm_getTag(rollingHash, hBits, hashEveryLog) != ldmTagMask) {
ip++;
continue;
}
@ -340,27 +344,49 @@ size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
ldmEntry_t* const bucket =
ZSTD_ldm_getBucket(ldmState,
ZSTD_ldm_getSmallHash(rollingHash, hBits),
ldmParams);
*params);
ldmEntry_t* cur;
size_t bestMatchLength = 0;
U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
const BYTE* const pMatch = cur->offset + base;
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
if (extDict) {
BYTE const* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
BYTE const* const pMatch = curMatchBase + cur->offset;
BYTE const* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
BYTE const* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
if (curForwardMatchLength < ldmParams.minMatchLength) {
continue;
curForwardMatchLength = ZSTD_count_2segments(
ip, pMatch, iend,
matchEnd, lowPrefixPtr);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
lowMatchPtr);
curTotalMatchLength = curForwardMatchLength +
curBackwardMatchLength;
} else { /* !extDict */
BYTE const* const pMatch = base + cur->offset;
curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
lowPrefixPtr);
curTotalMatchLength = curForwardMatchLength +
curBackwardMatchLength;
}
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch(
ip, anchor, pMatch, lowest);
curTotalMatchLength = curForwardMatchLength +
curBackwardMatchLength;
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
@ -375,7 +401,7 @@ size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
if (bestEntry == NULL) {
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash,
hBits, current,
ldmParams);
*params);
ip++;
continue;
}
@ -384,324 +410,244 @@ size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
mLength = forwardMatchLength + backwardMatchLength;
ip -= backwardMatchLength;
/* Call the block compressor on the remaining literals */
{
/* Store the sequence:
* ip = current - backwardMatchLength
* The match is at (bestEntry->offset - backwardMatchLength)
*/
U32 const matchIndex = bestEntry->offset;
const BYTE* const match = base + matchIndex - backwardMatchLength;
U32 const offset = (U32)(ip - match);
U32 const offset = current - matchIndex;
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
/* Overwrite rep codes */
for (i = 0; i < ZSTD_REP_NUM; i++)
seqStorePtr->rep[i] = repToConfirm[i];
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(cctx, anchor);
ZSTD_ldm_fillFastTables(cctx, anchor);
/* Call block compressor and get remaining literals */
lastLiterals = blockCompressor(cctx, anchor, ip - anchor);
cctx->nextToUpdate = (U32)(ip - base);
/* Update repToConfirm with the new offset */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
repToConfirm[i] = repToConfirm[i-1];
repToConfirm[0] = offset;
/* Store the sequence with the leftover literals */
ZSTD_storeSeq(seqStorePtr, lastLiterals, ip - lastLiterals,
offset + ZSTD_REP_MOVE, mLength - MINMATCH);
/* Out of sequence storage */
if (rawSeqStore->size == rawSeqStore->capacity)
return ERROR(dstSize_tooSmall);
seq->litLength = (U32)(ip - anchor);
seq->matchLength = (U32)mLength;
seq->offset = offset;
rawSeqStore->size++;
}
/* Insert the current entry into the hash table */
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
(U32)(lastHashed - base),
ldmParams);
*params);
assert(ip + backwardMatchLength == lastHashed);
/* Fill the hash table from lastHashed+1 to ip+mLength*/
/* Heuristic: don't need to fill the entire table at end of block */
if (ip + mLength < ilimit) {
if (ip + mLength <= ilimit) {
rollingHash = ZSTD_ldm_fillLdmHashTable(
ldmState, rollingHash, lastHashed,
ip + mLength, base, hBits, ldmParams);
ip + mLength, base, hBits, *params);
lastHashed = ip + mLength - 1;
}
ip += mLength;
anchor = ip;
/* Check immediate repcode */
while ( (ip < ilimit)
&& ( (repToConfirm[1] > 0) && (repToConfirm[1] <= (U32)(ip-lowest))
&& (MEM_read32(ip) == MEM_read32(ip - repToConfirm[1])) )) {
}
return iend - anchor;
}
size_t const rLength = ZSTD_count(ip+4, ip+4-repToConfirm[1],
iend) + 4;
/* Swap repToConfirm[1] <=> repToConfirm[0] */
{
U32 const tmpOff = repToConfirm[1];
repToConfirm[1] = repToConfirm[0];
repToConfirm[0] = tmpOff;
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldmState, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize)
{
U32 const maxDist = 1U << params->windowLog;
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
size_t const kMaxChunkSize = 1 << 20;
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
size_t chunk;
size_t leftoverSize = 0;
/* Fill the hash table from lastHashed+1 to ip+rLength*/
if (ip + rLength < ilimit) {
rollingHash = ZSTD_ldm_fillLdmHashTable(
ldmState, rollingHash, lastHashed,
ip + rLength, base, hBits, ldmParams);
lastHashed = ip + rLength - 1;
}
ip += rLength;
anchor = ip;
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
/* Check that ZSTD_window_update() has been called for this chunk prior
* to passing it to this function.
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximmum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
size_t const remaining = (size_t)(iend - chunkStart);
BYTE const *const chunkEnd =
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
size_t const chunkSize = chunkEnd - chunkStart;
size_t newLeftoverSize;
size_t const prevSize = sequences->size;
assert(chunkStart < iend);
/* 1. Perform overflow correction if necessary. */
if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, src);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
}
}
/* Overwrite rep */
for (i = 0; i < ZSTD_REP_NUM; i++)
seqStorePtr->rep[i] = repToConfirm[i];
ZSTD_ldm_limitTableUpdate(cctx, anchor);
ZSTD_ldm_fillFastTables(cctx, anchor);
lastLiterals = blockCompressor(cctx, anchor, iend - anchor);
cctx->nextToUpdate = (U32)(iend - base);
/* Restore seqStorePtr->rep */
for (i = 0; i < ZSTD_REP_NUM; i++)
seqStorePtr->rep[i] = savedRep[i];
/* Return the last literals size */
return lastLiterals;
}
size_t ZSTD_compressBlock_ldm(ZSTD_CCtx* ctx,
const void* src, size_t srcSize)
{
return ZSTD_compressBlock_ldm_generic(ctx, src, srcSize);
}
static size_t ZSTD_compressBlock_ldm_extDict_generic(
ZSTD_CCtx* ctx,
const void* src, size_t srcSize)
{
ldmState_t* const ldmState = &(ctx->ldmState);
const ldmParams_t ldmParams = ctx->appliedParams.ldmParams;
const U64 hashPower = ldmState->hashPower;
const U32 hBits = ldmParams.hashLog - ldmParams.bucketSizeLog;
const U32 ldmBucketSize = ((U32)1 << ldmParams.bucketSizeLog);
const U32 ldmTagMask = ((U32)1 << ldmParams.hashEveryLog) - 1;
seqStore_t* const seqStorePtr = &(ctx->seqStore);
const BYTE* const base = ctx->base;
const BYTE* const dictBase = ctx->dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 lowestIndex = ctx->lowLimit;
const BYTE* const dictStart = dictBase + lowestIndex;
const U32 dictLimit = ctx->dictLimit;
const BYTE* const lowPrefixPtr = base + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - MAX(ldmParams.minMatchLength, HASH_READ_SIZE);
const ZSTD_blockCompressor blockCompressor =
ZSTD_selectBlockCompressor(ctx->appliedParams.cParams.strategy, 1);
U32* const repToConfirm = seqStorePtr->repToConfirm;
U32 savedRep[ZSTD_REP_NUM];
U64 rollingHash = 0;
const BYTE* lastHashed = NULL;
size_t i, lastLiterals;
/* Save seqStorePtr->rep and copy repToConfirm */
for (i = 0; i < ZSTD_REP_NUM; i++) {
savedRep[i] = repToConfirm[i] = seqStorePtr->rep[i];
}
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
size_t mLength;
const U32 current = (U32)(ip-base);
size_t forwardMatchLength = 0, backwardMatchLength = 0;
ldmEntry_t* bestEntry = NULL;
if (ip != istart) {
rollingHash = ZSTD_ldm_updateHash(rollingHash, lastHashed[0],
lastHashed[ldmParams.minMatchLength],
hashPower);
/* 2. We enforce the maximum offset allowed.
*
* kMaxChunkSize should be small enough that we don't lose too much of
* the window through early invalidation.
* TODO: * Test the chunk size.
* * Try invalidation after the sequence generation and test the
* the offset against maxDist directly.
*/
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, NULL);
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
ldmState, sequences, params, chunkStart, chunkSize);
if (ZSTD_isError(newLeftoverSize))
return newLeftoverSize;
/* 4. We add the leftover literals from previous iterations to the first
* newly generated sequence, or add the `newLeftoverSize` if none are
* generated.
*/
/* Prepend the leftover literals from the last call */
if (prevSize < sequences->size) {
sequences->seq[prevSize].litLength += (U32)leftoverSize;
leftoverSize = newLeftoverSize;
} else {
rollingHash = ZSTD_ldm_getRollingHash(ip, ldmParams.minMatchLength);
}
lastHashed = ip;
if (ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashEveryLog) !=
ldmTagMask) {
/* Don't insert and don't look for a match */
ip++;
continue;
}
/* Get the best entry and compute the match lengths */
{
ldmEntry_t* const bucket =
ZSTD_ldm_getBucket(ldmState,
ZSTD_ldm_getSmallHash(rollingHash, hBits),
ldmParams);
ldmEntry_t* cur;
size_t bestMatchLength = 0;
U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
const BYTE* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
const BYTE* const pMatch = curMatchBase + cur->offset;
const BYTE* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
const BYTE* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
curForwardMatchLength = ZSTD_count_2segments(
ip, pMatch, iend,
matchEnd, lowPrefixPtr);
if (curForwardMatchLength < ldmParams.minMatchLength) {
continue;
}
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch(
ip, anchor, pMatch, lowMatchPtr);
curTotalMatchLength = curForwardMatchLength +
curBackwardMatchLength;
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
forwardMatchLength = curForwardMatchLength;
backwardMatchLength = curBackwardMatchLength;
bestEntry = cur;
}
}
}
/* No match found -- continue searching */
if (bestEntry == NULL) {
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
(U32)(lastHashed - base),
ldmParams);
ip++;
continue;
}
/* Match found */
mLength = forwardMatchLength + backwardMatchLength;
ip -= backwardMatchLength;
/* Call the block compressor on the remaining literals */
{
/* ip = current - backwardMatchLength
* The match is at (bestEntry->offset - backwardMatchLength) */
U32 const matchIndex = bestEntry->offset;
U32 const offset = current - matchIndex;
/* Overwrite rep codes */
for (i = 0; i < ZSTD_REP_NUM; i++)
seqStorePtr->rep[i] = repToConfirm[i];
/* Fill the hash table for the block compressor */
ZSTD_ldm_limitTableUpdate(ctx, anchor);
ZSTD_ldm_fillFastTables(ctx, anchor);
/* Call block compressor and get remaining literals */
lastLiterals = blockCompressor(ctx, anchor, ip - anchor);
ctx->nextToUpdate = (U32)(ip - base);
/* Update repToConfirm with the new offset */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
repToConfirm[i] = repToConfirm[i-1];
repToConfirm[0] = offset;
/* Store the sequence with the leftover literals */
ZSTD_storeSeq(seqStorePtr, lastLiterals, ip - lastLiterals,
offset + ZSTD_REP_MOVE, mLength - MINMATCH);
}
/* Insert the current entry into the hash table */
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
(U32)(lastHashed - base),
ldmParams);
/* Fill the hash table from lastHashed+1 to ip+mLength */
assert(ip + backwardMatchLength == lastHashed);
if (ip + mLength < ilimit) {
rollingHash = ZSTD_ldm_fillLdmHashTable(
ldmState, rollingHash, lastHashed,
ip + mLength, base, hBits,
ldmParams);
lastHashed = ip + mLength - 1;
}
ip += mLength;
anchor = ip;
/* check immediate repcode */
while (ip < ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - repToConfirm[1];
const BYTE* repMatch2 = repIndex2 < dictLimit ?
dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((dictLimit-1) - repIndex2) >= 3) &
(repIndex2 > lowestIndex)) /* intentional overflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < dictLimit ?
dictEnd : iend;
size_t const repLength2 =
ZSTD_count_2segments(ip+4, repMatch2+4, iend,
repEnd2, lowPrefixPtr) + 4;
U32 tmpOffset = repToConfirm[1];
repToConfirm[1] = repToConfirm[0];
repToConfirm[0] = tmpOffset;
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
/* Fill the hash table from lastHashed+1 to ip+repLength2*/
if (ip + repLength2 < ilimit) {
rollingHash = ZSTD_ldm_fillLdmHashTable(
ldmState, rollingHash, lastHashed,
ip + repLength2, base, hBits,
ldmParams);
lastHashed = ip + repLength2 - 1;
}
ip += repLength2;
anchor = ip;
continue;
}
break;
assert(newLeftoverSize == chunkSize);
leftoverSize += chunkSize;
}
}
/* Overwrite rep */
for (i = 0; i < ZSTD_REP_NUM; i++)
seqStorePtr->rep[i] = repToConfirm[i];
ZSTD_ldm_limitTableUpdate(ctx, anchor);
ZSTD_ldm_fillFastTables(ctx, anchor);
/* Call the block compressor one last time on the last literals */
lastLiterals = blockCompressor(ctx, anchor, iend - anchor);
ctx->nextToUpdate = (U32)(iend - base);
/* Restore seqStorePtr->rep */
for (i = 0; i < ZSTD_REP_NUM; i++)
seqStorePtr->rep[i] = savedRep[i];
/* Return the last literals size */
return lastLiterals;
return 0;
}
size_t ZSTD_compressBlock_ldm_extDict(ZSTD_CCtx* ctx,
const void* src, size_t srcSize)
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) {
/* Skip past srcSize literals */
seq->litLength -= (U32)srcSize;
return;
}
srcSize -= seq->litLength;
seq->litLength = 0;
if (srcSize < seq->matchLength) {
/* Skip past the first srcSize of the match */
seq->matchLength -= (U32)srcSize;
if (seq->matchLength < minMatch) {
/* The match is too short, omit it */
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
seq[1].litLength += seq[0].matchLength;
}
rawSeqStore->pos++;
}
return;
}
srcSize -= seq->matchLength;
seq->matchLength = 0;
rawSeqStore->pos++;
}
}
/**
* If the sequence length is longer than remaining then the sequence is split
* between this block and the next.
*
* Returns the current sequence to handle, or if the rest of the block should
* be literals, it returns a sequence with offset == 0.
*/
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
U32 const remaining, U32 const minMatch)
{
return ZSTD_compressBlock_ldm_extDict_generic(ctx, src, srcSize);
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
assert(sequence.offset > 0);
/* Likely: No partial sequence */
if (remaining >= sequence.litLength + sequence.matchLength) {
rawSeqStore->pos++;
return sequence;
}
/* Cut the sequence short (offset == 0 ==> rest is literals). */
if (remaining <= sequence.litLength) {
sequence.offset = 0;
} else if (remaining < sequence.litLength + sequence.matchLength) {
sequence.matchLength = remaining - sequence.litLength;
if (sequence.matchLength < minMatch) {
sequence.offset = 0;
}
}
/* Skip past `remaining` bytes for the future sequences. */
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
return sequence;
}
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize,
int const extDict)
{
unsigned const minMatch = cParams->searchLength;
ZSTD_blockCompressor const blockCompressor =
ZSTD_selectBlockCompressor(cParams->strategy, extDict);
BYTE const* const base = ms->window.base;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
/* Input positions */
BYTE const* ip = istart;
assert(rawSeqStore->pos <= rawSeqStore->size);
assert(rawSeqStore->size <= rawSeqStore->capacity);
/* Loop through each sequence and apply the block compressor to the lits */
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
int i;
/* End signal */
if (sequence.offset == 0)
break;
assert(sequence.offset <= (1U << cParams->windowLog));
assert(ip + sequence.litLength + sequence.matchLength <= iend);
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, cParams, ip);
/* Run the block compressor */
{
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, cParams, ip,
sequence.litLength);
ip += sequence.litLength;
ms->nextToUpdate = (U32)(ip - base);
/* Update the repcodes */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength,
sequence.offset + ZSTD_REP_MOVE,
sequence.matchLength - MINMATCH);
ip += sequence.matchLength;
}
}
/* Fill the tables for the block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, cParams, ip);
/* Compress the last literals */
{
size_t const lastLiterals = blockCompressor(ms, seqStore, rep, cParams,
ip, iend - ip);
ms->nextToUpdate = (U32)(iend - base);
return lastLiterals;
}
}

View File

@ -22,32 +22,71 @@ extern "C" {
***************************************/
#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_DEFAULTMAX
#define ZSTD_LDM_HASHEVERYLOG_NOTSET 9999
/** ZSTD_compressBlock_ldm_generic() :
/**
* ZSTD_ldm_generateSequences():
*
* This is a block compressor intended for long distance matching.
* Generates the sequences using the long distance match finder.
* Generates long range matching sequences in `sequences`, which parse a prefix
* of the source. `sequences` must be large enough to store every sequence,
* which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
* @returns 0 or an error code.
*
* The function searches for matches of length at least
* ldmParams.minMatchLength using a hash table in cctx->ldmState.
* Matches can be at a distance of up to cParams.windowLog.
*
* Upon finding a match, the unmatched literals are compressed using a
* ZSTD_blockCompressor (depending on the strategy in the compression
* parameters), which stores the matched sequences. The "long distance"
* match is then stored with the remaining literals from the
* ZSTD_blockCompressor. */
size_t ZSTD_compressBlock_ldm(ZSTD_CCtx* cctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_ldm_extDict(ZSTD_CCtx* ctx,
const void* src, size_t srcSize);
* NOTE: The user must have called ZSTD_window_update() for all of the input
* they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
* NOTE: This function returns an error if it runs out of space to store
* sequences.
*/
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldms, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize);
/**
* ZSTD_ldm_blockCompress():
*
* Compresses a block using the predefined sequences, along with a secondary
* block compressor. The literals section of every sequence is passed to the
* secondary block compressor, and those sequences are interspersed with the
* predefined sequences. Returns the length of the last literals.
* Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
* `rawSeqStore.seq` may also be updated to split the last sequence between two
* blocks.
* @return The length of the last literals.
*
* NOTE: The source must be at most the maximum block size, but the predefined
* sequences can be any size, and may be longer than the block. In the case that
* they are longer than the block, the last sequences may need to be split into
* two. We handle that case correctly, and update `rawSeqStore` appropriately.
* NOTE: This function does not return any errors.
*/
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams,
void const* src, size_t srcSize,
int const extDict);
/**
* ZSTD_ldm_skipSequences():
*
* Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
* Avoids emitting matches less than `minMatch` bytes.
* Must be called for data with is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
U32 const minMatch);
/** ZSTD_ldm_initializeParameters() :
* Initialize the long distance matching parameters to their default values. */
size_t ZSTD_ldm_initializeParameters(ldmParams_t* params, U32 enableLdm);
/** ZSTD_ldm_getTableSize() :
* Estimate the space needed for long distance matching tables. */
size_t ZSTD_ldm_getTableSize(U32 hashLog, U32 bucketSizeLog);
* Estimate the space needed for long distance matching tables or 0 if LDM is
* disabled.
*/
size_t ZSTD_ldm_getTableSize(ldmParams_t params);
/** ZSTD_ldm_getSeqSpace() :
* Return an upper bound on the number of sequences that can be produced by
* the long distance matcher, or 0 if LDM is disabled.
*/
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
/** ZSTD_ldm_getTableSize() :
* Return prime8bytes^(minMatchLength-1) */
@ -58,8 +97,12 @@ U64 ZSTD_ldm_getHashPower(U32 minMatchLength);
* windowLog and params->hashLog.
*
* Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
* params->hashLog if it is not). */
void ZSTD_ldm_adjustParameters(ldmParams_t* params, U32 windowLog);
* params->hashLog if it is not).
*
* Ensures that the minMatchLength >= targetLength during optimal parsing.
*/
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams);
#if defined (__cplusplus)
}

View File

@ -10,7 +10,6 @@
#include "zstd_compress_internal.h"
#include "zstd_opt.h"
#include "zstd_lazy.h" /* ZSTD_updateTree, ZSTD_updateTree_extDict */
#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats. Also used for matchSum (?) */
@ -244,14 +243,15 @@ MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
/* Update hashTable3 up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_CCtx* const cctx, const BYTE* const ip)
static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms, const BYTE* const ip)
{
U32* const hashTable3 = cctx->hashTable3;
U32 const hashLog3 = cctx->hashLog3;
const BYTE* const base = cctx->base;
U32 idx = cctx->nextToUpdate3;
U32 const target = cctx->nextToUpdate3 = (U32)(ip - base);
U32* const hashTable3 = ms->hashTable3;
U32 const hashLog3 = ms->hashLog3;
const BYTE* const base = ms->window.base;
U32 idx = ms->nextToUpdate3;
U32 const target = ms->nextToUpdate3 = (U32)(ip - base);
size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
assert(hashLog3 > 0);
while(idx < target) {
hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
@ -265,36 +265,173 @@ static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_CCtx* const cctx, const BYTE*
/*-*************************************
* Binary Tree search
***************************************/
/** ZSTD_insertBt1() : add one or multiple positions to tree.
* ip : assumed <= iend-8 .
* @return : nb of positions added */
static U32 ZSTD_insertBt1(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iend,
U32 const mls, U32 const extDict)
{
U32* const hashTable = ms->hashTable;
U32 const hashLog = cParams->hashLog;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask = (1 << btLog) - 1;
U32 matchIndex = hashTable[h];
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* match;
const U32 current = (U32)(ip-base);
const U32 btLow = btMask >= current ? 0 : current - btMask;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = smallerPtr + 1;
U32 dummy32; /* to be nullified at the end */
U32 const windowLow = ms->window.lowLimit;
U32 matchEndIdx = current+8+1;
size_t bestLength = 8;
U32 nbCompares = 1U << cParams->searchLog;
#ifdef ZSTD_C_PREDICT
U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0);
U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1);
predictedSmall += (predictedSmall>0);
predictedLarge += (predictedLarge>0);
#endif /* ZSTD_C_PREDICT */
DEBUGLOG(8, "ZSTD_insertBt1 (%u)", current);
assert(ip <= iend-8); /* required for h calculation */
hashTable[h] = current; /* Update Hash Table */
while (nbCompares-- && (matchIndex > windowLow)) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(matchIndex < current);
#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */
const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */
if (matchIndex == predictedSmall) {
/* no need to check length, result known */
*smallerPtr = matchIndex;
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
predictedSmall = predictPtr[1] + (predictPtr[1]>0);
continue;
}
if (matchIndex == predictedLarge) {
*largerPtr = matchIndex;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
predictedLarge = predictPtr[0] + (predictPtr[0]>0);
continue;
}
#endif
if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
assert(matchIndex+matchLength >= dictLimit); /* might be wrong if extDict is incorrectly set to 0 */
match = base + matchIndex;
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
bestLength = matchLength;
if (matchLength > matchEndIdx - matchIndex)
matchEndIdx = matchIndex + (U32)matchLength;
}
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
}
if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
if (bestLength > 384) return MIN(192, (U32)(bestLength - 384)); /* speed optimization */
assert(matchEndIdx > current + 8);
return matchEndIdx - (current + 8);
}
FORCE_INLINE_TEMPLATE
void ZSTD_updateTree_internal(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iend,
const U32 mls, const U32 extDict)
{
const BYTE* const base = ms->window.base;
U32 const target = (U32)(ip - base);
U32 idx = ms->nextToUpdate;
DEBUGLOG(7, "ZSTD_updateTree_internal, from %u to %u (extDict:%u)",
idx, target, extDict);
while(idx < target)
idx += ZSTD_insertBt1(ms, cParams, base+idx, iend, mls, extDict);
ms->nextToUpdate = target;
}
void ZSTD_updateTree(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* iend)
{
ZSTD_updateTree_internal(ms, cParams, ip, iend, cParams->searchLength, 0 /*extDict*/);
}
FORCE_INLINE_TEMPLATE
U32 ZSTD_insertBtAndGetAllMatches (
ZSTD_CCtx* zc,
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* const ip, const BYTE* const iLimit, int const extDict,
U32 nbCompares, U32 const mls, U32 const sufficient_len,
U32 rep[ZSTD_REP_NUM], U32 const ll0,
ZSTD_match_t* matches, const U32 lengthToBeat)
ZSTD_match_t* matches, const U32 lengthToBeat, U32 const mls /* template */)
{
const BYTE* const base = zc->base;
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
const BYTE* const base = ms->window.base;
U32 const current = (U32)(ip-base);
U32 const hashLog = zc->appliedParams.cParams.hashLog;
U32 const hashLog = cParams->hashLog;
U32 const minMatch = (mls==3) ? 3 : 4;
U32* const hashTable = zc->hashTable;
U32* const hashTable = ms->hashTable;
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
U32 matchIndex = hashTable[h];
U32* const bt = zc->chainTable;
U32 const btLog = zc->appliedParams.cParams.chainLog - 1;
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
U32 const btMask= (1U << btLog) - 1;
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const dictBase = zc->dictBase;
U32 const dictLimit = zc->dictLimit;
const BYTE* const dictBase = ms->window.dictBase;
U32 const dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
U32 const btLow = btMask >= current ? 0 : current - btMask;
U32 const windowLow = zc->lowLimit;
U32 const windowLow = ms->window.lowLimit;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = bt + 2*(current&btMask) + 1;
U32 matchEndIdx = current+8+1; /* farthest referenced position of any match => detects repetitive patterns */
U32 dummy32; /* to be nullified at the end */
U32 mnum = 0;
U32 nbCompares = 1U << cParams->searchLog;
size_t bestLength = lengthToBeat-1;
DEBUGLOG(7, "ZSTD_insertBtAndGetAllMatches");
@ -335,7 +472,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
/* HC3 match finder */
if ((mls == 3) /*static*/ && (bestLength < mls)) {
U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3 (zc, ip);
U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, ip);
if ((matchIndex3 > windowLow)
& (current - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
size_t mlen;
@ -359,7 +496,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
mnum = 1;
if ( (mlen > sufficient_len) |
(ip+mlen == iLimit) ) { /* best possible length */
zc->nextToUpdate = current+1; /* skip insertion */
ms->nextToUpdate = current+1; /* skip insertion */
return 1;
} } } }
@ -416,30 +553,29 @@ U32 ZSTD_insertBtAndGetAllMatches (
*smallerPtr = *largerPtr = 0;
assert(matchEndIdx > current+8);
zc->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
return mnum;
}
FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
ZSTD_CCtx* zc, /* Index table will be updated */
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* const iHighLimit, int const extDict,
U32 const maxNbAttempts, U32 const matchLengthSearch, U32 const sufficient_len,
U32 rep[ZSTD_REP_NUM], U32 const ll0,
ZSTD_match_t* matches, U32 const lengthToBeat)
{
U32 const matchLengthSearch = cParams->searchLength;
DEBUGLOG(7, "ZSTD_BtGetAllMatches");
if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
if (extDict) ZSTD_updateTree_extDict(zc, ip, iHighLimit, maxNbAttempts, matchLengthSearch);
else ZSTD_updateTree(zc, ip, iHighLimit, maxNbAttempts, matchLengthSearch);
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
ZSTD_updateTree_internal(ms, cParams, ip, iHighLimit, matchLengthSearch, extDict);
switch(matchLengthSearch)
{
case 3 : return ZSTD_insertBtAndGetAllMatches(zc, ip, iHighLimit, extDict, maxNbAttempts, 3, sufficient_len, rep, ll0, matches, lengthToBeat);
case 3 : return ZSTD_insertBtAndGetAllMatches(ms, cParams, ip, iHighLimit, extDict, rep, ll0, matches, lengthToBeat, 3);
default :
case 4 : return ZSTD_insertBtAndGetAllMatches(zc, ip, iHighLimit, extDict, maxNbAttempts, 4, sufficient_len, rep, ll0, matches, lengthToBeat);
case 5 : return ZSTD_insertBtAndGetAllMatches(zc, ip, iHighLimit, extDict, maxNbAttempts, 5, sufficient_len, rep, ll0, matches, lengthToBeat);
case 4 : return ZSTD_insertBtAndGetAllMatches(ms, cParams, ip, iHighLimit, extDict, rep, ll0, matches, lengthToBeat, 4);
case 5 : return ZSTD_insertBtAndGetAllMatches(ms, cParams, ip, iHighLimit, extDict, rep, ll0, matches, lengthToBeat, 5);
case 7 :
case 6 : return ZSTD_insertBtAndGetAllMatches(zc, ip, iHighLimit, extDict, maxNbAttempts, 6, sufficient_len, rep, ll0, matches, lengthToBeat);
case 6 : return ZSTD_insertBtAndGetAllMatches(ms, cParams, ip, iHighLimit, extDict, rep, ll0, matches, lengthToBeat, 6);
}
}
@ -527,36 +663,33 @@ static int ZSTD_literalsContribution_cached(
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
size_t ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams,
const void* src, size_t srcSize,
const int optLevel, const int extDict)
{
seqStore_t* const seqStorePtr = &(ctx->seqStore);
optState_t* const optStatePtr = &(ctx->optState);
optState_t* const optStatePtr = &ms->opt;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ctx->base;
const BYTE* const prefixStart = base + ctx->dictLimit;
const BYTE* const base = ms->window.base;
const BYTE* const prefixStart = base + ms->window.dictLimit;
U32 const maxSearches = 1U << ctx->appliedParams.cParams.searchLog;
U32 const sufficient_len = MIN(ctx->appliedParams.cParams.targetLength, ZSTD_OPT_NUM -1);
U32 const mls = ctx->appliedParams.cParams.searchLength;
U32 const minMatch = (ctx->appliedParams.cParams.searchLength == 3) ? 3 : 4;
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
U32 const minMatch = (cParams->searchLength == 3) ? 3 : 4;
ZSTD_optimal_t* const opt = optStatePtr->priceTable;
ZSTD_match_t* const matches = optStatePtr->matchTable;
cachedLiteralPrice_t cachedLitPrice;
U32 rep[ZSTD_REP_NUM];
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_opt_generic");
ctx->nextToUpdate3 = ctx->nextToUpdate;
ms->nextToUpdate3 = ms->nextToUpdate;
ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize);
ip += (ip==prefixStart);
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=seqStorePtr->rep[i]; }
memset(&cachedLitPrice, 0, sizeof(cachedLitPrice));
/* Match Loop */
@ -567,7 +700,7 @@ size_t ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
/* find first match */
{ U32 const litlen = (U32)(ip - anchor);
U32 const ll0 = !litlen;
U32 const nbMatches = ZSTD_BtGetAllMatches(ctx, ip, iend, extDict, maxSearches, mls, sufficient_len, rep, ll0, matches, minMatch);
U32 const nbMatches = ZSTD_BtGetAllMatches(ms, cParams, ip, iend, extDict, rep, ll0, matches, minMatch);
if (!nbMatches) { ip++; continue; }
/* initialize opt[0] */
@ -653,7 +786,7 @@ size_t ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
U32 const litlen = (opt[cur].mlen == 1) ? opt[cur].litlen : 0;
U32 const previousPrice = (cur > litlen) ? opt[cur-litlen].price : 0;
U32 const basePrice = previousPrice + ZSTD_fullLiteralsCost(inr-litlen, litlen, optStatePtr);
U32 const nbMatches = ZSTD_BtGetAllMatches(ctx, inr, iend, extDict, maxSearches, mls, sufficient_len, opt[cur].rep, ll0, matches, minMatch);
U32 const nbMatches = ZSTD_BtGetAllMatches(ms, cParams, inr, iend, extDict, opt[cur].rep, ll0, matches, minMatch);
U32 matchNb;
if (!nbMatches) continue;
@ -749,37 +882,42 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
}
ZSTD_updateStats(optStatePtr, llen, anchor, offset, mlen);
ZSTD_storeSeq(seqStorePtr, llen, anchor, offset, mlen-MINMATCH);
ZSTD_storeSeq(seqStore, llen, anchor, offset, mlen-MINMATCH);
anchor = ip;
} }
ZSTD_setLog2Prices(optStatePtr);
} /* while (ip < ilimit) */
/* Save reps for next block */
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqStorePtr->repToConfirm[i] = rep[i]; }
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_btopt(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressBlock_btopt");
return ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0 /*optLevel*/, 0 /*extDict*/);
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, cParams, src, srcSize, 0 /*optLevel*/, 0 /*extDict*/);
}
size_t ZSTD_compressBlock_btultra(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 2 /*optLevel*/, 0 /*extDict*/);
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, cParams, src, srcSize, 2 /*optLevel*/, 0 /*extDict*/);
}
size_t ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0 /*optLevel*/, 1 /*extDict*/);
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, cParams, src, srcSize, 0 /*optLevel*/, 1 /*extDict*/);
}
size_t ZSTD_compressBlock_btultra_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
return ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 2 /*optLevel*/, 1 /*extDict*/);
return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, cParams, src, srcSize, 2 /*optLevel*/, 1 /*extDict*/);
}

View File

@ -15,13 +15,25 @@
extern "C" {
#endif
#include "zstd.h" /* ZSTD_CCtx, size_t */
#include "zstd_compress_internal.h"
size_t ZSTD_compressBlock_btopt(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
void ZSTD_updateTree(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* iend); /* used in ZSTD_loadDictionaryContent() */
size_t ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}

File diff suppressed because it is too large Load Diff

View File

@ -30,15 +30,15 @@
/* === Memory management === */
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbThreads);
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbThreads,
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers);
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
ZSTD_customMem cMem);
ZSTDLIB_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
ZSTDLIB_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
/* === Simple buffer-to-butter one-pass function === */
/* === Simple one-pass compression function === */
ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
@ -50,7 +50,7 @@ ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
/* === Streaming functions === */
ZSTDLIB_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it may change in the future, to mean "empty" */
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it will change in the future to mean "empty" */
ZSTDLIB_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
@ -68,7 +68,7 @@ ZSTDLIB_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_parameters const params,
ZSTD_parameters params,
unsigned overlapLog);
ZSTDLIB_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
@ -85,7 +85,7 @@ ZSTDLIB_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
* List of parameters that can be set using ZSTDMT_setMTCtxParameter() */
typedef enum {
ZSTDMT_p_jobSize, /* Each job is compressed in parallel. By default, this value is dynamically determined depending on compression parameters. Can be set explicitly here. */
ZSTDMT_p_overlapSectionLog /* Each job may reload a part of previous job to enhance compressionr ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window */
ZSTDMT_p_overlapSectionLog /* Each job may reload a part of previous job to enhance compressionr ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window. This is a "sticky" parameter : its value will be re-used on next compression job */
} ZSTDMT_parameter;
/* ZSTDMT_setMTCtxParameter() :
@ -97,30 +97,46 @@ ZSTDLIB_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter
/*! ZSTDMT_compressStream_generic() :
* Combines ZSTDMT_compressStream() with ZSTDMT_flushStream() or ZSTDMT_endStream()
* Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream()
* depending on flush directive.
* @return : minimum amount of data still to be flushed
* 0 if fully flushed
* or an error code */
* or an error code
* note : needs to be init using any ZSTD_initCStream*() variant */
ZSTDLIB_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
/* === Private definitions; never ever use directly === */
/* ========================================================
* === Private interface, for use by ZSTD_compress.c ===
* === Not exposed in libzstd. Never invoke directly ===
* ======================================================== */
size_t ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, ZSTDMT_parameter parameter, unsigned value);
/* ZSTDMT_CCtxParam_setNbThreads()
* Set nbThreads, and clamp it correctly,
* also reset jobSize and overlapLog */
size_t ZSTDMT_CCtxParam_setNbThreads(ZSTD_CCtx_params* params, unsigned nbThreads);
/* ZSTDMT_CCtxParam_setNbWorkers()
* Set nbWorkers, and clamp it.
* Also reset jobSize and overlapLog */
size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers);
/* ZSTDMT_getNbThreads():
/*! ZSTDMT_updateCParams_whileCompressing() :
* Updates only a selected set of compression parameters, to remain compatible with current frame.
* New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams);
/* ZSTDMT_getNbWorkers():
* @return nb threads currently active in mtctx.
* mtctx must be valid */
size_t ZSTDMT_getNbThreads(const ZSTDMT_CCtx* mtctx);
unsigned ZSTDMT_getNbWorkers(const ZSTDMT_CCtx* mtctx);
/* ZSTDMT_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads.
*/
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx);
/*! ZSTDMT_initCStream_internal() :
* Private use only. Init streaming operation.
@ -128,7 +144,7 @@ size_t ZSTDMT_getNbThreads(const ZSTDMT_CCtx* mtctx);
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);

View File

@ -49,18 +49,19 @@
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
#define CHECK_F(f) { size_t const err_ = (f); if (HUF_isError(err_)) return err_; }
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
@ -74,7 +75,6 @@ static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
@ -94,10 +94,7 @@ size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize
huffWeight = (BYTE *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
if ((spaceUsed32 << 2) > wkspSize)
return ERROR(tableLog_tooLarge);
workSpace = (U32 *)workSpace + spaceUsed32;
wkspSize -= (spaceUsed32 << 2);
if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge);
HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
@ -144,8 +141,10 @@ size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
workSpace, sizeof(workSpace));
}
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
@ -156,7 +155,7 @@ static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, con
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
@ -164,30 +163,33 @@ static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, con
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
HINT_INLINE size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* [0-3] symbols remaining */
if (MEM_32bits())
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
/* no more data to retrieve from bitstream, no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUF_decompress1X2_usingDTable_internal(
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
@ -200,58 +202,17 @@ static size_t HUF_decompress1X2_usingDTable_internal(
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode; }
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
size_t HUF_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
}
size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
}
static size_t HUF_decompress4X2_usingDTable_internal(
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
@ -286,23 +247,19 @@ static size_t HUF_decompress4X2_usingDTable_internal(
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
U32 endSignal = BIT_DStream_unfinished;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
{ size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode; }
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* 16-32 symbols per loop (4-8 symbols per stream) */
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
while ( (endSignal==BIT_DStream_unfinished) && (op4<(oend-3)) ) {
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
@ -319,10 +276,15 @@ static size_t HUF_decompress4X2_usingDTable_internal(
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
BIT_reloadDStream(&bitD1);
BIT_reloadDStream(&bitD2);
BIT_reloadDStream(&bitD3);
BIT_reloadDStream(&bitD4);
}
/* check corruption */
/* note : should not be necessary : op# advance in lock step, and we control op4.
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
@ -335,8 +297,8 @@ static size_t HUF_decompress4X2_usingDTable_internal(
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
@ -344,6 +306,279 @@ static size_t HUF_decompress4X2_usingDTable_internal(
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
} }
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t
HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X4_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X4_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1;
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
const void *cSrc,
size_t cSrcSize,
const HUF_DTable *DTable);
#if DYNAMIC_BMI2
#define X(fn) \
\
static size_t fn##_default( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
if (bmi2) { \
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#else
#define X(fn) \
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
(void)bmi2; \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#endif
X(HUF_decompress1X2_usingDTable_internal)
X(HUF_decompress4X2_usingDTable_internal)
X(HUF_decompress1X4_usingDTable_internal)
X(HUF_decompress4X4_usingDTable_internal)
#undef X
size_t HUF_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
}
size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
@ -351,13 +586,12 @@ size_t HUF_decompress4X2_usingDTable(
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
@ -367,7 +601,14 @@ size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
}
@ -387,8 +628,6 @@ size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cS
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/* HUF_fillDTableX4Level2() :
@ -508,10 +747,7 @@ size_t HUF_readDTableX4_wksp(HUF_DTable* DTable, const void* src,
weightList = (BYTE *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
if ((spaceUsed32 << 2) > wkspSize)
return ERROR(tableLog_tooLarge);
workSpace = (U32 *)workSpace + spaceUsed32;
wkspSize -= (spaceUsed32 << 2);
if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge);
rankStart = rankStart0 + 1;
memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));
@ -588,95 +824,6 @@ size_t HUF_readDTableX4(HUF_DTable* DTable, const void* src, size_t srcSize)
workSpace, sizeof(workSpace));
}
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
} }
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUF_decompress1X4_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode;
}
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
size_t HUF_decompress1X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
@ -684,7 +831,7 @@ size_t HUF_decompress1X4_usingDTable(
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
@ -699,7 +846,7 @@ size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
return HUF_decompress1X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
@ -717,99 +864,6 @@ size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cS
return HUF_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
static size_t HUF_decompress4X4_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1;
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
{ size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode; }
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
size_t HUF_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
@ -817,13 +871,12 @@ size_t HUF_decompress4X4_usingDTable(
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
static size_t HUF_decompress4X4_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
@ -833,7 +886,14 @@ size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X4_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
@ -861,8 +921,8 @@ size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
@ -870,8 +930,8 @@ size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
@ -898,21 +958,22 @@ static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, qu
};
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-determined metrics.
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
* Assumption : 0 < cSrcSize, dstSize <= 128 KB */
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
assert(dstSize > 0);
assert(dstSize <= 128 KB);
/* decoder timing evaluation */
U32 const Q = cSrcSize >= dstSize ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
return DTime1 < DTime0;
}
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */
return DTime1 < DTime0;
} }
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
@ -994,3 +1055,42 @@ size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
}
size_t HUF_decompress1X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
}
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUF_decompress4X4_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
}
}

File diff suppressed because it is too large Load Diff

508
thirdparty/zstd/zstd.h vendored
View File

@ -45,11 +45,11 @@ extern "C" {
Levels >= 20, labeled `--ultra`, should be used with caution, as they require more memory.
Compression can be done in:
- a single step (described as Simple API)
- a single step, reusing a context (described as Explicit memory management)
- a single step, reusing a context (described as Explicit context)
- unbounded multiple steps (described as Streaming compression)
The compression ratio achievable on small data can be highly improved using a dictionary in:
- a single step (described as Simple dictionary API)
- a single step, reusing a dictionary (described as Fast dictionary API)
- a single step, reusing a dictionary (described as Bulk-processing dictionary API)
Advanced experimental functions can be accessed using #define ZSTD_STATIC_LINKING_ONLY before including zstd.h.
Advanced experimental APIs shall never be used with a dynamic library.
@ -59,7 +59,7 @@ extern "C" {
/*------ Version ------*/
#define ZSTD_VERSION_MAJOR 1
#define ZSTD_VERSION_MINOR 3
#define ZSTD_VERSION_RELEASE 3
#define ZSTD_VERSION_RELEASE 4
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
ZSTDLIB_API unsigned ZSTD_versionNumber(void); /**< useful to check dll version */
@ -68,7 +68,7 @@ ZSTDLIB_API unsigned ZSTD_versionNumber(void); /**< useful to check dll versio
#define ZSTD_QUOTE(str) #str
#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str)
#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
ZSTDLIB_API const char* ZSTD_versionString(void); /* v1.3.0 */
ZSTDLIB_API const char* ZSTD_versionString(void); /* added in v1.3.0 */
/***************************************
@ -92,7 +92,7 @@ ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity,
ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/*! ZSTD_getFrameContentSize() : v1.3.0
/*! ZSTD_getFrameContentSize() : added in v1.3.0
* `src` should point to the start of a ZSTD encoded frame.
* `srcSize` must be at least as large as the frame header.
* hint : any size >= `ZSTD_frameHeaderSize_max` is large enough.
@ -120,26 +120,24 @@ ZSTDLIB_API unsigned long long ZSTD_getFrameContentSize(const void *src, size_t
/*! ZSTD_getDecompressedSize() :
* NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize().
* Both functions work the same way,
* but ZSTD_getDecompressedSize() blends
* "empty", "unknown" and "error" results in the same return value (0),
* while ZSTD_getFrameContentSize() distinguishes them.
*
* 'src' is the start of a zstd compressed frame.
* @return : content size to be decompressed, as a 64-bits value _if known and not empty_, 0 otherwise. */
* Both functions work the same way, but ZSTD_getDecompressedSize() blends
* "empty", "unknown" and "error" results to the same return value (0),
* while ZSTD_getFrameContentSize() gives them separate return values.
* `src` is the start of a zstd compressed frame.
* @return : content size to be decompressed, as a 64-bits value _if known and not empty_, 0 otherwise. */
ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
/*====== Helper functions ======*/
#define ZSTD_COMPRESSBOUND(srcSize) ((srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */
ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case scenario */
ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */
ZSTDLIB_API unsigned ZSTD_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readable string from an error code */
ZSTDLIB_API int ZSTD_maxCLevel(void); /*!< maximum compression level available */
/***************************************
* Explicit memory management
* Explicit context
***************************************/
/*= Compression context
* When compressing many times,
@ -345,7 +343,7 @@ ZSTDLIB_API size_t ZSTD_CStreamOutSize(void); /**< recommended size for output
* *******************************************************************************/
typedef ZSTD_DCtx ZSTD_DStream; /**< DCtx and DStream are now effectively same object (>= v1.3.0) */
/* Continue to distinguish them for compatibility with versions <= v1.2.0 */
/* For compatibility with versions <= v1.2.0, continue to consider them separated. */
/*===== ZSTD_DStream management functions =====*/
ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void);
ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds);
@ -375,23 +373,24 @@ ZSTDLIB_API size_t ZSTD_DStreamOutSize(void); /*!< recommended size for output
/* --- Constants ---*/
#define ZSTD_MAGICNUMBER 0xFD2FB528 /* >= v0.8.0 */
#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50U
#define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* v0.7+ */
#define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* >= v0.7.0 */
#define ZSTD_WINDOWLOG_MAX_32 30
#define ZSTD_WINDOWLOG_MAX_64 31
#define ZSTD_WINDOWLOG_MAX ((unsigned)(sizeof(size_t) == 4 ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64))
#define ZSTD_WINDOWLOG_MIN 10
#define ZSTD_HASHLOG_MAX MIN(ZSTD_WINDOWLOG_MAX, 30)
#define ZSTD_HASHLOG_MAX ((ZSTD_WINDOWLOG_MAX < 30) ? ZSTD_WINDOWLOG_MAX : 30)
#define ZSTD_HASHLOG_MIN 6
#define ZSTD_CHAINLOG_MAX MIN(ZSTD_WINDOWLOG_MAX+1, 30)
#define ZSTD_CHAINLOG_MAX_32 29
#define ZSTD_CHAINLOG_MAX_64 30
#define ZSTD_CHAINLOG_MAX ((unsigned)(sizeof(size_t) == 4 ? ZSTD_CHAINLOG_MAX_32 : ZSTD_CHAINLOG_MAX_64))
#define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN
#define ZSTD_HASHLOG3_MAX 17
#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1)
#define ZSTD_SEARCHLOG_MIN 1
#define ZSTD_SEARCHLENGTH_MAX 7 /* only for ZSTD_fast, other strategies are limited to 6 */
#define ZSTD_SEARCHLENGTH_MIN 3 /* only for ZSTD_btopt, other strategies are limited to 4 */
#define ZSTD_TARGETLENGTH_MIN 4 /* only useful for btopt */
#define ZSTD_TARGETLENGTH_MAX 999 /* only useful for btopt */
#define ZSTD_TARGETLENGTH_MIN 1 /* only used by btopt, btultra and btfast */
#define ZSTD_LDM_MINMATCH_MIN 4
#define ZSTD_LDM_MINMATCH_MAX 4096
#define ZSTD_LDM_BUCKETSIZELOG_MAX 8
@ -432,12 +431,17 @@ typedef struct {
typedef struct ZSTD_CCtx_params_s ZSTD_CCtx_params;
/*--- Custom memory allocation functions ---*/
typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
/* use this constant to defer to stdlib's functions */
static ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL };
typedef enum {
ZSTD_dct_auto=0, /* dictionary is "full" when starting with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */
ZSTD_dct_rawContent, /* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */
ZSTD_dct_fullDict /* refuses to load a dictionary if it does not respect Zstandard's specification */
} ZSTD_dictContentType_e;
typedef enum {
ZSTD_dlm_byCopy = 0, /**< Copy dictionary content internally */
ZSTD_dlm_byRef, /**< Reference dictionary content -- the dictionary buffer must outlive its users. */
} ZSTD_dictLoadMethod_e;
/***************************************
@ -483,12 +487,12 @@ ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize);
/***************************************
* Context memory usage
* Memory management
***************************************/
/*! ZSTD_sizeof_*() :
* These functions give the current memory usage of selected object.
* Object memory usage can evolve when re-used multiple times. */
* Object memory usage can evolve when re-used. */
ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx);
ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx);
ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs);
@ -503,8 +507,8 @@ ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
* It will also consider src size to be arbitrarily "large", which is worst case.
* If srcSize is known to always be small, ZSTD_estimateCCtxSize_usingCParams() can provide a tighter estimation.
* ZSTD_estimateCCtxSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
* ZSTD_estimateCCtxSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParam_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_p_nbThreads is > 1.
* Note : CCtx estimation is only correct for single-threaded compression */
* ZSTD_estimateCCtxSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParam_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_p_nbWorkers is >= 1.
* Note : CCtx size estimation is only correct for single-threaded compression. */
ZSTDLIB_API size_t ZSTD_estimateCCtxSize(int compressionLevel);
ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams);
ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params);
@ -515,8 +519,8 @@ ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void);
* It will also consider src size to be arbitrarily "large", which is worst case.
* If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation.
* ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel.
* ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParam_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_p_nbThreads is set to a value > 1.
* Note : CStream estimation is only correct for single-threaded compression.
* ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParam_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_p_nbWorkers is >= 1.
* Note : CStream size estimation is only correct for single-threaded compression.
* ZSTD_DStream memory budget depends on window Size.
* This information can be passed manually, using ZSTD_estimateDStreamSize,
* or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame();
@ -529,46 +533,86 @@ ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_para
ZSTDLIB_API size_t ZSTD_estimateDStreamSize(size_t windowSize);
ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize);
typedef enum {
ZSTD_dlm_byCopy = 0, /**< Copy dictionary content internally */
ZSTD_dlm_byRef, /**< Reference dictionary content -- the dictionary buffer must outlive its users. */
} ZSTD_dictLoadMethod_e;
/*! ZSTD_estimate?DictSize() :
* ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict().
* ZSTD_estimateCStreamSize_advanced_usingCParams() makes it possible to control precisely compression parameters, like ZSTD_createCDict_advanced().
* Note : dictionary created by reference using ZSTD_dlm_byRef are smaller
* ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced().
* Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller.
*/
ZSTDLIB_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel);
ZSTDLIB_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod);
ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod);
/*! ZSTD_initStatic*() :
* Initialize an object using a pre-allocated fixed-size buffer.
* workspace: The memory area to emplace the object into.
* Provided pointer *must be 8-bytes aligned*.
* Buffer must outlive object.
* workspaceSize: Use ZSTD_estimate*Size() to determine
* how large workspace must be to support target scenario.
* @return : pointer to object (same address as workspace, just different type),
* or NULL if error (size too small, incorrect alignment, etc.)
* Note : zstd will never resize nor malloc() when using a static buffer.
* If the object requires more memory than available,
* zstd will just error out (typically ZSTD_error_memory_allocation).
* Note 2 : there is no corresponding "free" function.
* Since workspace is allocated externally, it must be freed externally too.
* Note 3 : cParams : use ZSTD_getCParams() to convert a compression level
* into its associated cParams.
* Limitation 1 : currently not compatible with internal dictionary creation, triggered by
* ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict().
* Limitation 2 : static cctx currently not compatible with multi-threading.
* Limitation 3 : static dctx is incompatible with legacy support.
*/
ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */
ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize);
ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */
ZSTDLIB_API const ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams);
ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType);
/*! Custom memory allocation :
* These prototypes make it possible to pass your own allocation/free functions.
* ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below.
* All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones.
*/
typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
static ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams,
ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_customMem customMem);
/***************************************
* Advanced compression functions
***************************************/
/*! ZSTD_createCCtx_advanced() :
* Create a ZSTD compression context using external alloc and free functions */
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
/*! ZSTD_initStaticCCtx() : initialize a fixed-size zstd compression context
* workspace: The memory area to emplace the context into.
* Provided pointer must 8-bytes aligned.
* It must outlive context usage.
* workspaceSize: Use ZSTD_estimateCCtxSize() or ZSTD_estimateCStreamSize()
* to determine how large workspace must be to support scenario.
* @return : pointer to ZSTD_CCtx* (same address as workspace, but different type),
* or NULL if error (typically size too small)
* Note : zstd will never resize nor malloc() when using a static cctx.
* If it needs more memory than available, it will simply error out.
* Note 2 : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally too.
* Limitation 1 : currently not compatible with internal CDict creation, such as
* ZSTD_CCtx_loadDictionary() or ZSTD_initCStream_usingDict().
* Limitation 2 : currently not compatible with multi-threading
*/
ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize);
/*! ZSTD_createCDict_byReference() :
* Create a digested dictionary for compression
@ -576,38 +620,6 @@ ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize
* It is important that dictBuffer outlives CDict, it must remain read accessible throughout the lifetime of CDict */
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel);
typedef enum { ZSTD_dm_auto=0, /* dictionary is "full" if it starts with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */
ZSTD_dm_rawContent, /* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */
ZSTD_dm_fullDict /* refuses to load a dictionary if it does not respect Zstandard's specification */
} ZSTD_dictMode_e;
/*! ZSTD_createCDict_advanced() :
* Create a ZSTD_CDict using external alloc and free, and customized compression parameters */
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictMode_e dictMode,
ZSTD_compressionParameters cParams,
ZSTD_customMem customMem);
/*! ZSTD_initStaticCDict() :
* Generate a digested dictionary in provided memory area.
* workspace: The memory area to emplace the dictionary into.
* Provided pointer must 8-bytes aligned.
* It must outlive dictionary usage.
* workspaceSize: Use ZSTD_estimateCDictSize()
* to determine how large workspace must be.
* cParams : use ZSTD_getCParams() to transform a compression level
* into its relevants cParams.
* @return : pointer to ZSTD_CDict* (same address as workspace, but different type),
* or NULL if error (typically, size too small).
* Note : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
*/
ZSTDLIB_API ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode,
ZSTD_compressionParameters cParams);
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize.
* `estimatedSrcSize` value is optional, select 0 if not known */
@ -652,28 +664,6 @@ ZSTDLIB_API size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
* Note 3 : Skippable Frame Identifiers are considered valid. */
ZSTDLIB_API unsigned ZSTD_isFrame(const void* buffer, size_t size);
/*! ZSTD_createDCtx_advanced() :
* Create a ZSTD decompression context using external alloc and free functions */
ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
/*! ZSTD_initStaticDCtx() : initialize a fixed-size zstd decompression context
* workspace: The memory area to emplace the context into.
* Provided pointer must 8-bytes aligned.
* It must outlive context usage.
* workspaceSize: Use ZSTD_estimateDCtxSize() or ZSTD_estimateDStreamSize()
* to determine how large workspace must be to support scenario.
* @return : pointer to ZSTD_DCtx* (same address as workspace, but different type),
* or NULL if error (typically size too small)
* Note : zstd will never resize nor malloc() when using a static dctx.
* If it needs more memory than available, it will simply error out.
* Note 2 : static dctx is incompatible with legacy support
* Note 3 : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
* Limitation : currently not compatible with internal DDict creation,
* such as ZSTD_initDStream_usingDict().
*/
ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize);
/*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, ready to start decompression operation without startup delay.
* Dictionary content is referenced, and therefore stays in dictBuffer.
@ -681,26 +671,6 @@ ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize
* it must remain read accessible throughout the lifetime of DDict */
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize);
/*! ZSTD_createDDict_advanced() :
* Create a ZSTD_DDict using external alloc and free, optionally by reference */
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_customMem customMem);
/*! ZSTD_initStaticDDict() :
* Generate a digested dictionary in provided memory area.
* workspace: The memory area to emplace the dictionary into.
* Provided pointer must 8-bytes aligned.
* It must outlive dictionary usage.
* workspaceSize: Use ZSTD_estimateDDictSize()
* to determine how large workspace must be.
* @return : pointer to ZSTD_DDict*, or NULL if error (size too small)
* Note : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
*/
ZSTDLIB_API ZSTD_DDict* ZSTD_initStaticDDict(void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod);
/*! ZSTD_getDictID_fromDict() :
* Provides the dictID stored within dictionary.
@ -732,8 +702,6 @@ ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize);
********************************************************************/
/*===== Advanced Streaming compression functions =====*/
ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */
ZSTDLIB_API size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pledgedSrcSize); /**< pledgedSrcSize must be correct. If it is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs, "0" also disables frame content size field. It may be enabled in the future. */
ZSTDLIB_API size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel); /**< creates of an internal CDict (incompatible with static CCtx), except if dict == NULL or dictSize < 8, in which case no dict is used. Note: dict is loaded with ZSTD_dm_auto (treated as a full zstd dictionary if it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy.*/
ZSTDLIB_API size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize,
@ -748,14 +716,28 @@ ZSTDLIB_API size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const
* If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN.
* If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end.
* For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs,
* but it may change to mean "empty" in some future version, so prefer using macro ZSTD_CONTENTSIZE_UNKNOWN.
* but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead.
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
ZSTDLIB_API size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);
typedef struct {
unsigned long long ingested;
unsigned long long consumed;
unsigned long long produced;
} ZSTD_frameProgression;
/* ZSTD_getFrameProgression():
* tells how much data has been ingested (read from input)
* consumed (input actually compressed) and produced (output) for current frame.
* Therefore, (ingested - consumed) is amount of input data buffered internally, not yet compressed.
* Can report progression inside worker threads (multi-threading and non-blocking mode).
*/
ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx);
/*===== Advanced Streaming decompression functions =====*/
ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */
typedef enum { DStream_p_maxWindowSize } ZSTD_DStreamParameter_e;
ZSTDLIB_API size_t ZSTD_setDStreamParameter(ZSTD_DStream* zds, ZSTD_DStreamParameter_e paramType, unsigned paramValue); /* obsolete : this API will be removed in a future version */
ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize); /**< note: no dictionary will be used if dict == NULL or dictSize < 8 */
@ -924,10 +906,8 @@ ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
* and then applied on all subsequent compression jobs.
* When no parameter is ever provided, CCtx is created with compression level ZSTD_CLEVEL_DEFAULT.
*
* This API is intended to replace all others experimental API.
* It can basically do all other use cases, and even new ones.
* In constrast with _advanced() variants, it stands a reasonable chance to become "stable",
* after a good testing period.
* This API is intended to replace all others advanced / experimental API entry points.
* But it stands a reasonable chance to become "stable", after a reasonable testing period.
*/
/* note on naming convention :
@ -944,12 +924,12 @@ ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
* All enum will be pinned to explicit values before reaching "stable API" status */
typedef enum {
/* Question : should we have a format ZSTD_f_auto ?
* For the time being, it would mean exactly the same as ZSTD_f_zstd1.
* But, in the future, should several formats be supported,
/* Opened question : should we have a format ZSTD_f_auto ?
* Today, it would mean exactly the same as ZSTD_f_zstd1.
* But, in the future, should several formats become supported,
* on the compression side, it would mean "default format".
* On the decompression side, it would mean "multi format",
* and ZSTD_f_zstd1 could be reserved to mean "accept *only* zstd frames".
* On the decompression side, it would mean "automatic format detection",
* so that ZSTD_f_zstd1 would mean "accept *only* zstd frames".
* Since meaning is a little different, another option could be to define different enums for compression and decompression.
* This question could be kept for later, when there are actually multiple formats to support,
* but there is also the question of pinning enum values, and pinning value `0` is especially important */
@ -967,42 +947,76 @@ typedef enum {
/* compression parameters */
ZSTD_p_compressionLevel=100, /* Update all compression parameters according to pre-defined cLevel table
* Default level is ZSTD_CLEVEL_DEFAULT==3.
* Special: value 0 means "do not change cLevel". */
* Special: value 0 means "do not change cLevel".
* Note 1 : it's possible to pass a negative compression level by casting it to unsigned type.
* Note 2 : setting a level sets all default values of other compression parameters.
* Note 3 : setting compressionLevel automatically updates ZSTD_p_compressLiterals. */
ZSTD_p_windowLog, /* Maximum allowed back-reference distance, expressed as power of 2.
* Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX.
* Special: value 0 means "do not change windowLog".
* Special: value 0 means "use default windowLog".
* Note: Using a window size greater than ZSTD_MAXWINDOWSIZE_DEFAULT (default: 2^27)
* requires setting the maximum window size at least as large during decompression. */
* requires explicitly allowing such window size during decompression stage. */
ZSTD_p_hashLog, /* Size of the probe table, as a power of 2.
* Resulting table size is (1 << (hashLog+2)).
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX.
* Larger tables improve compression ratio of strategies <= dFast,
* and improve speed of strategies > dFast.
* Special: value 0 means "do not change hashLog". */
* Special: value 0 means "use default hashLog". */
ZSTD_p_chainLog, /* Size of the full-search table, as a power of 2.
* Resulting table size is (1 << (chainLog+2)).
* Larger tables result in better and slower compression.
* This parameter is useless when using "fast" strategy.
* Special: value 0 means "do not change chainLog". */
* Special: value 0 means "use default chainLog". */
ZSTD_p_searchLog, /* Number of search attempts, as a power of 2.
* More attempts result in better and slower compression.
* This parameter is useless when using "fast" and "dFast" strategies.
* Special: value 0 means "do not change searchLog". */
* Special: value 0 means "use default searchLog". */
ZSTD_p_minMatch, /* Minimum size of searched matches (note : repCode matches can be smaller).
* Larger values make faster compression and decompression, but decrease ratio.
* Must be clamped between ZSTD_SEARCHLENGTH_MIN and ZSTD_SEARCHLENGTH_MAX.
* Note that currently, for all strategies < btopt, effective minimum is 4.
* Note that currently, for all strategies > fast, effective maximum is 6.
* Special: value 0 means "do not change minMatchLength". */
ZSTD_p_targetLength, /* Only useful for strategies >= btopt.
* Length of Match considered "good enough" to stop search.
* Larger values make compression stronger and slower.
* Special: value 0 means "do not change targetLength". */
* , for all strategies > fast, effective maximum is 6.
* Special: value 0 means "use default minMatchLength". */
ZSTD_p_targetLength, /* Impact of this field depends on strategy.
* For strategies btopt & btultra:
* Length of Match considered "good enough" to stop search.
* Larger values make compression stronger, and slower.
* For strategy fast:
* Distance between match sampling.
* Larger values make compression faster, and weaker.
* Special: value 0 means "use default targetLength". */
ZSTD_p_compressionStrategy, /* See ZSTD_strategy enum definition.
* Cast selected strategy as unsigned for ZSTD_CCtx_setParameter() compatibility.
* The higher the value of selected strategy, the more complex it is,
* resulting in stronger and slower compression.
* Special: value 0 means "do not change strategy". */
* Special: value 0 means "use default strategy". */
ZSTD_p_enableLongDistanceMatching=160, /* Enable long distance matching.
* This parameter is designed to improve compression ratio
* for large inputs, by finding large matches at long distance.
* It increases memory usage and window size.
* Note: enabling this parameter increases ZSTD_p_windowLog to 128 MB
* except when expressly set to a different value. */
ZSTD_p_ldmHashLog, /* Size of the table for long distance matching, as a power of 2.
* Larger values increase memory usage and compression ratio,
* but decrease compression speed.
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX
* default: windowlog - 7.
* Special: value 0 means "automatically determine hashlog". */
ZSTD_p_ldmMinMatch, /* Minimum match size for long distance matcher.
* Larger/too small values usually decrease compression ratio.
* Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX.
* Special: value 0 means "use default value" (default: 64). */
ZSTD_p_ldmBucketSizeLog, /* Log size of each bucket in the LDM hash table for collision resolution.
* Larger values improve collision resolution but decrease compression speed.
* The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX .
* Special: value 0 means "use default value" (default: 3). */
ZSTD_p_ldmHashEveryLog, /* Frequency of inserting/looking up entries in the LDM hash table.
* Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN).
* Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage.
* Larger values improve compression speed.
* Deviating far from default value will likely result in a compression ratio decrease.
* Special: value 0 means "automatically determine hashEveryLog". */
/* frame parameters */
ZSTD_p_contentSizeFlag=200, /* Content size will be written into frame header _whenever known_ (default:1)
@ -1012,58 +1026,45 @@ typedef enum {
ZSTD_p_dictIDFlag, /* When applicable, dictionary's ID is written into frame header (default:1) */
/* multi-threading parameters */
ZSTD_p_nbThreads=400, /* Select how many threads a compression job can spawn (default:1)
* More threads improve speed, but also increase memory usage.
* Can only receive a value > 1 if ZSTD_MULTITHREAD is enabled.
* Special: value 0 means "do not change nbThreads" */
ZSTD_p_jobSize, /* Size of a compression job. This value is only enforced in streaming (non-blocking) mode.
* Each compression job is completed in parallel, so indirectly controls the nb of active threads.
/* These parameters are only useful if multi-threading is enabled (ZSTD_MULTITHREAD).
* They return an error otherwise. */
ZSTD_p_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel.
* When nbWorkers >= 1, triggers asynchronous mode :
* ZSTD_compress_generic() consumes some input, flush some output if possible, and immediately gives back control to caller,
* while compression work is performed in parallel, within worker threads.
* (note : a strong exception to this rule is when first invocation sets ZSTD_e_end : it becomes a blocking call).
* More workers improve speed, but also increase memory usage.
* Default value is `0`, aka "single-threaded mode" : no worker is spawned, compression is performed inside Caller's thread, all invocations are blocking */
ZSTD_p_jobSize, /* Size of a compression job. This value is enforced only in non-blocking mode.
* Each compression job is completed in parallel, so this value indirectly controls the nb of active threads.
* 0 means default, which is dynamically determined based on compression parameters.
* Job size must be a minimum of overlapSize, or 1 KB, whichever is largest
* Job size must be a minimum of overlapSize, or 1 MB, whichever is largest.
* The minimum size is automatically and transparently enforced */
ZSTD_p_overlapSizeLog, /* Size of previous input reloaded at the beginning of each job.
* 0 => no overlap, 6(default) => use 1/8th of windowSize, >=9 => use full windowSize */
/* advanced parameters - may not remain available after API update */
/* =================================================================== */
/* experimental parameters - no stability guaranteed */
/* =================================================================== */
ZSTD_p_compressLiterals=1000, /* control huffman compression of literals (enabled) by default.
* disabling it improves speed and decreases compression ratio by a large amount.
* note : this setting is automatically updated when changing compression level.
* positive compression levels set ZSTD_p_compressLiterals to 1.
* negative compression levels set ZSTD_p_compressLiterals to 0. */
ZSTD_p_forceMaxWindow=1100, /* Force back-reference distances to remain < windowSize,
* even when referencing into Dictionary content (default:0) */
ZSTD_p_enableLongDistanceMatching=1200, /* Enable long distance matching.
* This parameter is designed to improve the compression
* ratio for large inputs with long distance matches.
* This increases the memory usage as well as window size.
* Note: setting this parameter sets all the LDM parameters
* as well as ZSTD_p_windowLog. It should be set after
* ZSTD_p_compressionLevel and before ZSTD_p_windowLog and
* other LDM parameters. Setting the compression level
* after this parameter overrides the window log, though LDM
* will remain enabled until explicitly disabled. */
ZSTD_p_ldmHashLog, /* Size of the table for long distance matching, as a power of 2.
* Larger values increase memory usage and compression ratio, but decrease
* compression speed.
* Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX
* (default: windowlog - 7). */
ZSTD_p_ldmMinMatch, /* Minimum size of searched matches for long distance matcher.
* Larger/too small values usually decrease compression ratio.
* Must be clamped between ZSTD_LDM_MINMATCH_MIN
* and ZSTD_LDM_MINMATCH_MAX (default: 64). */
ZSTD_p_ldmBucketSizeLog, /* Log size of each bucket in the LDM hash table for collision resolution.
* Larger values usually improve collision resolution but may decrease
* compression speed.
* The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX (default: 3). */
ZSTD_p_ldmHashEveryLog, /* Frequency of inserting/looking up entries in the LDM hash table.
* The default is MAX(0, (windowLog - ldmHashLog)) to
* optimize hash table usage.
* Larger values improve compression speed. Deviating far from the
* default value will likely result in a decrease in compression ratio.
* Must be clamped between 0 and ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN. */
} ZSTD_cParameter;
/*! ZSTD_CCtx_setParameter() :
* Set one compression parameter, selected by enum ZSTD_cParameter.
* Setting a parameter is generally only possible during frame initialization (before starting compression),
* except for a few exceptions which can be updated during compression: compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy.
* Note : when `value` is an enum, cast it to unsigned for proper type checking.
* @result : informational value (typically, the one being set, possibly corrected),
* @result : informational value (typically, value being set clamped correctly),
* or an error code (which can be tested with ZSTD_isError()). */
ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, unsigned value);
@ -1079,26 +1080,24 @@ ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param
ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize);
/*! ZSTD_CCtx_loadDictionary() :
* Create an internal CDict from dict buffer.
* Decompression will have to use same buffer.
* Create an internal CDict from `dict` buffer.
* Decompression will have to use same dictionary.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary,
* meaning "return to no-dictionary mode".
* Note 1 : `dict` content will be copied internally. Use
* ZSTD_CCtx_loadDictionary_byReference() to reference dictionary
* content instead. The dictionary buffer must then outlive its
* users.
* Special: Adding a NULL (or 0-size) dictionary invalidates previous dictionary,
* meaning "return to no-dictionary mode".
* Note 1 : Dictionary will be used for all future compression jobs.
* To return to "no-dictionary" situation, load a NULL dictionary
* Note 2 : Loading a dictionary involves building tables, which are dependent on compression parameters.
* For this reason, compression parameters cannot be changed anymore after loading a dictionary.
* It's also a CPU-heavy operation, with non-negligible impact on latency.
* Note 3 : Dictionary will be used for all future compression jobs.
* To return to "no-dictionary" situation, load a NULL dictionary
* Note 5 : Use ZSTD_CCtx_loadDictionary_advanced() to select how dictionary
* content will be interpreted.
*/
* It's also a CPU consuming operation, with non-negligible impact on latency.
* Note 3 :`dict` content will be copied internally.
* Use ZSTD_CCtx_loadDictionary_byReference() to reference dictionary content instead.
* In such a case, dictionary buffer must outlive its users.
* Note 4 : Use ZSTD_CCtx_loadDictionary_advanced()
* to precisely select how dictionary content must be interpreted. */
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize);
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode);
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_CCtx_refCDict() :
@ -1110,8 +1109,7 @@ ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void
* Special : adding a NULL CDict means "return to no-dictionary mode".
* Note 1 : Currently, only one dictionary can be managed.
* Adding a new dictionary effectively "discards" any previous one.
* Note 2 : CDict is just referenced, its lifetime must outlive CCtx.
*/
* Note 2 : CDict is just referenced, its lifetime must outlive CCtx. */
ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict);
/*! ZSTD_CCtx_refPrefix() :
@ -1121,20 +1119,29 @@ ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict);
* Subsequent compression jobs will be done without prefix (if none is explicitly referenced).
* If there is a need to use same prefix multiple times, consider embedding it into a ZSTD_CDict instead.
* @result : 0, or an error code (which can be tested with ZSTD_isError()).
* Special : Adding any prefix (including NULL) invalidates any previous prefix or dictionary
* Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary
* Note 1 : Prefix buffer is referenced. It must outlive compression job.
* Note 2 : Referencing a prefix involves building tables, which are dependent on compression parameters.
* It's a CPU-heavy operation, with non-negligible impact on latency.
* Note 3 : By default, the prefix is treated as raw content
* (ZSTD_dm_rawContent). Use ZSTD_CCtx_refPrefix_advanced() to alter
* dictMode. */
* It's a CPU consuming operation, with non-negligible impact on latency.
* Note 3 : By default, the prefix is treated as raw content (ZSTD_dm_rawContent).
* Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode. */
ZSTDLIB_API size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize);
ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictMode_e dictMode);
ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_CCtx_reset() :
* Return a CCtx to clean state.
* Useful after an error, or to interrupt an ongoing compression job and start a new one.
* Any internal data not yet flushed is cancelled.
* Dictionary (if any) is dropped.
* All parameters are back to default values.
* It's possible to modify compression parameters after a reset.
*/
ZSTDLIB_API void ZSTD_CCtx_reset(ZSTD_CCtx* cctx);
typedef enum {
ZSTD_e_continue=0, /* collect more data, encoder transparently decides when to output result, for optimal conditions */
ZSTD_e_continue=0, /* collect more data, encoder decides when to output compressed result, for optimal conditions */
ZSTD_e_flush, /* flush any data provided so far - frame will continue, future data can still reference previous data for better compression */
ZSTD_e_end /* flush any remaining data and close current frame. Any additional data starts a new frame. */
} ZSTD_EndDirective;
@ -1150,10 +1157,11 @@ typedef enum {
* and then immediately returns, just indicating that there is some data remaining to be flushed.
* The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte.
* - Exception : in multi-threading mode, if the first call requests a ZSTD_e_end directive, it is blocking : it will complete compression before giving back control to caller.
* - @return provides the minimum amount of data remaining to be flushed from internal buffers
* - @return provides a minimum amount of data remaining to be flushed from internal buffers
* or an error code, which can be tested using ZSTD_isError().
* if @return != 0, flush is not fully completed, there is still some data left within internal buffers.
* This is useful to determine if a ZSTD_e_flush or ZSTD_e_end directive is completed.
* This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers.
* For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed.
* - after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0),
* only ZSTD_e_end or ZSTD_e_flush operations are allowed.
* Before starting a new compression job, or changing compression parameters,
@ -1164,16 +1172,6 @@ ZSTDLIB_API size_t ZSTD_compress_generic (ZSTD_CCtx* cctx,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
/*! ZSTD_CCtx_reset() :
* Return a CCtx to clean state.
* Useful after an error, or to interrupt an ongoing compression job and start a new one.
* Any internal data not yet flushed is cancelled.
* Dictionary (if any) is dropped.
* All parameters are back to default values.
* It's possible to modify compression parameters after a reset.
*/
ZSTDLIB_API void ZSTD_CCtx_reset(ZSTD_CCtx* cctx); /* Not ready yet ! */
/*! ZSTD_compress_generic_simpleArgs() :
* Same as ZSTD_compress_generic(),
@ -1207,25 +1205,26 @@ ZSTDLIB_API size_t ZSTD_compress_generic_simpleArgs (
* for static allocation for single-threaded compression.
*/
ZSTDLIB_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void);
ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params);
/*! ZSTD_resetCCtxParams() :
* Reset params to default, with the default compression level.
/*! ZSTD_CCtxParams_reset() :
* Reset params to default values.
*/
ZSTDLIB_API size_t ZSTD_resetCCtxParams(ZSTD_CCtx_params* params);
ZSTDLIB_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params);
/*! ZSTD_initCCtxParams() :
/*! ZSTD_CCtxParams_init() :
* Initializes the compression parameters of cctxParams according to
* compression level. All other parameters are reset to their default values.
*/
ZSTDLIB_API size_t ZSTD_initCCtxParams(ZSTD_CCtx_params* cctxParams, int compressionLevel);
ZSTDLIB_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel);
/*! ZSTD_initCCtxParams_advanced() :
/*! ZSTD_CCtxParams_init_advanced() :
* Initializes the compression and frame parameters of cctxParams according to
* params. All other parameters are reset to their default values.
*/
ZSTDLIB_API size_t ZSTD_initCCtxParams_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params);
ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params);
/*! ZSTD_CCtxParam_setParameter() :
* Similar to ZSTD_CCtx_setParameter.
@ -1238,9 +1237,10 @@ ZSTDLIB_API size_t ZSTD_CCtxParam_setParameter(ZSTD_CCtx_params* params, ZSTD_cP
/*! ZSTD_CCtx_setParametersUsingCCtxParams() :
* Apply a set of ZSTD_CCtx_params to the compression context.
* This must be done before the dictionary is loaded.
* The pledgedSrcSize is treated as unknown.
* Multithreading parameters are applied only if nbThreads > 1.
* This can be done even after compression is started,
* if nbWorkers==0, this will have no impact until a new compression is started.
* if nbWorkers>=1, new parameters will be picked up at next job,
* with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated).
*/
ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params);
@ -1267,9 +1267,9 @@ ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams(
* Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to select
* how dictionary content will be interpreted and loaded.
*/
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); /* not implemented */
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); /* not implemented */
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictMode_e dictMode); /* not implemented */
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_DCtx_refDDict() :
@ -1281,7 +1281,7 @@ ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void
* Special : adding a NULL DDict means "return to no-dictionary mode".
* Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx.
*/
ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); /* not implemented */
ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
/*! ZSTD_DCtx_refPrefix() :
@ -1295,8 +1295,8 @@ ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
* Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode.
* Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost.
*/
ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize); /* not implemented */
ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictMode_e dictMode); /* not implemented */
ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize);
ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType);
/*! ZSTD_DCtx_setMaxWindowSize() :
@ -1389,7 +1389,7 @@ ZSTDLIB_API void ZSTD_DCtx_reset(ZSTD_DCtx* dctx);
ZSTDLIB_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx);
ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
ZSTDLIB_API size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression */
ZSTDLIB_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */
#endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */