Style: Fix code formatting in GLES2 shaders
This commit is contained in:
parent
1b6d75a599
commit
e68b96928b
@ -1,6 +1,5 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
/*
|
||||
from VisualServer:
|
||||
|
||||
@ -23,56 +22,56 @@ ARRAY_INDEX=8,
|
||||
|
||||
/* INPUT ATTRIBS */
|
||||
|
||||
layout(location=0) in highp VFORMAT vertex_attrib;
|
||||
layout(location=1) in vec3 normal_attrib;
|
||||
layout(location = 0) in highp VFORMAT vertex_attrib;
|
||||
layout(location = 1) in vec3 normal_attrib;
|
||||
|
||||
#ifdef ENABLE_TANGENT
|
||||
layout(location=2) in vec4 tangent_attrib;
|
||||
layout(location = 2) in vec4 tangent_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_COLOR
|
||||
layout(location=3) in vec4 color_attrib;
|
||||
layout(location = 3) in vec4 color_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV
|
||||
layout(location=4) in vec2 uv_attrib;
|
||||
layout(location = 4) in vec2 uv_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV2
|
||||
layout(location=5) in vec2 uv2_attrib;
|
||||
layout(location = 5) in vec2 uv2_attrib;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
layout(location=6) in ivec4 bone_attrib;
|
||||
layout(location=7) in vec4 weight_attrib;
|
||||
layout(location = 6) in ivec4 bone_attrib;
|
||||
layout(location = 7) in vec4 weight_attrib;
|
||||
#endif
|
||||
|
||||
/* BLEND ATTRIBS */
|
||||
|
||||
#ifdef ENABLE_BLEND
|
||||
|
||||
layout(location=8) in highp VFORMAT vertex_attrib_blend;
|
||||
layout(location=9) in vec3 normal_attrib_blend;
|
||||
layout(location = 8) in highp VFORMAT vertex_attrib_blend;
|
||||
layout(location = 9) in vec3 normal_attrib_blend;
|
||||
|
||||
#ifdef ENABLE_TANGENT
|
||||
layout(location=10) in vec4 tangent_attrib_blend;
|
||||
layout(location = 10) in vec4 tangent_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_COLOR
|
||||
layout(location=11) in vec4 color_attrib_blend;
|
||||
layout(location = 11) in vec4 color_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV
|
||||
layout(location=12) in vec2 uv_attrib_blend;
|
||||
layout(location = 12) in vec2 uv_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_UV2
|
||||
layout(location=13) in vec2 uv2_attrib_blend;
|
||||
layout(location = 13) in vec2 uv2_attrib_blend;
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
layout(location=14) in ivec4 bone_attrib_blend;
|
||||
layout(location=15) in vec4 weight_attrib_blend;
|
||||
layout(location = 14) in ivec4 bone_attrib_blend;
|
||||
layout(location = 15) in vec4 weight_attrib_blend;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@ -110,7 +109,6 @@ uniform float blend_amount;
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
#ifdef ENABLE_BLEND
|
||||
|
||||
vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
|
||||
@ -140,7 +138,6 @@ void main() {
|
||||
uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
|
||||
bone_out = bone_attrib_blend;
|
||||
@ -149,7 +146,6 @@ void main() {
|
||||
|
||||
#else //ENABLE_BLEND
|
||||
|
||||
|
||||
vertex_out = vertex_attrib * blend_amount;
|
||||
|
||||
#ifdef ENABLE_NORMAL
|
||||
@ -177,7 +173,6 @@ void main() {
|
||||
uv2_out = uv2_attrib * blend_amount;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef ENABLE_SKELETON
|
||||
|
||||
bone_out = bone_attrib;
|
||||
@ -190,8 +185,6 @@ void main() {
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
}
|
||||
|
||||
|
@ -75,7 +75,7 @@ void main() {
|
||||
#endif
|
||||
|
||||
{
|
||||
vec2 src_vtx=outvec.xy;
|
||||
vec2 src_vtx = outvec.xy;
|
||||
VERTEX_SHADER_CODE
|
||||
|
||||
}
|
||||
@ -83,7 +83,6 @@ VERTEX_SHADER_CODE
|
||||
color_interp = color;
|
||||
|
||||
gl_Position = projection_matrix * modelview_matrix * outvec;
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -121,7 +120,6 @@ uniform vec2 screen_pixel_size;
|
||||
|
||||
FRAGMENT_SHADER_GLOBALS
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
vec4 color = color_interp;
|
||||
@ -135,11 +133,9 @@ void main() {
|
||||
|
||||
FRAGMENT_SHADER_CODE
|
||||
|
||||
|
||||
}
|
||||
|
||||
color *= final_modulate;
|
||||
|
||||
gl_FragColor = color;
|
||||
|
||||
}
|
||||
|
@ -1,20 +1,18 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
|
||||
uniform highp mat4 projection_matrix;
|
||||
uniform highp mat4 light_matrix;
|
||||
uniform highp mat4 world_matrix;
|
||||
uniform highp float distance_norm;
|
||||
|
||||
layout(location=0) in highp vec3 vertex;
|
||||
layout(location = 0) in highp vec3 vertex;
|
||||
|
||||
out highp vec4 position_interp;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex,1.0)));
|
||||
position_interp=gl_Position;
|
||||
gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex, 1.0)));
|
||||
position_interp = gl_Position;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -23,27 +21,26 @@ in highp vec4 position_interp;
|
||||
|
||||
#ifdef USE_RGBA_SHADOWS
|
||||
|
||||
layout(location=0) out lowp vec4 distance_buf;
|
||||
layout(location = 0) out lowp vec4 distance_buf;
|
||||
|
||||
#else
|
||||
|
||||
layout(location=0) out highp float distance_buf;
|
||||
layout(location = 0) out highp float distance_buf;
|
||||
|
||||
#endif
|
||||
|
||||
void main() {
|
||||
|
||||
highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0;//bias;
|
||||
highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; //bias;
|
||||
|
||||
#ifdef USE_RGBA_SHADOWS
|
||||
|
||||
highp vec4 comp = fract(depth * vec4(256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0));
|
||||
comp -= comp.xxyz * vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
|
||||
distance_buf=comp;
|
||||
distance_buf = comp;
|
||||
#else
|
||||
|
||||
distance_buf=depth;
|
||||
distance_buf = depth;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -85,17 +85,15 @@ uniform float custom_alpha;
|
||||
vec4 texturePanorama(sampler2D pano, vec3 normal) {
|
||||
|
||||
vec2 st = vec2(
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y)
|
||||
);
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y));
|
||||
|
||||
if(st.x < 0.0)
|
||||
st.x += M_PI*2.0;
|
||||
if (st.x < 0.0)
|
||||
st.x += M_PI * 2.0;
|
||||
|
||||
st/=vec2(M_PI*2.0,M_PI);
|
||||
|
||||
return texture2D(pano,st);
|
||||
st /= vec2(M_PI * 2.0, M_PI);
|
||||
|
||||
return texture2D(pano, st);
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -109,16 +107,15 @@ void main() {
|
||||
#elif defined(USE_CUBEMAP)
|
||||
vec4 color = textureCube(source_cube, normalize(cube_interp));
|
||||
#else
|
||||
vec4 color = texture2D( source, uv_interp );
|
||||
vec4 color = texture2D(source, uv_interp);
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_NO_ALPHA
|
||||
color.a=1.0;
|
||||
color.a = 1.0;
|
||||
#endif
|
||||
|
||||
#ifdef USE_CUSTOM_ALPHA
|
||||
color.a=custom_alpha;
|
||||
color.a = custom_alpha;
|
||||
#endif
|
||||
|
||||
#ifdef USE_MULTIPLIER
|
||||
|
@ -39,55 +39,53 @@ uniform highp float bias;
|
||||
|
||||
void main() {
|
||||
|
||||
highp vec3 normal = vec3( uv_interp * 2.0 - 1.0, 0.0 );
|
||||
/*
|
||||
if(z_flip) {
|
||||
normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
|
||||
highp vec3 normal = vec3(uv_interp * 2.0 - 1.0, 0.0);
|
||||
/*
|
||||
if (z_flip) {
|
||||
normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
|
||||
} else {
|
||||
normal.z = -0.5 + 0.5*((normal.x * normal.x) + (normal.y * normal.y));
|
||||
normal.z = -0.5 + 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
|
||||
}
|
||||
*/
|
||||
*/
|
||||
|
||||
//normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
|
||||
//normal.xy*=1.0+normal.z;
|
||||
//normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
|
||||
//normal.xy *= 1.0 + normal.z;
|
||||
|
||||
normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
|
||||
normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
|
||||
normal = normalize(normal);
|
||||
/*
|
||||
normal.z = 0.5;
|
||||
normal = normalize(normal);
|
||||
*/
|
||||
|
||||
/*
|
||||
normal.z=0.5;
|
||||
normal=normalize(normal);
|
||||
*/
|
||||
if (!z_flip) {
|
||||
normal.z=-normal.z;
|
||||
normal.z = -normal.z;
|
||||
}
|
||||
|
||||
//normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
|
||||
float depth = textureCube(source_cube,normal).r;
|
||||
float depth = textureCube(source_cube, normal).r;
|
||||
|
||||
// absolute values for direction cosines, bigger value equals closer to basis axis
|
||||
vec3 unorm = abs(normal);
|
||||
|
||||
if ( (unorm.x >= unorm.y) && (unorm.x >= unorm.z) ) {
|
||||
// x code
|
||||
unorm = normal.x > 0.0 ? vec3( 1.0, 0.0, 0.0 ) : vec3( -1.0, 0.0, 0.0 ) ;
|
||||
} else if ( (unorm.y > unorm.x) && (unorm.y >= unorm.z) ) {
|
||||
// y code
|
||||
unorm = normal.y > 0.0 ? vec3( 0.0, 1.0, 0.0 ) : vec3( 0.0, -1.0, 0.0 ) ;
|
||||
} else if ( (unorm.z > unorm.x) && (unorm.z > unorm.y) ) {
|
||||
// z code
|
||||
unorm = normal.z > 0.0 ? vec3( 0.0, 0.0, 1.0 ) : vec3( 0.0, 0.0, -1.0 ) ;
|
||||
if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
|
||||
// x code
|
||||
unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
|
||||
} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
|
||||
// y code
|
||||
unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
|
||||
} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
|
||||
// z code
|
||||
unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
|
||||
} else {
|
||||
// oh-no we messed up code
|
||||
// has to be
|
||||
unorm = vec3( 1.0, 0.0, 0.0 );
|
||||
// oh-no we messed up code
|
||||
// has to be
|
||||
unorm = vec3(1.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
float depth_fix = 1.0 / dot(normal,unorm);
|
||||
|
||||
float depth_fix = 1.0 / dot(normal, unorm);
|
||||
|
||||
depth = 2.0 * depth - 1.0;
|
||||
float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
|
||||
gl_FragDepth = (linear_depth*depth_fix+bias) / z_far;
|
||||
gl_FragDepth = (linear_depth * depth_fix + bias) / z_far;
|
||||
}
|
||||
|
||||
|
@ -15,8 +15,8 @@ varying highp vec2 uv_interp;
|
||||
|
||||
void main() {
|
||||
|
||||
uv_interp=uv;
|
||||
gl_Position=vec4(vertex,0,1);
|
||||
uv_interp = uv;
|
||||
gl_Position = vec4(vertex, 0, 1);
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -65,17 +65,15 @@ uniform sampler2D radical_inverse_vdc_cache; // texunit:1
|
||||
vec4 texturePanorama(sampler2D pano, vec3 normal) {
|
||||
|
||||
vec2 st = vec2(
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y)
|
||||
);
|
||||
atan(normal.x, normal.z),
|
||||
acos(normal.y));
|
||||
|
||||
if(st.x < 0.0)
|
||||
st.x += M_PI*2.0;
|
||||
if (st.x < 0.0)
|
||||
st.x += M_PI * 2.0;
|
||||
|
||||
st/=vec2(M_PI*2.0,M_PI);
|
||||
|
||||
return texture2DLod(pano,st,0.0);
|
||||
st /= vec2(M_PI * 2.0, M_PI);
|
||||
|
||||
return texture2DLod(pano, st, 0.0);
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -84,24 +82,24 @@ vec3 texelCoordToVec(vec2 uv, int faceID) {
|
||||
mat3 faceUvVectors[6];
|
||||
|
||||
// -x
|
||||
faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
|
||||
faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
|
||||
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
|
||||
|
||||
// +x
|
||||
faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
|
||||
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
|
||||
faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
|
||||
|
||||
// -y
|
||||
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
|
||||
faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
|
||||
|
||||
// +y
|
||||
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
|
||||
faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
|
||||
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
|
||||
faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
|
||||
|
||||
// -z
|
||||
faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
|
||||
@ -109,9 +107,9 @@ vec3 texelCoordToVec(vec2 uv, int faceID) {
|
||||
faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
|
||||
|
||||
// +z
|
||||
faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
|
||||
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
|
||||
faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
|
||||
faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
|
||||
|
||||
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
|
||||
vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
|
||||
@ -123,7 +121,7 @@ vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
|
||||
|
||||
// Compute distribution direction
|
||||
float Phi = 2.0 * M_PI * Xi.x;
|
||||
float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
|
||||
float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
|
||||
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
|
||||
|
||||
// Convert to spherical direction
|
||||
@ -179,14 +177,10 @@ void main() {
|
||||
#endif
|
||||
|
||||
sum.a += NdotL;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
sum /= sum.a;
|
||||
|
||||
gl_FragColor = vec4(sum.rgb, 1.0);
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,7 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
@ -39,7 +38,6 @@ uniform sampler2D source_ssao; //texunit:1
|
||||
uniform float lod;
|
||||
uniform vec2 pixel_size;
|
||||
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef SSAO_MERGE
|
||||
@ -48,31 +46,31 @@ uniform vec4 ssao_color;
|
||||
|
||||
#endif
|
||||
|
||||
#if defined (GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
|
||||
#if defined(GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
|
||||
|
||||
uniform float glow_strength;
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(DOF_FAR_BLUR) || defined (DOF_NEAR_BLUR)
|
||||
#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
|
||||
|
||||
#ifdef DOF_QUALITY_LOW
|
||||
const int dof_kernel_size=5;
|
||||
const int dof_kernel_from=2;
|
||||
const float dof_kernel[5] = float[] (0.153388,0.221461,0.250301,0.221461,0.153388);
|
||||
const int dof_kernel_size = 5;
|
||||
const int dof_kernel_from = 2;
|
||||
const float dof_kernel[5] = float[](0.153388, 0.221461, 0.250301, 0.221461, 0.153388);
|
||||
#endif
|
||||
|
||||
#ifdef DOF_QUALITY_MEDIUM
|
||||
const int dof_kernel_size=11;
|
||||
const int dof_kernel_from=5;
|
||||
const float dof_kernel[11] = float[] (0.055037,0.072806,0.090506,0.105726,0.116061,0.119726,0.116061,0.105726,0.090506,0.072806,0.055037);
|
||||
const int dof_kernel_size = 11;
|
||||
const int dof_kernel_from = 5;
|
||||
const float dof_kernel[11] = float[](0.055037, 0.072806, 0.090506, 0.105726, 0.116061, 0.119726, 0.116061, 0.105726, 0.090506, 0.072806, 0.055037);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef DOF_QUALITY_HIGH
|
||||
const int dof_kernel_size=21;
|
||||
const int dof_kernel_from=10;
|
||||
const float dof_kernel[21] = float[] (0.028174,0.032676,0.037311,0.041944,0.046421,0.050582,0.054261,0.057307,0.059587,0.060998,0.061476,0.060998,0.059587,0.057307,0.054261,0.050582,0.046421,0.041944,0.037311,0.032676,0.028174);
|
||||
const int dof_kernel_size = 21;
|
||||
const int dof_kernel_from = 10;
|
||||
const float dof_kernel[21] = float[](0.028174, 0.032676, 0.037311, 0.041944, 0.046421, 0.050582, 0.054261, 0.057307, 0.059587, 0.060998, 0.061476, 0.060998, 0.059587, 0.057307, 0.054261, 0.050582, 0.046421, 0.041944, 0.037311, 0.032676, 0.028174);
|
||||
#endif
|
||||
|
||||
uniform sampler2D dof_source_depth; //texunit:1
|
||||
@ -88,7 +86,6 @@ uniform sampler2D source_dof_original; //texunit:2
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef GLOW_FIRST_PASS
|
||||
|
||||
uniform float exposure;
|
||||
@ -112,53 +109,51 @@ uniform float camera_z_near;
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
|
||||
#ifdef GAUSSIAN_HORIZONTAL
|
||||
vec2 pix_size = pixel_size;
|
||||
pix_size*=0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.214607;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.189879;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.157305;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.071303;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.189879;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.157305;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.071303;
|
||||
pix_size *= 0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.214607;
|
||||
color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.189879;
|
||||
color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.157305;
|
||||
color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.071303;
|
||||
color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.189879;
|
||||
color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.157305;
|
||||
color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.071303;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
#ifdef GAUSSIAN_VERTICAL
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pixel_size,lod )*0.38774;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0, 1.0)*pixel_size,lod )*0.24477;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0, 2.0)*pixel_size,lod )*0.06136;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0,-1.0)*pixel_size,lod )*0.24477;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 0.0,-2.0)*pixel_size,lod )*0.06136;
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.38774;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.24477;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.06136;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.24477;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.06136;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
//glow uses larger sigma for a more rounded blur effect
|
||||
//glow uses larger sigma for a more rounded blur effect
|
||||
|
||||
#ifdef GLOW_GAUSSIAN_HORIZONTAL
|
||||
vec2 pix_size = pixel_size;
|
||||
pix_size*=0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.174938;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.165569;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.140367;
|
||||
color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.106595;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.165569;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.140367;
|
||||
color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.106595;
|
||||
color*=glow_strength;
|
||||
pix_size *= 0.5; //reading from larger buffer, so use more samples
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.174938;
|
||||
color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.165569;
|
||||
color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.140367;
|
||||
color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.106595;
|
||||
color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.165569;
|
||||
color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.140367;
|
||||
color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.106595;
|
||||
color *= glow_strength;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
#ifdef GLOW_GAUSSIAN_VERTICAL
|
||||
vec4 color =textureLod( source_color, uv_interp+vec2(0.0, 0.0)*pixel_size,lod )*0.288713;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0, 1.0)*pixel_size,lod )*0.233062;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0, 2.0)*pixel_size,lod )*0.122581;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0,-1.0)*pixel_size,lod )*0.233062;
|
||||
color+=textureLod( source_color, uv_interp+vec2(0.0,-2.0)*pixel_size,lod )*0.122581;
|
||||
color*=glow_strength;
|
||||
vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.288713;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.233062;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.122581;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.233062;
|
||||
color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.122581;
|
||||
color *= glow_strength;
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
@ -166,47 +161,45 @@ void main() {
|
||||
|
||||
vec4 color_accum = vec4(0.0);
|
||||
|
||||
float depth = textureLod( dof_source_depth, uv_interp, 0.0).r;
|
||||
float depth = textureLod(dof_source_depth, uv_interp, 0.0).r;
|
||||
depth = depth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
|
||||
float amount = smoothstep(dof_begin,dof_end,depth);
|
||||
float k_accum=0.0;
|
||||
float amount = smoothstep(dof_begin, dof_end, depth);
|
||||
float k_accum = 0.0;
|
||||
|
||||
for(int i=0;i<dof_kernel_size;i++) {
|
||||
for (int i = 0; i < dof_kernel_size; i++) {
|
||||
|
||||
int int_ofs = i-dof_kernel_from;
|
||||
int int_ofs = i - dof_kernel_from;
|
||||
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
|
||||
|
||||
float tap_k = dof_kernel[i];
|
||||
|
||||
float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
|
||||
float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
|
||||
tap_depth = tap_depth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
float tap_amount = mix(smoothstep(dof_begin,dof_end,tap_depth),1.0,int_ofs==0);
|
||||
tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
|
||||
|
||||
vec4 tap_color = textureLod( source_color, tap_uv, 0.0) * tap_k;
|
||||
|
||||
k_accum+=tap_k*tap_amount;
|
||||
color_accum+=tap_color*tap_amount;
|
||||
float tap_amount = mix(smoothstep(dof_begin, dof_end, tap_depth), 1.0, int_ofs == 0);
|
||||
tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
|
||||
|
||||
vec4 tap_color = textureLod(source_color, tap_uv, 0.0) * tap_k;
|
||||
|
||||
k_accum += tap_k * tap_amount;
|
||||
color_accum += tap_color * tap_amount;
|
||||
}
|
||||
|
||||
if (k_accum>0.0) {
|
||||
color_accum/=k_accum;
|
||||
if (k_accum > 0.0) {
|
||||
color_accum /= k_accum;
|
||||
}
|
||||
|
||||
frag_color = color_accum;///k_accum;
|
||||
frag_color = color_accum; ///k_accum;
|
||||
|
||||
#endif
|
||||
|
||||
@ -214,47 +207,45 @@ void main() {
|
||||
|
||||
vec4 color_accum = vec4(0.0);
|
||||
|
||||
float max_accum=0;
|
||||
float max_accum = 0;
|
||||
|
||||
for(int i=0;i<dof_kernel_size;i++) {
|
||||
for (int i = 0; i < dof_kernel_size; i++) {
|
||||
|
||||
int int_ofs = i-dof_kernel_from;
|
||||
int int_ofs = i - dof_kernel_from;
|
||||
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
|
||||
float ofs_influence = max(0.0,1.0-float(abs(int_ofs))/float(dof_kernel_from));
|
||||
float ofs_influence = max(0.0, 1.0 - float(abs(int_ofs)) / float(dof_kernel_from));
|
||||
|
||||
float tap_k = dof_kernel[i];
|
||||
|
||||
vec4 tap_color = textureLod( source_color, tap_uv, 0.0);
|
||||
vec4 tap_color = textureLod(source_color, tap_uv, 0.0);
|
||||
|
||||
float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
|
||||
float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
|
||||
tap_depth = tap_depth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
float tap_amount = 1.0-smoothstep(dof_end,dof_begin,tap_depth);
|
||||
tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
|
||||
float tap_amount = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
|
||||
tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
|
||||
|
||||
#ifdef DOF_NEAR_FIRST_TAP
|
||||
|
||||
tap_color.a= 1.0-smoothstep(dof_end,dof_begin,tap_depth);
|
||||
tap_color.a = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
|
||||
|
||||
#endif
|
||||
|
||||
max_accum=max(max_accum,tap_amount*ofs_influence);
|
||||
|
||||
color_accum+=tap_color*tap_k;
|
||||
max_accum = max(max_accum, tap_amount * ofs_influence);
|
||||
|
||||
color_accum += tap_color * tap_k;
|
||||
}
|
||||
|
||||
color_accum.a=max(color_accum.a,sqrt(max_accum));
|
||||
|
||||
color_accum.a = max(color_accum.a, sqrt(max_accum));
|
||||
|
||||
#ifdef DOF_NEAR_BLUR_MERGE
|
||||
|
||||
vec4 original = textureLod( source_dof_original, uv_interp, 0.0);
|
||||
color_accum = mix(original,color_accum,color_accum.a);
|
||||
vec4 original = textureLod(source_dof_original, uv_interp, 0.0);
|
||||
color_accum = mix(original, color_accum, color_accum.a);
|
||||
|
||||
#endif
|
||||
|
||||
@ -265,37 +256,32 @@ void main() {
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef GLOW_FIRST_PASS
|
||||
|
||||
#ifdef GLOW_USE_AUTO_EXPOSURE
|
||||
|
||||
frag_color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
|
||||
frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
|
||||
#endif
|
||||
frag_color*=exposure;
|
||||
frag_color *= exposure;
|
||||
|
||||
float luminance = max(frag_color.r,max(frag_color.g,frag_color.b));
|
||||
float feedback = max( smoothstep(glow_hdr_threshold,glow_hdr_threshold+glow_hdr_scale,luminance), glow_bloom );
|
||||
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
|
||||
float feedback = max(smoothstep(glow_hdr_threshold, glow_hdr_threshold + glow_hdr_scale, luminance), glow_bloom);
|
||||
|
||||
frag_color *= feedback;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef SIMPLE_COPY
|
||||
vec4 color =textureLod( source_color, uv_interp,0.0);
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0);
|
||||
frag_color = color;
|
||||
#endif
|
||||
|
||||
#ifdef SSAO_MERGE
|
||||
|
||||
vec4 color =textureLod( source_color, uv_interp,0.0);
|
||||
float ssao =textureLod( source_ssao, uv_interp,0.0).r;
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0);
|
||||
float ssao = textureLod(source_ssao, uv_interp, 0.0).r;
|
||||
|
||||
frag_color = vec4( mix(color.rgb,color.rgb*mix(ssao_color.rgb,vec3(1.0),ssao),color.a), 1.0 );
|
||||
frag_color = vec4(mix(color.rgb, color.rgb * mix(ssao_color.rgb, vec3(1.0), ssao), color.a), 1.0);
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
}
|
||||
|
@ -1,18 +1,14 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = vertex_attrib;
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
uniform highp sampler2D source_exposure; //texunit:0
|
||||
|
||||
#ifdef EXPOSURE_BEGIN
|
||||
@ -33,66 +29,56 @@ uniform highp float max_luminance;
|
||||
|
||||
layout(location = 0) out highp float exposure;
|
||||
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
|
||||
#ifdef EXPOSURE_BEGIN
|
||||
|
||||
|
||||
ivec2 src_pos = ivec2(gl_FragCoord.xy)*source_render_size/target_size;
|
||||
ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
|
||||
|
||||
#if 1
|
||||
//more precise and expensive, but less jittery
|
||||
ivec2 next_pos = ivec2(gl_FragCoord.xy+ivec2(1))*source_render_size/target_size;
|
||||
next_pos = max(next_pos,src_pos+ivec2(1)); //so it at least reads one pixel
|
||||
highp vec3 source_color=vec3(0.0);
|
||||
for(int i=src_pos.x;i<next_pos.x;i++) {
|
||||
for(int j=src_pos.y;j<next_pos.y;j++) {
|
||||
source_color += texelFetch(source_exposure,ivec2(i,j),0).rgb;
|
||||
ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
|
||||
next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
|
||||
highp vec3 source_color = vec3(0.0);
|
||||
for (int i = src_pos.x; i < next_pos.x; i++) {
|
||||
for (int j = src_pos.y; j < next_pos.y; j++) {
|
||||
source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
|
||||
}
|
||||
}
|
||||
|
||||
source_color/=float( (next_pos.x-src_pos.x)*(next_pos.y-src_pos.y) );
|
||||
source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
|
||||
#else
|
||||
highp vec3 source_color = texelFetch(source_exposure,src_pos,0).rgb;
|
||||
highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
|
||||
|
||||
#endif
|
||||
|
||||
exposure = max(source_color.r,max(source_color.g,source_color.b));
|
||||
exposure = max(source_color.r, max(source_color.g, source_color.b));
|
||||
|
||||
#else
|
||||
|
||||
ivec2 coord = ivec2(gl_FragCoord.xy);
|
||||
exposure = texelFetch(source_exposure,coord*3+ivec2(0,0),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(1,0),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(2,0),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(0,1),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(1,1),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(2,1),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(0,2),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(1,2),0).r;
|
||||
exposure += texelFetch(source_exposure,coord*3+ivec2(2,2),0).r;
|
||||
exposure *= (1.0/9.0);
|
||||
exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
|
||||
exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
|
||||
exposure *= (1.0 / 9.0);
|
||||
|
||||
#ifdef EXPOSURE_END
|
||||
|
||||
#ifdef EXPOSURE_FORCE_SET
|
||||
//will stay as is
|
||||
#else
|
||||
highp float prev_lum = texelFetch(prev_exposure,ivec2(0,0),0).r; //1 pixel previous exposure
|
||||
exposure = clamp( prev_lum + (exposure-prev_lum)*exposure_adjust,min_luminance,max_luminance);
|
||||
highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
|
||||
exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
|
||||
|
||||
#endif //EXPOSURE_FORCE_SET
|
||||
|
||||
|
||||
#endif //EXPOSURE_END
|
||||
|
||||
#endif //EXPOSURE_BEGIN
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,14 +1,11 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 color;
|
||||
layout(location=1) in highp vec4 velocity_active;
|
||||
layout(location=2) in highp vec4 custom;
|
||||
layout(location=3) in highp vec4 xform_1;
|
||||
layout(location=4) in highp vec4 xform_2;
|
||||
layout(location=5) in highp vec4 xform_3;
|
||||
|
||||
layout(location = 0) in highp vec4 color;
|
||||
layout(location = 1) in highp vec4 velocity_active;
|
||||
layout(location = 2) in highp vec4 custom;
|
||||
layout(location = 3) in highp vec4 xform_1;
|
||||
layout(location = 4) in highp vec4 xform_2;
|
||||
layout(location = 5) in highp vec4 xform_3;
|
||||
|
||||
struct Attractor {
|
||||
|
||||
@ -39,7 +36,6 @@ uniform float lifetime;
|
||||
uniform mat4 emission_transform;
|
||||
uniform uint random_seed;
|
||||
|
||||
|
||||
out highp vec4 out_color; //tfb:
|
||||
out highp vec4 out_velocity_active; //tfb:
|
||||
out highp vec4 out_custom; //tfb:
|
||||
@ -47,7 +43,6 @@ out highp vec4 out_xform_1; //tfb:
|
||||
out highp vec4 out_xform_2; //tfb:
|
||||
out highp vec4 out_xform_3; //tfb:
|
||||
|
||||
|
||||
#if defined(USE_MATERIAL)
|
||||
|
||||
layout(std140) uniform UniformData { //ubo:0
|
||||
@ -58,7 +53,6 @@ MATERIAL_UNIFORMS
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
VERTEX_SHADER_GLOBALS
|
||||
|
||||
uint hash(uint x) {
|
||||
@ -69,13 +63,12 @@ uint hash(uint x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
#ifdef PARTICLES_COPY
|
||||
|
||||
out_color=color;
|
||||
out_velocity_active=velocity_active;
|
||||
out_color = color;
|
||||
out_velocity_active = velocity_active;
|
||||
out_custom = custom;
|
||||
out_xform_1 = xform_1;
|
||||
out_xform_2 = xform_2;
|
||||
@ -83,34 +76,34 @@ void main() {
|
||||
|
||||
#else
|
||||
|
||||
bool apply_forces=true;
|
||||
bool apply_velocity=true;
|
||||
float local_delta=delta;
|
||||
bool apply_forces = true;
|
||||
bool apply_velocity = true;
|
||||
float local_delta = delta;
|
||||
|
||||
float mass = 1.0;
|
||||
|
||||
float restart_phase = float(gl_VertexID)/float(total_particles);
|
||||
float restart_phase = float(gl_VertexID) / float(total_particles);
|
||||
|
||||
if (randomness>0.0) {
|
||||
if (randomness > 0.0) {
|
||||
uint seed = cycle;
|
||||
if (restart_phase >= system_phase) {
|
||||
seed-=uint(1);
|
||||
seed -= uint(1);
|
||||
}
|
||||
seed*=uint(total_particles);
|
||||
seed+=uint(gl_VertexID);
|
||||
seed *= uint(total_particles);
|
||||
seed += uint(gl_VertexID);
|
||||
float random = float(hash(seed) % uint(65536)) / 65536.0;
|
||||
restart_phase+=randomness * random * 1.0 / float(total_particles);
|
||||
restart_phase += randomness * random * 1.0 / float(total_particles);
|
||||
}
|
||||
|
||||
restart_phase*= (1.0-explosiveness);
|
||||
bool restart=false;
|
||||
restart_phase *= (1.0 - explosiveness);
|
||||
bool restart = false;
|
||||
bool shader_active = velocity_active.a > 0.5;
|
||||
|
||||
if (system_phase > prev_system_phase) {
|
||||
// restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
|
||||
|
||||
if (restart_phase >= prev_system_phase && restart_phase < system_phase ) {
|
||||
restart=true;
|
||||
if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
|
||||
restart = true;
|
||||
#ifdef USE_FRACTIONAL_DELTA
|
||||
local_delta = (system_phase - restart_phase) * lifetime;
|
||||
#endif
|
||||
@ -118,12 +111,12 @@ void main() {
|
||||
|
||||
} else {
|
||||
if (restart_phase >= prev_system_phase) {
|
||||
restart=true;
|
||||
restart = true;
|
||||
#ifdef USE_FRACTIONAL_DELTA
|
||||
local_delta = (1.0 - restart_phase + system_phase) * lifetime;
|
||||
#endif
|
||||
} else if (restart_phase < system_phase ) {
|
||||
restart=true;
|
||||
} else if (restart_phase < system_phase) {
|
||||
restart = true;
|
||||
#ifdef USE_FRACTIONAL_DELTA
|
||||
local_delta = (system_phase - restart_phase) * lifetime;
|
||||
#endif
|
||||
@ -133,14 +126,14 @@ void main() {
|
||||
uint current_cycle = cycle;
|
||||
|
||||
if (system_phase < restart_phase) {
|
||||
current_cycle-=uint(1);
|
||||
current_cycle -= uint(1);
|
||||
}
|
||||
|
||||
uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
|
||||
int index = int(gl_VertexID);
|
||||
|
||||
if (restart) {
|
||||
shader_active=emitting;
|
||||
shader_active = emitting;
|
||||
}
|
||||
|
||||
mat4 xform;
|
||||
@ -150,30 +143,31 @@ void main() {
|
||||
#else
|
||||
if (clear || restart) {
|
||||
#endif
|
||||
out_color=vec4(1.0);
|
||||
out_velocity_active=vec4(0.0);
|
||||
out_custom=vec4(0.0);
|
||||
out_color = vec4(1.0);
|
||||
out_velocity_active = vec4(0.0);
|
||||
out_custom = vec4(0.0);
|
||||
if (!restart)
|
||||
shader_active=false;
|
||||
shader_active = false;
|
||||
|
||||
xform = mat4(
|
||||
vec4(1.0,0.0,0.0,0.0),
|
||||
vec4(0.0,1.0,0.0,0.0),
|
||||
vec4(0.0,0.0,1.0,0.0),
|
||||
vec4(0.0,0.0,0.0,1.0)
|
||||
);
|
||||
vec4(1.0, 0.0, 0.0, 0.0),
|
||||
vec4(0.0, 1.0, 0.0, 0.0),
|
||||
vec4(0.0, 0.0, 1.0, 0.0),
|
||||
vec4(0.0, 0.0, 0.0, 1.0));
|
||||
} else {
|
||||
out_color=color;
|
||||
out_velocity_active=velocity_active;
|
||||
out_custom=custom;
|
||||
xform = transpose(mat4(xform_1,xform_2,xform_3,vec4(vec3(0.0),1.0)));
|
||||
out_color = color;
|
||||
out_velocity_active = velocity_active;
|
||||
out_custom = custom;
|
||||
xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
|
||||
}
|
||||
|
||||
if (shader_active) {
|
||||
//execute shader
|
||||
|
||||
{
|
||||
|
||||
VERTEX_SHADER_CODE
|
||||
|
||||
}
|
||||
|
||||
#if !defined(DISABLE_FORCE)
|
||||
@ -181,26 +175,25 @@ VERTEX_SHADER_CODE
|
||||
if (false) {
|
||||
|
||||
vec3 force = vec3(0.0);
|
||||
for(int i=0;i<attractor_count;i++) {
|
||||
for (int i = 0; i < attractor_count; i++) {
|
||||
|
||||
vec3 rel_vec = xform[3].xyz - attractors[i].pos;
|
||||
float dist = length(rel_vec);
|
||||
if (attractors[i].radius < dist)
|
||||
continue;
|
||||
if (attractors[i].eat_radius>0.0 && attractors[i].eat_radius > dist) {
|
||||
out_velocity_active.a=0.0;
|
||||
if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
|
||||
out_velocity_active.a = 0.0;
|
||||
}
|
||||
|
||||
rel_vec = normalize(rel_vec);
|
||||
|
||||
float attenuation = pow(dist / attractors[i].radius,attractors[i].attenuation);
|
||||
float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
|
||||
|
||||
if (attractors[i].dir==vec3(0.0)) {
|
||||
if (attractors[i].dir == vec3(0.0)) {
|
||||
//towards center
|
||||
force+=attractors[i].strength * rel_vec * attenuation * mass;
|
||||
force += attractors[i].strength * rel_vec * attenuation * mass;
|
||||
} else {
|
||||
force+=attractors[i].strength * attractors[i].dir * attenuation *mass;
|
||||
|
||||
force += attractors[i].strength * attractors[i].dir * attenuation * mass;
|
||||
}
|
||||
}
|
||||
|
||||
@ -216,26 +209,24 @@ VERTEX_SHADER_CODE
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
xform=mat4(0.0);
|
||||
xform = mat4(0.0);
|
||||
}
|
||||
|
||||
xform = transpose(xform);
|
||||
|
||||
out_velocity_active.a = mix(0.0,1.0,shader_active);
|
||||
out_velocity_active.a = mix(0.0, 1.0, shader_active);
|
||||
|
||||
out_xform_1 = xform[0];
|
||||
out_xform_2 = xform[1];
|
||||
out_xform_3 = xform[2];
|
||||
|
||||
#endif //PARTICLES_COPY
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
//any code here is never executed, stuff is filled just so it works
|
||||
|
||||
|
||||
#if defined(USE_MATERIAL)
|
||||
|
||||
layout(std140) uniform UniformData {
|
||||
|
@ -1,12 +1,10 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
uv_interp = uv_in;
|
||||
@ -31,14 +29,12 @@ layout(location = 0) out vec4 frag_color;
|
||||
|
||||
void main() {
|
||||
|
||||
vec4 specular = texture( source_specular, uv_interp );
|
||||
vec4 specular = texture(source_specular, uv_interp);
|
||||
|
||||
#ifdef USE_SSR
|
||||
|
||||
vec4 ssr = textureLod(source_ssr,uv_interp,0.0);
|
||||
specular.rgb = mix(specular.rgb,ssr.rgb*specular.a,ssr.a);
|
||||
vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
|
||||
specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
|
||||
#endif
|
||||
|
||||
frag_color = vec4(specular.rgb,1.0);
|
||||
frag_color = vec4(specular.rgb, 1.0);
|
||||
}
|
||||
|
||||
|
@ -10,8 +10,6 @@ precision mediump int;
|
||||
|
||||
#include "stdlib.glsl"
|
||||
|
||||
|
||||
|
||||
//
|
||||
// attributes
|
||||
//
|
||||
@ -66,8 +64,6 @@ attribute highp vec4 instance_custom_data; // attrib:8
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
//
|
||||
// uniforms
|
||||
//
|
||||
@ -88,7 +84,6 @@ uniform float light_bias;
|
||||
uniform float light_normal_bias;
|
||||
#endif
|
||||
|
||||
|
||||
//
|
||||
// varyings
|
||||
//
|
||||
@ -113,7 +108,6 @@ varying vec2 uv_interp;
|
||||
varying vec2 uv2_interp;
|
||||
#endif
|
||||
|
||||
|
||||
VERTEX_SHADER_GLOBALS
|
||||
|
||||
void main() {
|
||||
@ -124,10 +118,11 @@ void main() {
|
||||
|
||||
#ifdef USE_INSTANCING
|
||||
{
|
||||
highp mat4 m = mat4(instance_xform_row_0,
|
||||
instance_xform_row_1,
|
||||
instance_xform_row_2,
|
||||
vec4(0.0, 0.0, 0.0, 1.0));
|
||||
highp mat4 m = mat4(
|
||||
instance_xform_row_0,
|
||||
instance_xform_row_1,
|
||||
instance_xform_row_2,
|
||||
vec4(0.0, 0.0, 0.0, 1.0));
|
||||
world_matrix = world_matrix * transpose(m);
|
||||
}
|
||||
#endif
|
||||
@ -161,7 +156,7 @@ void main() {
|
||||
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
|
||||
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
||||
|
||||
tangent = normalize((world_matrix * vec4(tangent, 0.0)),xyz);
|
||||
tangent = normalize((world_matrix * vec4(tangent, 0.0)), xyz);
|
||||
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
|
||||
#endif
|
||||
#endif
|
||||
@ -185,11 +180,12 @@ void main() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
|
||||
|
||||
highp mat4 b = mat4(texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
|
||||
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
|
||||
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
|
||||
vec4(0.0, 0.0, 0.0, 1.0));
|
||||
|
||||
highp mat4 b = mat4(
|
||||
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
|
||||
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
|
||||
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
|
||||
vec4(0.0, 0.0, 0.0, 1.0));
|
||||
|
||||
bone_transform += transpose(b) * bone_weights[i];
|
||||
}
|
||||
}
|
||||
@ -199,7 +195,6 @@ void main() {
|
||||
world_matrix = bone_transform * world_matrix;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_INSTANCING
|
||||
vec4 instance_custom = instance_custom_data;
|
||||
#else
|
||||
@ -207,7 +202,6 @@ void main() {
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
mat4 modelview = camera_matrix * world_matrix;
|
||||
|
||||
#define world_transform world_matrix
|
||||
@ -258,7 +252,6 @@ VERTEX_SHADER_CODE
|
||||
#endif
|
||||
|
||||
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -294,7 +287,6 @@ uniform mat4 world_transform;
|
||||
|
||||
uniform highp float time;
|
||||
|
||||
|
||||
#ifdef SCREEN_UV_USED
|
||||
uniform vec2 screen_pixel_size;
|
||||
#endif
|
||||
@ -348,7 +340,6 @@ uniform float light_spot_attenuation;
|
||||
uniform float light_spot_range;
|
||||
uniform float light_spot_angle;
|
||||
|
||||
|
||||
// shadows
|
||||
uniform highp sampler2D light_shadow_atlas; //texunit:-4
|
||||
uniform float light_has_shadow;
|
||||
@ -367,7 +358,6 @@ uniform mat4 light_shadow_matrix3;
|
||||
uniform mat4 light_shadow_matrix4;
|
||||
#endif
|
||||
|
||||
|
||||
//
|
||||
// varyings
|
||||
//
|
||||
@ -402,27 +392,27 @@ vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
|
||||
|
||||
FRAGMENT_SHADER_GLOBALS
|
||||
|
||||
|
||||
#ifdef LIGHT_PASS
|
||||
void light_compute(vec3 N,
|
||||
vec3 L,
|
||||
vec3 V,
|
||||
vec3 B,
|
||||
vec3 T,
|
||||
vec3 light_color,
|
||||
vec3 attenuation,
|
||||
vec3 diffuse_color,
|
||||
vec3 transmission,
|
||||
float specular_blob_intensity,
|
||||
float roughness,
|
||||
float metallic,
|
||||
float rim,
|
||||
float rim_tint,
|
||||
float clearcoat,
|
||||
float clearcoat_gloss,
|
||||
float anisotropy,
|
||||
inout vec3 diffuse_light,
|
||||
inout vec3 specular_light) {
|
||||
void light_compute(
|
||||
vec3 N,
|
||||
vec3 L,
|
||||
vec3 V,
|
||||
vec3 B,
|
||||
vec3 T,
|
||||
vec3 light_color,
|
||||
vec3 attenuation,
|
||||
vec3 diffuse_color,
|
||||
vec3 transmission,
|
||||
float specular_blob_intensity,
|
||||
float roughness,
|
||||
float metallic,
|
||||
float rim,
|
||||
float rim_tint,
|
||||
float clearcoat,
|
||||
float clearcoat_gloss,
|
||||
float anisotropy,
|
||||
inout vec3 diffuse_light,
|
||||
inout vec3 specular_light) {
|
||||
|
||||
float NdotL = dot(N, L);
|
||||
float cNdotL = max(NdotL, 0.0);
|
||||
@ -435,7 +425,7 @@ void light_compute(vec3 N,
|
||||
// TODO hardcode Oren Nayar for now
|
||||
float diffuse_brdf_NL;
|
||||
|
||||
diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
|
||||
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
|
||||
// diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
|
||||
|
||||
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
|
||||
@ -444,25 +434,21 @@ void light_compute(vec3 N,
|
||||
{
|
||||
// calculate specular reflection
|
||||
|
||||
vec3 R = normalize(-reflect(L,N));
|
||||
vec3 R = normalize(-reflect(L, N));
|
||||
float cRdotV = max(dot(R, V), 0.0);
|
||||
float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0);
|
||||
specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// shadows
|
||||
|
||||
float sample_shadow(highp sampler2D shadow,
|
||||
vec2 shadow_pixel_size,
|
||||
vec2 pos,
|
||||
float depth,
|
||||
vec4 clamp_rect)
|
||||
{
|
||||
float sample_shadow(
|
||||
highp sampler2D shadow,
|
||||
vec2 shadow_pixel_size,
|
||||
vec2 pos,
|
||||
float depth,
|
||||
vec4 clamp_rect) {
|
||||
// vec4 depth_value = texture2D(shadow, pos);
|
||||
|
||||
// return depth_value.z;
|
||||
@ -470,11 +456,9 @@ float sample_shadow(highp sampler2D shadow,
|
||||
// return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
void main()
|
||||
{
|
||||
void main() {
|
||||
|
||||
highp vec3 vertex = vertex_interp;
|
||||
vec3 albedo = vec3(1.0);
|
||||
@ -498,7 +482,6 @@ void main()
|
||||
float ao_light_affect = 0.0;
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
|
||||
vec3 binormal = normalize(binormal_interp) * side;
|
||||
vec3 tangent = normalize(tangent_interp) * side;
|
||||
@ -513,7 +496,6 @@ void main()
|
||||
#endif
|
||||
float normaldepth = 1.0;
|
||||
|
||||
|
||||
#ifdef ALPHA_SCISSOR_USED
|
||||
float alpha_scissor = 0.5;
|
||||
#endif
|
||||
@ -526,7 +508,6 @@ void main()
|
||||
|
||||
FRAGMENT_SHADER_CODE
|
||||
|
||||
|
||||
}
|
||||
|
||||
#if defined(ENABLE_NORMALMAP)
|
||||
@ -572,7 +553,7 @@ FRAGMENT_SHADER_CODE
|
||||
vec3 attenuation = vec3(omni_attenuation);
|
||||
|
||||
if (light_has_shadow > 0.5) {
|
||||
highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz;
|
||||
highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz;
|
||||
float shadow_len = length(splane);
|
||||
|
||||
splane = normalize(splane);
|
||||
@ -601,25 +582,26 @@ FRAGMENT_SHADER_CODE
|
||||
}
|
||||
}
|
||||
|
||||
light_compute(normal,
|
||||
normalize(light_vec),
|
||||
eye_position,
|
||||
binormal,
|
||||
tangent,
|
||||
light_color.xyz * light_energy,
|
||||
attenuation,
|
||||
albedo,
|
||||
transmission,
|
||||
specular * light_specular,
|
||||
roughness,
|
||||
metallic,
|
||||
rim,
|
||||
rim_tint,
|
||||
clearcoat,
|
||||
clearcoat_gloss,
|
||||
anisotropy,
|
||||
diffuse_light,
|
||||
specular_light);
|
||||
light_compute(
|
||||
normal,
|
||||
normalize(light_vec),
|
||||
eye_position,
|
||||
binormal,
|
||||
tangent,
|
||||
light_color.xyz * light_energy,
|
||||
attenuation,
|
||||
albedo,
|
||||
transmission,
|
||||
specular * light_specular,
|
||||
roughness,
|
||||
metallic,
|
||||
rim,
|
||||
rim_tint,
|
||||
clearcoat,
|
||||
clearcoat_gloss,
|
||||
anisotropy,
|
||||
diffuse_light,
|
||||
specular_light);
|
||||
|
||||
} else if (light_type == LIGHT_TYPE_DIRECTIONAL) {
|
||||
|
||||
@ -638,133 +620,130 @@ FRAGMENT_SHADER_CODE
|
||||
if (depth_z < light_split_offsets.x) {
|
||||
#endif
|
||||
|
||||
vec3 pssm_coord;
|
||||
float pssm_fade = 0.0;
|
||||
vec3 pssm_coord;
|
||||
float pssm_fade = 0.0;
|
||||
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
float pssm_blend;
|
||||
vec3 pssm_coord2;
|
||||
bool use_blend = true;
|
||||
float pssm_blend;
|
||||
vec3 pssm_coord2;
|
||||
bool use_blend = true;
|
||||
#endif
|
||||
|
||||
#ifdef LIGHT_USE_PSSM4
|
||||
if (depth_z < light_split_offsets.y) {
|
||||
if (depth_z < light_split_offsets.y) {
|
||||
if (depth_z < light_split_offsets.x) {
|
||||
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
|
||||
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
||||
#endif
|
||||
} else {
|
||||
highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
|
||||
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
if (depth_z < light_split_offsets.z) {
|
||||
|
||||
highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
#if defined(LIGHT_USE_PSSM_BLEND)
|
||||
splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
|
||||
#endif
|
||||
|
||||
} else {
|
||||
|
||||
highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
|
||||
|
||||
#if defined(LIGHT_USE_PSSM_BLEND)
|
||||
use_blend = false;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // LIGHT_USE_PSSM4
|
||||
|
||||
#ifdef LIGHT_USE_PSSM2
|
||||
if (depth_z < light_split_offsets.x) {
|
||||
|
||||
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
|
||||
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
||||
#endif
|
||||
} else {
|
||||
highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
|
||||
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
if (depth_z < light_split_offsets.z) {
|
||||
|
||||
highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
#if defined(LIGHT_USE_PSSM_BLEND)
|
||||
splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
|
||||
#endif
|
||||
|
||||
} else {
|
||||
|
||||
highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
|
||||
|
||||
#if defined(LIGHT_USE_PSSM_BLEND)
|
||||
use_blend = false;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // LIGHT_USE_PSSM4
|
||||
|
||||
#ifdef LIGHT_USE_PSSM2
|
||||
if (depth_z < light_split_offsets.x) {
|
||||
|
||||
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
|
||||
pssm_coord2 = splane.xyz / splane.w;
|
||||
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
|
||||
#endif
|
||||
} else {
|
||||
highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
use_blend = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // LIGHT_USE_PSSM2
|
||||
|
||||
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
|
||||
{
|
||||
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
}
|
||||
{
|
||||
highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
|
||||
pssm_coord = splane.xyz / splane.w;
|
||||
}
|
||||
#endif
|
||||
|
||||
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp);
|
||||
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp);
|
||||
|
||||
#ifdef LIGHT_USE_PSSM_BLEND
|
||||
if (use_blend) {
|
||||
shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
|
||||
}
|
||||
if (use_blend) {
|
||||
shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
|
||||
}
|
||||
#endif
|
||||
|
||||
attenuation *= shadow;
|
||||
|
||||
|
||||
}
|
||||
|
||||
attenuation *= shadow;
|
||||
}
|
||||
}
|
||||
|
||||
light_compute(normal,
|
||||
normalize(light_vec),
|
||||
eye_position,
|
||||
binormal,
|
||||
tangent,
|
||||
light_color.xyz * light_energy,
|
||||
attenuation,
|
||||
albedo,
|
||||
transmission,
|
||||
specular * light_specular,
|
||||
roughness,
|
||||
metallic,
|
||||
rim,
|
||||
rim_tint,
|
||||
clearcoat,
|
||||
clearcoat_gloss,
|
||||
anisotropy,
|
||||
diffuse_light,
|
||||
specular_light);
|
||||
normalize(light_vec),
|
||||
eye_position,
|
||||
binormal,
|
||||
tangent,
|
||||
light_color.xyz * light_energy,
|
||||
attenuation,
|
||||
albedo,
|
||||
transmission,
|
||||
specular * light_specular,
|
||||
roughness,
|
||||
metallic,
|
||||
rim,
|
||||
rim_tint,
|
||||
clearcoat,
|
||||
clearcoat_gloss,
|
||||
anisotropy,
|
||||
diffuse_light,
|
||||
specular_light);
|
||||
} else if (light_type == LIGHT_TYPE_SPOT) {
|
||||
|
||||
vec3 light_att = vec3(1.0);
|
||||
|
||||
if (light_has_shadow > 0.5) {
|
||||
highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0));
|
||||
highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0));
|
||||
splane.xyz /= splane.w;
|
||||
|
||||
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp);
|
||||
@ -773,8 +752,6 @@ FRAGMENT_SHADER_CODE
|
||||
} else {
|
||||
light_att = vec3(0.0);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
vec3 light_rel_vec = light_position - vertex;
|
||||
@ -793,25 +770,26 @@ FRAGMENT_SHADER_CODE
|
||||
|
||||
light_att *= vec3(spot_attenuation);
|
||||
|
||||
light_compute(normal,
|
||||
normalize(light_rel_vec),
|
||||
eye_position,
|
||||
binormal,
|
||||
tangent,
|
||||
light_color.xyz * light_energy,
|
||||
light_att,
|
||||
albedo,
|
||||
transmission,
|
||||
specular * light_specular,
|
||||
roughness,
|
||||
metallic,
|
||||
rim,
|
||||
rim_tint,
|
||||
clearcoat,
|
||||
clearcoat_gloss,
|
||||
anisotropy,
|
||||
diffuse_light,
|
||||
specular_light);
|
||||
light_compute(
|
||||
normal,
|
||||
normalize(light_rel_vec),
|
||||
eye_position,
|
||||
binormal,
|
||||
tangent,
|
||||
light_color.xyz * light_energy,
|
||||
light_att,
|
||||
albedo,
|
||||
transmission,
|
||||
specular * light_specular,
|
||||
roughness,
|
||||
metallic,
|
||||
rim,
|
||||
rim_tint,
|
||||
clearcoat,
|
||||
clearcoat_gloss,
|
||||
anisotropy,
|
||||
diffuse_light,
|
||||
specular_light);
|
||||
}
|
||||
|
||||
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
|
||||
@ -823,7 +801,6 @@ FRAGMENT_SHADER_CODE
|
||||
|
||||
#ifdef USE_RADIANCE_MAP
|
||||
|
||||
|
||||
vec3 ref_vec = reflect(-eye_position, N);
|
||||
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
|
||||
|
||||
@ -836,7 +813,6 @@ FRAGMENT_SHADER_CODE
|
||||
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy;
|
||||
|
||||
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
|
||||
|
||||
}
|
||||
|
||||
ambient_light *= ambient_energy;
|
||||
@ -860,28 +836,23 @@ FRAGMENT_SHADER_CODE
|
||||
// TODO shadeless
|
||||
{
|
||||
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
|
||||
const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
|
||||
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
|
||||
vec4 r = roughness * c0 + c1;
|
||||
float ndotv = clamp(dot(normal,eye_position),0.0,1.0);
|
||||
float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
|
||||
vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
|
||||
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
|
||||
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
|
||||
vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;
|
||||
|
||||
vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo);
|
||||
specular_light *= AB.x * specular_color + AB.y;
|
||||
}
|
||||
|
||||
|
||||
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
|
||||
// gl_FragColor = vec4(normal, 1.0);
|
||||
|
||||
|
||||
#else
|
||||
gl_FragColor = vec4(albedo, alpha);
|
||||
#endif
|
||||
#endif // RENDER_DEPTH
|
||||
|
||||
|
||||
#endif // lighting
|
||||
|
||||
|
||||
}
|
||||
|
@ -1,8 +1,7 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
out vec2 pos_interp;
|
||||
@ -11,12 +10,11 @@ void main() {
|
||||
|
||||
uv_interp = uv_in;
|
||||
gl_Position = vertex_attrib;
|
||||
pos_interp.xy=gl_Position.xy;
|
||||
pos_interp.xy = gl_Position.xy;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
in vec2 uv_interp;
|
||||
in vec2 pos_interp;
|
||||
|
||||
@ -40,81 +38,70 @@ uniform float depth_tolerance;
|
||||
uniform float distance_fade;
|
||||
uniform float curve_fade_in;
|
||||
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
|
||||
vec2 view_to_screen(vec3 view_pos,out float w) {
|
||||
vec4 projected = projection * vec4(view_pos, 1.0);
|
||||
projected.xyz /= projected.w;
|
||||
projected.xy = projected.xy * 0.5 + 0.5;
|
||||
w=projected.w;
|
||||
return projected.xy;
|
||||
vec2 view_to_screen(vec3 view_pos, out float w) {
|
||||
vec4 projected = projection * vec4(view_pos, 1.0);
|
||||
projected.xyz /= projected.w;
|
||||
projected.xy = projected.xy * 0.5 + 0.5;
|
||||
w = projected.w;
|
||||
return projected.xy;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#define M_PI 3.14159265359
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
////
|
||||
|
||||
vec4 diffuse = texture( source_diffuse, uv_interp );
|
||||
vec4 normal_roughness = texture( source_normal_roughness, uv_interp);
|
||||
vec4 diffuse = texture(source_diffuse, uv_interp);
|
||||
vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
|
||||
|
||||
vec3 normal;
|
||||
|
||||
normal = normal_roughness.xyz*2.0-1.0;
|
||||
normal = normal_roughness.xyz * 2.0 - 1.0;
|
||||
|
||||
float roughness = normal_roughness.w;
|
||||
|
||||
float depth_tex = texture(source_depth,uv_interp).r;
|
||||
float depth_tex = texture(source_depth, uv_interp).r;
|
||||
|
||||
vec4 world_pos = inverse_projection * vec4( uv_interp*2.0-1.0, depth_tex*2.0-1.0, 1.0 );
|
||||
vec3 vertex = world_pos.xyz/world_pos.w;
|
||||
vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
|
||||
vec3 vertex = world_pos.xyz / world_pos.w;
|
||||
|
||||
vec3 view_dir = normalize(vertex);
|
||||
vec3 ray_dir = normalize(reflect(view_dir, normal));
|
||||
|
||||
if (dot(ray_dir,normal)<0.001) {
|
||||
frag_color=vec4(0.0);
|
||||
if (dot(ray_dir, normal) < 0.001) {
|
||||
frag_color = vec4(0.0);
|
||||
return;
|
||||
}
|
||||
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
|
||||
|
||||
//ray_dir = normalize(vec3(1,1,-1));
|
||||
|
||||
|
||||
////////////////
|
||||
|
||||
|
||||
//make ray length and clip it against the near plane (don't want to trace beyond visible)
|
||||
float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
|
||||
vec3 ray_end = vertex + ray_dir*ray_len;
|
||||
vec3 ray_end = vertex + ray_dir * ray_len;
|
||||
|
||||
float w_begin;
|
||||
vec2 vp_line_begin = view_to_screen(vertex,w_begin);
|
||||
vec2 vp_line_begin = view_to_screen(vertex, w_begin);
|
||||
float w_end;
|
||||
vec2 vp_line_end = view_to_screen( ray_end, w_end);
|
||||
vec2 vp_line_dir = vp_line_end-vp_line_begin;
|
||||
vec2 vp_line_end = view_to_screen(ray_end, w_end);
|
||||
vec2 vp_line_dir = vp_line_end - vp_line_begin;
|
||||
|
||||
//we need to interpolate w along the ray, to generate perspective correct reflections
|
||||
|
||||
w_begin = 1.0/w_begin;
|
||||
w_end = 1.0/w_end;
|
||||
w_begin = 1.0 / w_begin;
|
||||
w_end = 1.0 / w_end;
|
||||
|
||||
float z_begin = vertex.z * w_begin;
|
||||
float z_end = ray_end.z * w_end;
|
||||
|
||||
float z_begin = vertex.z*w_begin;
|
||||
float z_end = ray_end.z*w_end;
|
||||
|
||||
vec2 line_begin = vp_line_begin/pixel_size;
|
||||
vec2 line_dir = vp_line_dir/pixel_size;
|
||||
vec2 line_begin = vp_line_begin / pixel_size;
|
||||
vec2 line_dir = vp_line_dir / pixel_size;
|
||||
float z_dir = z_end - z_begin;
|
||||
float w_dir = w_end - w_begin;
|
||||
|
||||
|
||||
// clip the line to the viewport edges
|
||||
|
||||
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
|
||||
@ -124,121 +111,109 @@ void main() {
|
||||
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
|
||||
line_dir *= line_clip;
|
||||
z_dir *= line_clip;
|
||||
w_dir *=line_clip;
|
||||
w_dir *= line_clip;
|
||||
|
||||
//clip z and w advance to line advance
|
||||
vec2 line_advance = normalize(line_dir); //down to pixel
|
||||
float step_size = length(line_advance)/length(line_dir);
|
||||
float z_advance = z_dir*step_size; // adapt z advance to line advance
|
||||
float w_advance = w_dir*step_size; // adapt w advance to line advance
|
||||
float step_size = length(line_advance) / length(line_dir);
|
||||
float z_advance = z_dir * step_size; // adapt z advance to line advance
|
||||
float w_advance = w_dir * step_size; // adapt w advance to line advance
|
||||
|
||||
//make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
|
||||
float advance_angle_adj = 1.0/max(abs(line_advance.x),abs(line_advance.y));
|
||||
line_advance*=advance_angle_adj; // adapt z advance to line advance
|
||||
z_advance*=advance_angle_adj;
|
||||
w_advance*=advance_angle_adj;
|
||||
float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
|
||||
line_advance *= advance_angle_adj; // adapt z advance to line advance
|
||||
z_advance *= advance_angle_adj;
|
||||
w_advance *= advance_angle_adj;
|
||||
|
||||
vec2 pos = line_begin;
|
||||
float z = z_begin;
|
||||
float w = w_begin;
|
||||
float z_from=z/w;
|
||||
float z_to=z_from;
|
||||
float z_from = z / w;
|
||||
float z_to = z_from;
|
||||
float depth;
|
||||
vec2 prev_pos=pos;
|
||||
vec2 prev_pos = pos;
|
||||
|
||||
bool found=false;
|
||||
bool found = false;
|
||||
|
||||
float steps_taken=0.0;
|
||||
float steps_taken = 0.0;
|
||||
|
||||
for(int i=0;i<num_steps;i++) {
|
||||
for (int i = 0; i < num_steps; i++) {
|
||||
|
||||
pos+=line_advance;
|
||||
z+=z_advance;
|
||||
w+=w_advance;
|
||||
pos += line_advance;
|
||||
z += z_advance;
|
||||
w += w_advance;
|
||||
|
||||
//convert to linear depth
|
||||
|
||||
depth = texture(source_depth, pos*pixel_size).r * 2.0 - 1.0;
|
||||
depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
depth=-depth;
|
||||
depth = -depth;
|
||||
|
||||
z_from = z_to;
|
||||
z_to = z/w;
|
||||
z_to = z / w;
|
||||
|
||||
if (depth>z_to) {
|
||||
if (depth > z_to) {
|
||||
//if depth was surpassed
|
||||
if (depth<=max(z_to,z_from)+depth_tolerance) {
|
||||
if (depth <= max(z_to, z_from) + depth_tolerance) {
|
||||
//check the depth tolerance
|
||||
found=true;
|
||||
found = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
steps_taken+=1.0;
|
||||
prev_pos=pos;
|
||||
steps_taken += 1.0;
|
||||
prev_pos = pos;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
if (found) {
|
||||
|
||||
float margin_blend=1.0;
|
||||
float margin_blend = 1.0;
|
||||
|
||||
|
||||
vec2 margin = vec2((viewport_size.x+viewport_size.y)*0.5*0.05); //make a uniform margin
|
||||
if (any(bvec4(lessThan(pos,-margin),greaterThan(pos,viewport_size+margin)))) {
|
||||
vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); //make a uniform margin
|
||||
if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
|
||||
//clip outside screen + margin
|
||||
frag_color=vec4(0.0);
|
||||
frag_color = vec4(0.0);
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
//blend fading out towards external margin
|
||||
vec2 margin_grad = mix(pos-viewport_size,-pos,lessThan(pos,vec2(0.0)));
|
||||
margin_blend = 1.0-smoothstep(0.0,margin.x,max(margin_grad.x,margin_grad.y));
|
||||
vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
|
||||
margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
|
||||
//margin_blend=1.0;
|
||||
|
||||
}
|
||||
|
||||
vec2 final_pos;
|
||||
float grad;
|
||||
grad=steps_taken/float(num_steps);
|
||||
float initial_fade = curve_fade_in==0.0 ? 1.0 : pow(clamp(grad,0.0,1.0),curve_fade_in);
|
||||
float fade = pow(clamp(1.0-grad,0.0,1.0),distance_fade)*initial_fade;
|
||||
final_pos=pos;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
grad = steps_taken / float(num_steps);
|
||||
float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
|
||||
float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
|
||||
final_pos = pos;
|
||||
|
||||
#ifdef REFLECT_ROUGHNESS
|
||||
|
||||
|
||||
vec4 final_color;
|
||||
//if roughness is enabled, do screen space cone tracing
|
||||
if (roughness > 0.001) {
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
|
||||
|
||||
float gloss = 1.0-roughness;
|
||||
float gloss = 1.0 - roughness;
|
||||
float cone_angle = roughness * M_PI * 0.5;
|
||||
vec2 cone_dir = final_pos - line_begin;
|
||||
float cone_len = length(cone_dir);
|
||||
cone_dir = normalize(cone_dir); //will be used normalized from now on
|
||||
float max_mipmap = filter_mipmap_levels - 1.0;
|
||||
float gloss_mult=gloss;
|
||||
float gloss_mult = gloss;
|
||||
|
||||
float rem_alpha=1.0;
|
||||
float rem_alpha = 1.0;
|
||||
final_color = vec4(0.0);
|
||||
|
||||
for(int i=0;i<7;i++) {
|
||||
for (int i = 0; i < 7; i++) {
|
||||
|
||||
float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
|
||||
float radius;
|
||||
@ -258,30 +233,30 @@ void main() {
|
||||
}
|
||||
|
||||
//find the place where screen must be sampled
|
||||
vec2 sample_pos = ( line_begin + cone_dir * (cone_len - radius) ) * pixel_size;
|
||||
vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
|
||||
//radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
|
||||
float mipmap = clamp( log2( radius ), 0.0, max_mipmap );
|
||||
float mipmap = clamp(log2(radius), 0.0, max_mipmap);
|
||||
|
||||
//mipmap = max(mipmap-1.0,0.0);
|
||||
//do sampling
|
||||
|
||||
vec4 sample_color;
|
||||
{
|
||||
sample_color = textureLod(source_diffuse,sample_pos,mipmap);
|
||||
sample_color = textureLod(source_diffuse, sample_pos, mipmap);
|
||||
}
|
||||
|
||||
//multiply by gloss
|
||||
sample_color.rgb*=gloss_mult;
|
||||
sample_color.a=gloss_mult;
|
||||
sample_color.rgb *= gloss_mult;
|
||||
sample_color.a = gloss_mult;
|
||||
|
||||
rem_alpha -= sample_color.a;
|
||||
if(rem_alpha < 0.0) {
|
||||
if (rem_alpha < 0.0) {
|
||||
sample_color.rgb *= (1.0 - abs(rem_alpha));
|
||||
}
|
||||
|
||||
final_color+=sample_color;
|
||||
final_color += sample_color;
|
||||
|
||||
if (final_color.a>=0.95) {
|
||||
if (final_color.a >= 0.95) {
|
||||
// This code of accumulating gloss and aborting on near one
|
||||
// makes sense when you think of cone tracing.
|
||||
// Think of it as if roughness was 0, then we could abort on the first
|
||||
@ -290,29 +265,21 @@ void main() {
|
||||
break;
|
||||
}
|
||||
|
||||
cone_len-=radius*2.0; //go to next (smaller) circle.
|
||||
|
||||
gloss_mult*=gloss;
|
||||
|
||||
cone_len -= radius * 2.0; //go to next (smaller) circle.
|
||||
|
||||
gloss_mult *= gloss;
|
||||
}
|
||||
} else {
|
||||
final_color = textureLod(source_diffuse,final_pos*pixel_size,0.0);
|
||||
final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
|
||||
}
|
||||
|
||||
frag_color = vec4(final_color.rgb,fade*margin_blend);
|
||||
frag_color = vec4(final_color.rgb, fade * margin_blend);
|
||||
|
||||
#else
|
||||
frag_color = vec4(textureLod(source_diffuse,final_pos*pixel_size,0.0).rgb,fade*margin_blend);
|
||||
frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
} else {
|
||||
frag_color = vec4(0.0,0.0,0.0,0.0);
|
||||
frag_color = vec4(0.0, 0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = vertex_attrib;
|
||||
gl_Position.z=1.0;
|
||||
gl_Position.z = 1.0;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -43,19 +42,20 @@ void main() {
|
||||
// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
|
||||
// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
|
||||
|
||||
const int ROTATIONS[] = int[]( 1, 1, 2, 3, 2, 5, 2, 3, 2,
|
||||
3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
|
||||
9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
|
||||
11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
|
||||
11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
|
||||
19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
|
||||
13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
|
||||
29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
|
||||
31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
|
||||
19, 27, 21, 25, 39, 29, 17, 21, 27 );
|
||||
const int ROTATIONS[] = int[](
|
||||
1, 1, 2, 3, 2, 5, 2, 3, 2,
|
||||
3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
|
||||
9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
|
||||
11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
|
||||
11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
|
||||
19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
|
||||
13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
|
||||
29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
|
||||
31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
|
||||
19, 27, 21, 25, 39, 29, 17, 21, 27);
|
||||
|
||||
//#define NUM_SPIRAL_TURNS (7)
|
||||
const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES-1];
|
||||
const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
|
||||
|
||||
uniform sampler2D source_depth; //texunit:0
|
||||
uniform highp usampler2D source_depth_mipmaps; //texunit:1
|
||||
@ -90,44 +90,41 @@ vec3 reconstructCSPosition(vec2 S, float z) {
|
||||
}
|
||||
|
||||
vec3 getPosition(ivec2 ssP) {
|
||||
vec3 P;
|
||||
P.z = texelFetch(source_depth, ssP, 0).r;
|
||||
vec3 P;
|
||||
P.z = texelFetch(source_depth, ssP, 0).r;
|
||||
|
||||
P.z = P.z * 2.0 - 1.0;
|
||||
P.z = P.z * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
||||
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
P.z = -P.z;
|
||||
P.z = -P.z;
|
||||
|
||||
// Offset to pixel center
|
||||
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
||||
return P;
|
||||
// Offset to pixel center
|
||||
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
||||
return P;
|
||||
}
|
||||
|
||||
/** Reconstructs screen-space unit normal from screen-space position */
|
||||
vec3 reconstructCSFaceNormal(vec3 C) {
|
||||
return normalize(cross(dFdy(C), dFdx(C)));
|
||||
return normalize(cross(dFdy(C), dFdx(C)));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
|
||||
vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR){
|
||||
// Radius relative to ssR
|
||||
float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
|
||||
float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
|
||||
vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
|
||||
// Radius relative to ssR
|
||||
float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
|
||||
float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
|
||||
|
||||
ssR = alpha;
|
||||
return vec2(cos(angle), sin(angle));
|
||||
ssR = alpha;
|
||||
return vec2(cos(angle), sin(angle));
|
||||
}
|
||||
|
||||
|
||||
/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
|
||||
vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
|
||||
// Derivation:
|
||||
// mipLevel = floor(log(ssR / MAX_OFFSET));
|
||||
// Derivation:
|
||||
// mipLevel = floor(log(ssR / MAX_OFFSET));
|
||||
int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
|
||||
|
||||
ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
|
||||
@ -138,13 +135,12 @@ vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
|
||||
// Manually clamp to the texture size because texelFetch bypasses the texture unit
|
||||
ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
|
||||
|
||||
|
||||
if (mipLevel < 1) {
|
||||
//read from depth buffer
|
||||
P.z = texelFetch(source_depth, mipP, 0).r;
|
||||
P.z = P.z * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
||||
|
||||
@ -153,78 +149,74 @@ vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
|
||||
|
||||
} else {
|
||||
//read from mipmaps
|
||||
uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel-1).r;
|
||||
P.z = -(float(d)/65535.0)*camera_z_far;
|
||||
uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
|
||||
P.z = -(float(d) / 65535.0) * camera_z_far;
|
||||
}
|
||||
|
||||
|
||||
// Offset to pixel center
|
||||
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
||||
|
||||
return P;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
|
||||
to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
|
||||
to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
|
||||
|
||||
Note that units of H() in the HPG12 paper are meters, not
|
||||
unitless. The whole falloff/sampling function is therefore
|
||||
unitless. In this implementation, we factor out (9 / radius).
|
||||
Note that units of H() in the HPG12 paper are meters, not
|
||||
unitless. The whole falloff/sampling function is therefore
|
||||
unitless. In this implementation, we factor out (9 / radius).
|
||||
|
||||
Four versions of the falloff function are implemented below
|
||||
Four versions of the falloff function are implemented below
|
||||
*/
|
||||
float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius,in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
|
||||
// Offset on the unit disk, spun for this pixel
|
||||
float ssR;
|
||||
vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
|
||||
ssR *= ssDiskRadius;
|
||||
float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
|
||||
// Offset on the unit disk, spun for this pixel
|
||||
float ssR;
|
||||
vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
|
||||
ssR *= ssDiskRadius;
|
||||
|
||||
// The occluding point in camera space
|
||||
vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
|
||||
// The occluding point in camera space
|
||||
vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
|
||||
|
||||
vec3 v = Q - C;
|
||||
vec3 v = Q - C;
|
||||
|
||||
float vv = dot(v, v);
|
||||
float vn = dot(v, n_C);
|
||||
float vv = dot(v, v);
|
||||
float vn = dot(v, n_C);
|
||||
|
||||
const float epsilon = 0.01;
|
||||
float radius2 = p_radius*p_radius;
|
||||
const float epsilon = 0.01;
|
||||
float radius2 = p_radius * p_radius;
|
||||
|
||||
// A: From the HPG12 paper
|
||||
// Note large epsilon to avoid overdarkening within cracks
|
||||
//return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
|
||||
// A: From the HPG12 paper
|
||||
// Note large epsilon to avoid overdarkening within cracks
|
||||
//return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
|
||||
|
||||
// B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
|
||||
float f=max(radius2 - vv, 0.0);
|
||||
return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
|
||||
// B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
|
||||
float f = max(radius2 - vv, 0.0);
|
||||
return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
|
||||
|
||||
// C: Medium contrast (which looks better at high radii), no division. Note that the
|
||||
// contribution still falls off with radius^2, but we've adjusted the rate in a way that is
|
||||
// more computationally efficient and happens to be aesthetically pleasing.
|
||||
// return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
|
||||
// C: Medium contrast (which looks better at high radii), no division. Note that the
|
||||
// contribution still falls off with radius^2, but we've adjusted the rate in a way that is
|
||||
// more computationally efficient and happens to be aesthetically pleasing.
|
||||
// return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
|
||||
|
||||
// D: Low contrast, no division operation
|
||||
// return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
|
||||
// D: Low contrast, no division operation
|
||||
// return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
// Pixel being shaded
|
||||
ivec2 ssC = ivec2(gl_FragCoord.xy);
|
||||
|
||||
// World space point being shaded
|
||||
vec3 C = getPosition(ssC);
|
||||
|
||||
/* if (C.z <= -camera_z_far*0.999) {
|
||||
// We're on the skybox
|
||||
visibility=1.0;
|
||||
return;
|
||||
}*/
|
||||
/*
|
||||
if (C.z <= -camera_z_far*0.999) {
|
||||
// We're on the skybox
|
||||
visibility=1.0;
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
//visibility=-C.z/camera_z_far;
|
||||
//return;
|
||||
@ -251,7 +243,7 @@ void main() {
|
||||
#endif
|
||||
float sum = 0.0;
|
||||
for (int i = 0; i < NUM_SAMPLES; ++i) {
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius,i, randomPatternRotationAngle);
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
|
||||
}
|
||||
|
||||
float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
|
||||
@ -271,10 +263,10 @@ void main() {
|
||||
|
||||
sum = 0.0;
|
||||
for (int i = 0; i < NUM_SAMPLES; ++i) {
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius,radius2, i, randomPatternRotationAngle);
|
||||
sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
|
||||
}
|
||||
|
||||
A= min(A,max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
|
||||
A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
|
||||
#endif
|
||||
// Bilateral box-filter over a quad for free, respecting depth edges
|
||||
// (the difference that this makes is subtle)
|
||||
@ -286,8 +278,4 @@ void main() {
|
||||
}
|
||||
|
||||
visibility = A;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -1,26 +1,21 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
gl_Position = vertex_attrib;
|
||||
gl_Position.z=1.0;
|
||||
gl_Position.z = 1.0;
|
||||
}
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
uniform sampler2D source_ssao; //texunit:0
|
||||
uniform sampler2D source_depth; //texunit:1
|
||||
uniform sampler2D source_normal; //texunit:3
|
||||
|
||||
|
||||
layout(location = 0) out float visibility;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Tunable Parameters:
|
||||
|
||||
@ -28,32 +23,30 @@ layout(location = 0) out float visibility;
|
||||
uniform float edge_sharpness;
|
||||
|
||||
/** Step in 2-pixel intervals since we already blurred against neighbors in the
|
||||
first AO pass. This constant can be increased while R decreases to improve
|
||||
performance at the expense of some dithering artifacts.
|
||||
first AO pass. This constant can be increased while R decreases to improve
|
||||
performance at the expense of some dithering artifacts.
|
||||
|
||||
Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
|
||||
unobjectionable after shading was applied but eliminated most temporal incoherence
|
||||
from using small numbers of sample taps.
|
||||
*/
|
||||
Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
|
||||
unobjectionable after shading was applied but eliminated most temporal incoherence
|
||||
from using small numbers of sample taps.
|
||||
*/
|
||||
|
||||
uniform int filter_scale;
|
||||
|
||||
/** Filter radius in pixels. This will be multiplied by SCALE. */
|
||||
#define R (4)
|
||||
|
||||
#define R (4)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// Gaussian coefficients
|
||||
const float gaussian[R + 1] =
|
||||
// float[](0.356642, 0.239400, 0.072410, 0.009869);
|
||||
// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
|
||||
float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
|
||||
// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
|
||||
//float[](0.356642, 0.239400, 0.072410, 0.009869);
|
||||
//float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
|
||||
float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
|
||||
//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
|
||||
|
||||
/** (1, 0) or (0, 1)*/
|
||||
uniform ivec2 axis;
|
||||
uniform ivec2 axis;
|
||||
|
||||
uniform float camera_z_far;
|
||||
uniform float camera_z_near;
|
||||
@ -72,11 +65,11 @@ void main() {
|
||||
|
||||
float depth_divide = 1.0 / camera_z_far;
|
||||
|
||||
// depth*=depth_divide;
|
||||
//depth *= depth_divide;
|
||||
|
||||
/*
|
||||
if (depth > camera_z_far*0.999) {
|
||||
discard;//skybox
|
||||
if (depth > camera_z_far * 0.999) {
|
||||
discard; //skybox
|
||||
}
|
||||
*/
|
||||
|
||||
@ -96,23 +89,21 @@ void main() {
|
||||
if (r != 0) {
|
||||
|
||||
ivec2 ppos = ssC + axis * (r * filter_scale);
|
||||
float value = texelFetch(source_ssao, clamp(ppos,ivec2(0),clamp_limit), 0).r;
|
||||
ivec2 rpos = clamp(ppos,ivec2(0),clamp_limit);
|
||||
float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
|
||||
ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
|
||||
float temp_depth = texelFetch(source_depth, rpos, 0).r;
|
||||
//vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
|
||||
|
||||
temp_depth = temp_depth * 2.0 - 1.0;
|
||||
temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
|
||||
// temp_depth *= depth_divide;
|
||||
// temp_depth *= depth_divide;
|
||||
|
||||
// spatial domain: offset gaussian tap
|
||||
float weight = 0.3 + gaussian[abs(r)];
|
||||
//weight *= max(0.0,dot(temp_normal,normal));
|
||||
|
||||
// range domain (the "bilateral" weight). As depth difference increases, decrease weight.
|
||||
weight *= max(0.0, 1.0
|
||||
- edge_sharpness * abs(temp_depth - depth)
|
||||
);
|
||||
weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
|
||||
|
||||
sum += value * weight;
|
||||
totalWeight += weight;
|
||||
|
@ -1,7 +1,6 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
|
||||
void main() {
|
||||
|
||||
@ -10,7 +9,6 @@ void main() {
|
||||
|
||||
[fragment]
|
||||
|
||||
|
||||
#ifdef MINIFY_START
|
||||
|
||||
#define SDEPTH_TYPE highp sampler2D
|
||||
@ -32,28 +30,23 @@ layout(location = 0) out mediump uint depth;
|
||||
|
||||
void main() {
|
||||
|
||||
|
||||
ivec2 ssP = ivec2(gl_FragCoord.xy);
|
||||
|
||||
// Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
|
||||
// On DX9, the bit-and can be implemented with floating-point modulo
|
||||
// Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
|
||||
// On DX9, the bit-and can be implemented with floating-point modulo
|
||||
|
||||
#ifdef MINIFY_START
|
||||
float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
|
||||
fdepth = fdepth * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
fdepth = ((fdepth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
fdepth /= camera_z_far;
|
||||
depth = uint(clamp(fdepth*65535.0,0.0,65535.0));
|
||||
depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
|
||||
|
||||
#else
|
||||
depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
|
||||
#endif
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
|
||||
vec2 select2(vec2 a, vec2 b, bvec2 c)
|
||||
{
|
||||
vec2 select2(vec2 a, vec2 b, bvec2 c) {
|
||||
vec2 ret;
|
||||
|
||||
ret.x = c.x ? b.x : a.x;
|
||||
@ -9,8 +8,7 @@ vec2 select2(vec2 a, vec2 b, bvec2 c)
|
||||
return ret;
|
||||
}
|
||||
|
||||
vec3 select3(vec3 a, vec3 b, bvec3 c)
|
||||
{
|
||||
vec3 select3(vec3 a, vec3 b, bvec3 c) {
|
||||
vec3 ret;
|
||||
|
||||
ret.x = c.x ? b.x : a.x;
|
||||
@ -20,8 +18,7 @@ vec3 select3(vec3 a, vec3 b, bvec3 c)
|
||||
return ret;
|
||||
}
|
||||
|
||||
vec4 select4(vec4 a, vec4 b, bvec4 c)
|
||||
{
|
||||
vec4 select4(vec4 a, vec4 b, bvec4 c) {
|
||||
vec4 ret;
|
||||
|
||||
ret.x = c.x ? b.x : a.x;
|
||||
@ -32,9 +29,7 @@ vec4 select4(vec4 a, vec4 b, bvec4 c)
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord)
|
||||
{
|
||||
highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord) {
|
||||
float x_coord = float(2 * coord.x + 1) / float(size.x * 2);
|
||||
float y_coord = float(2 * coord.y + 1) / float(size.y * 2);
|
||||
|
||||
|
@ -1,12 +1,10 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
|
||||
void main() {
|
||||
|
||||
uv_interp = uv_in;
|
||||
@ -19,87 +17,73 @@ void main() {
|
||||
#define QUALIFIER const
|
||||
|
||||
#ifdef USE_25_SAMPLES
|
||||
|
||||
const int kernel_size=25;
|
||||
QUALIFIER vec2 kernel[25] = vec2[] (
|
||||
vec2(0.530605, 0.0),
|
||||
vec2(0.000973794, -3.0),
|
||||
vec2(0.00333804, -2.52083),
|
||||
vec2(0.00500364, -2.08333),
|
||||
vec2(0.00700976, -1.6875),
|
||||
vec2(0.0094389, -1.33333),
|
||||
vec2(0.0128496, -1.02083),
|
||||
vec2(0.017924, -0.75),
|
||||
vec2(0.0263642, -0.520833),
|
||||
vec2(0.0410172, -0.333333),
|
||||
vec2(0.0493588, -0.1875),
|
||||
vec2(0.0402784, -0.0833333),
|
||||
vec2(0.0211412, -0.0208333),
|
||||
vec2(0.0211412, 0.0208333),
|
||||
vec2(0.0402784, 0.0833333),
|
||||
vec2(0.0493588, 0.1875),
|
||||
vec2(0.0410172, 0.333333),
|
||||
vec2(0.0263642, 0.520833),
|
||||
vec2(0.017924, 0.75),
|
||||
vec2(0.0128496, 1.02083),
|
||||
vec2(0.0094389, 1.33333),
|
||||
vec2(0.00700976, 1.6875),
|
||||
vec2(0.00500364, 2.08333),
|
||||
vec2(0.00333804, 2.52083),
|
||||
vec2(0.000973794, 3.0)
|
||||
);
|
||||
|
||||
const int kernel_size = 25;
|
||||
QUALIFIER vec2 kernel[25] = vec2[](
|
||||
vec2(0.530605, 0.0),
|
||||
vec2(0.000973794, -3.0),
|
||||
vec2(0.00333804, -2.52083),
|
||||
vec2(0.00500364, -2.08333),
|
||||
vec2(0.00700976, -1.6875),
|
||||
vec2(0.0094389, -1.33333),
|
||||
vec2(0.0128496, -1.02083),
|
||||
vec2(0.017924, -0.75),
|
||||
vec2(0.0263642, -0.520833),
|
||||
vec2(0.0410172, -0.333333),
|
||||
vec2(0.0493588, -0.1875),
|
||||
vec2(0.0402784, -0.0833333),
|
||||
vec2(0.0211412, -0.0208333),
|
||||
vec2(0.0211412, 0.0208333),
|
||||
vec2(0.0402784, 0.0833333),
|
||||
vec2(0.0493588, 0.1875),
|
||||
vec2(0.0410172, 0.333333),
|
||||
vec2(0.0263642, 0.520833),
|
||||
vec2(0.017924, 0.75),
|
||||
vec2(0.0128496, 1.02083),
|
||||
vec2(0.0094389, 1.33333),
|
||||
vec2(0.00700976, 1.6875),
|
||||
vec2(0.00500364, 2.08333),
|
||||
vec2(0.00333804, 2.52083),
|
||||
vec2(0.000973794, 3.0));
|
||||
#endif //USE_25_SAMPLES
|
||||
|
||||
#ifdef USE_17_SAMPLES
|
||||
|
||||
const int kernel_size=17;
|
||||
|
||||
const int kernel_size = 17;
|
||||
QUALIFIER vec2 kernel[17] = vec2[](
|
||||
vec2(0.536343, 0.0),
|
||||
vec2(0.00317394, -2.0),
|
||||
vec2(0.0100386, -1.53125),
|
||||
vec2(0.0144609, -1.125),
|
||||
vec2(0.0216301, -0.78125),
|
||||
vec2(0.0347317, -0.5),
|
||||
vec2(0.0571056, -0.28125),
|
||||
vec2(0.0582416, -0.125),
|
||||
vec2(0.0324462, -0.03125),
|
||||
vec2(0.0324462, 0.03125),
|
||||
vec2(0.0582416, 0.125),
|
||||
vec2(0.0571056, 0.28125),
|
||||
vec2(0.0347317, 0.5),
|
||||
vec2(0.0216301, 0.78125),
|
||||
vec2(0.0144609, 1.125),
|
||||
vec2(0.0100386, 1.53125),
|
||||
vec2(0.00317394,2.0)
|
||||
);
|
||||
|
||||
vec2(0.536343, 0.0),
|
||||
vec2(0.00317394, -2.0),
|
||||
vec2(0.0100386, -1.53125),
|
||||
vec2(0.0144609, -1.125),
|
||||
vec2(0.0216301, -0.78125),
|
||||
vec2(0.0347317, -0.5),
|
||||
vec2(0.0571056, -0.28125),
|
||||
vec2(0.0582416, -0.125),
|
||||
vec2(0.0324462, -0.03125),
|
||||
vec2(0.0324462, 0.03125),
|
||||
vec2(0.0582416, 0.125),
|
||||
vec2(0.0571056, 0.28125),
|
||||
vec2(0.0347317, 0.5),
|
||||
vec2(0.0216301, 0.78125),
|
||||
vec2(0.0144609, 1.125),
|
||||
vec2(0.0100386, 1.53125),
|
||||
vec2(0.00317394, 2.0));
|
||||
#endif //USE_17_SAMPLES
|
||||
|
||||
|
||||
#ifdef USE_11_SAMPLES
|
||||
|
||||
const int kernel_size=11;
|
||||
|
||||
const int kernel_size = 11;
|
||||
QUALIFIER vec2 kernel[11] = vec2[](
|
||||
vec2(0.560479, 0.0),
|
||||
vec2(0.00471691, -2.0),
|
||||
vec2(0.0192831, -1.28),
|
||||
vec2(0.03639, -0.72),
|
||||
vec2(0.0821904, -0.32),
|
||||
vec2(0.0771802, -0.08),
|
||||
vec2(0.0771802, 0.08),
|
||||
vec2(0.0821904, 0.32),
|
||||
vec2(0.03639, 0.72),
|
||||
vec2(0.0192831, 1.28),
|
||||
vec2(0.00471691,2.0)
|
||||
);
|
||||
|
||||
vec2(0.560479, 0.0),
|
||||
vec2(0.00471691, -2.0),
|
||||
vec2(0.0192831, -1.28),
|
||||
vec2(0.03639, -0.72),
|
||||
vec2(0.0821904, -0.32),
|
||||
vec2(0.0771802, -0.08),
|
||||
vec2(0.0771802, 0.08),
|
||||
vec2(0.0821904, 0.32),
|
||||
vec2(0.03639, 0.72),
|
||||
vec2(0.0192831, 1.28),
|
||||
vec2(0.00471691, 2.0));
|
||||
#endif //USE_11_SAMPLES
|
||||
|
||||
|
||||
|
||||
uniform float max_radius;
|
||||
uniform float camera_z_far;
|
||||
uniform float camera_z_near;
|
||||
@ -115,28 +99,24 @@ layout(location = 0) out vec4 frag_color;
|
||||
|
||||
void main() {
|
||||
|
||||
float strength = texture(source_sss,uv_interp).r;
|
||||
strength*=strength; //stored as sqrt
|
||||
float strength = texture(source_sss, uv_interp).r;
|
||||
strength *= strength; //stored as sqrt
|
||||
|
||||
// Fetch color of current pixel:
|
||||
vec4 base_color = texture(source_diffuse, uv_interp);
|
||||
|
||||
|
||||
if (strength>0.0) {
|
||||
|
||||
if (strength > 0.0) {
|
||||
|
||||
// Fetch linear depth of current pixel:
|
||||
float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
float scale = unit_size; //remember depth is negative by default in OpenGL
|
||||
#else
|
||||
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
|
||||
float scale = unit_size / depth; //remember depth is negative by default in OpenGL
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
// Calculate the final step to fetch the surrounding pixels:
|
||||
vec2 step = max_radius * scale * dir;
|
||||
step *= strength; // Modulate it using the alpha channel.
|
||||
@ -157,35 +137,33 @@ void main() {
|
||||
|
||||
#ifdef ENABLE_FOLLOW_SURFACE
|
||||
// If the difference in depth is huge, we lerp color back to "colorM":
|
||||
float depth_cmp = texture(source_depth, offset).r *2.0 - 1.0;
|
||||
float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
|
||||
|
||||
#ifdef USE_ORTHOGONAL_PROJECTION
|
||||
depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
|
||||
depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
||||
#else
|
||||
depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
|
||||
#endif
|
||||
|
||||
float s = clamp(300.0f * scale *
|
||||
max_radius * abs(depth - depth_cmp),0.0,1.0);
|
||||
float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
|
||||
color = mix(color, base_color.rgb, s);
|
||||
#endif
|
||||
|
||||
// Accumulate:
|
||||
color*=kernel[i].x;
|
||||
color *= kernel[i].x;
|
||||
|
||||
#ifdef ENABLE_STRENGTH_WEIGHTING
|
||||
float color_s = texture(source_sss, offset).r;
|
||||
color_weight+=color_s * kernel[i].x;
|
||||
color*=color_s;
|
||||
color_weight += color_s * kernel[i].x;
|
||||
color *= color_s;
|
||||
#endif
|
||||
color_accum += color;
|
||||
|
||||
}
|
||||
|
||||
#ifdef ENABLE_STRENGTH_WEIGHTING
|
||||
color_accum/=color_weight;
|
||||
color_accum /= color_weight;
|
||||
#endif
|
||||
frag_color = vec4(color_accum,base_color.a); //keep alpha (used for SSAO)
|
||||
frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
|
||||
} else {
|
||||
frag_color = base_color;
|
||||
}
|
||||
|
@ -1,8 +1,7 @@
|
||||
[vertex]
|
||||
|
||||
|
||||
layout(location=0) in highp vec4 vertex_attrib;
|
||||
layout(location=4) in vec2 uv_in;
|
||||
layout(location = 0) in highp vec4 vertex_attrib;
|
||||
layout(location = 4) in vec2 uv_in;
|
||||
|
||||
out vec2 uv_interp;
|
||||
|
||||
@ -11,9 +10,8 @@ void main() {
|
||||
gl_Position = vertex_attrib;
|
||||
uv_interp = uv_in;
|
||||
#ifdef V_FLIP
|
||||
uv_interp.y = 1.0-uv_interp.y;
|
||||
uv_interp.y = 1.0 - uv_interp.y;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
[fragment]
|
||||
@ -22,7 +20,6 @@ void main() {
|
||||
precision mediump float;
|
||||
#endif
|
||||
|
||||
|
||||
in vec2 uv_interp;
|
||||
|
||||
uniform highp sampler2D source; //texunit:0
|
||||
@ -56,64 +53,54 @@ uniform sampler2D color_correction; //texunit:3
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef USE_GLOW_FILTER_BICUBIC
|
||||
|
||||
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
||||
float w0(float a)
|
||||
{
|
||||
return (1.0/6.0)*(a*(a*(-a + 3.0) - 3.0) + 1.0);
|
||||
float w0(float a) {
|
||||
return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
|
||||
}
|
||||
|
||||
float w1(float a)
|
||||
{
|
||||
return (1.0/6.0)*(a*a*(3.0*a - 6.0) + 4.0);
|
||||
float w1(float a) {
|
||||
return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
|
||||
}
|
||||
|
||||
float w2(float a)
|
||||
{
|
||||
return (1.0/6.0)*(a*(a*(-3.0*a + 3.0) + 3.0) + 1.0);
|
||||
float w2(float a) {
|
||||
return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
|
||||
}
|
||||
|
||||
float w3(float a)
|
||||
{
|
||||
return (1.0/6.0)*(a*a*a);
|
||||
float w3(float a) {
|
||||
return (1.0 / 6.0) * (a * a * a);
|
||||
}
|
||||
|
||||
// g0 and g1 are the two amplitude functions
|
||||
float g0(float a)
|
||||
{
|
||||
return w0(a) + w1(a);
|
||||
float g0(float a) {
|
||||
return w0(a) + w1(a);
|
||||
}
|
||||
|
||||
float g1(float a)
|
||||
{
|
||||
return w2(a) + w3(a);
|
||||
float g1(float a) {
|
||||
return w2(a) + w3(a);
|
||||
}
|
||||
|
||||
// h0 and h1 are the two offset functions
|
||||
float h0(float a)
|
||||
{
|
||||
return -1.0 + w1(a) / (w0(a) + w1(a));
|
||||
float h0(float a) {
|
||||
return -1.0 + w1(a) / (w0(a) + w1(a));
|
||||
}
|
||||
|
||||
float h1(float a)
|
||||
{
|
||||
return 1.0 + w3(a) / (w2(a) + w3(a));
|
||||
float h1(float a) {
|
||||
return 1.0 + w3(a) / (w2(a) + w3(a));
|
||||
}
|
||||
|
||||
uniform ivec2 glow_texture_size;
|
||||
|
||||
vec4 texture2D_bicubic(sampler2D tex, vec2 uv,int p_lod)
|
||||
{
|
||||
float lod=float(p_lod);
|
||||
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(glow_texture_size >> p_lod);
|
||||
vec2 pixel_size =1.0/tex_size;
|
||||
uv = uv*tex_size + 0.5;
|
||||
vec2 iuv = floor( uv );
|
||||
vec2 fuv = fract( uv );
|
||||
vec2 pixel_size = 1.0 / tex_size;
|
||||
uv = uv * tex_size + 0.5;
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
@ -127,24 +114,19 @@ vec4 texture2D_bicubic(sampler2D tex, vec2 uv,int p_lod)
|
||||
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - 0.5) * pixel_size;
|
||||
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - 0.5) * pixel_size;
|
||||
|
||||
return g0(fuv.y) * (g0x * textureLod(tex, p0,lod) +
|
||||
g1x * textureLod(tex, p1,lod)) +
|
||||
g1(fuv.y) * (g0x * textureLod(tex, p2,lod) +
|
||||
g1x * textureLod(tex, p3,lod));
|
||||
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
|
||||
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
|
||||
}
|
||||
|
||||
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex,m_uv,m_lod) texture2D_bicubic(m_tex,m_uv,m_lod)
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
|
||||
#else
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex,m_uv,m_lod) textureLod(m_tex,m_uv,float(m_lod))
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
vec3 tonemap_filmic(vec3 color,float white) {
|
||||
vec3 tonemap_filmic(vec3 color, float white) {
|
||||
|
||||
float A = 0.15;
|
||||
float B = 0.50;
|
||||
@ -154,11 +136,10 @@ vec3 tonemap_filmic(vec3 color,float white) {
|
||||
float F = 0.30;
|
||||
float W = 11.2;
|
||||
|
||||
vec3 coltn = ((color*(A*color+C*B)+D*E)/(color*(A*color+B)+D*F))-E/F;
|
||||
float whitetn = ((white*(A*white+C*B)+D*E)/(white*(A*white+B)+D*F))-E/F;
|
||||
|
||||
return coltn/whitetn;
|
||||
vec3 coltn = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
|
||||
float whitetn = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
|
||||
|
||||
return coltn / whitetn;
|
||||
}
|
||||
|
||||
vec3 tonemap_aces(vec3 color) {
|
||||
@ -167,12 +148,12 @@ vec3 tonemap_aces(vec3 color) {
|
||||
float c = 2.43f;
|
||||
float d = 0.59f;
|
||||
float e = 0.14f;
|
||||
return color = clamp((color*(a*color+b))/(color*(c*color+d)+e),vec3(0.0),vec3(1.0));
|
||||
return color = clamp((color * (a * color + b)) / (color * (c * color + d) + e), vec3(0.0), vec3(1.0));
|
||||
}
|
||||
|
||||
vec3 tonemap_reindhart(vec3 color,float white) {
|
||||
vec3 tonemap_reindhart(vec3 color, float white) {
|
||||
|
||||
return ( color * ( 1.0 + ( color / ( white) ) ) ) / ( 1.0 + color );
|
||||
return (color * (1.0 + (color / (white)))) / (1.0 + color);
|
||||
}
|
||||
|
||||
void main() {
|
||||
@ -181,10 +162,10 @@ void main() {
|
||||
|
||||
#ifdef USE_AUTO_EXPOSURE
|
||||
|
||||
color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
|
||||
color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
|
||||
#endif
|
||||
|
||||
color*=exposure;
|
||||
color *= exposure;
|
||||
|
||||
#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
|
||||
#define USING_GLOW
|
||||
@ -195,56 +176,54 @@ void main() {
|
||||
|
||||
#ifdef USE_GLOW_LEVEL1
|
||||
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,1).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 1).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL2
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,2).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 2).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL3
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,3).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 3).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL4
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,4).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 4).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL5
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,5).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 5).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL6
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,6).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 6).rgb;
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_LEVEL7
|
||||
glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,7).rgb;
|
||||
glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 7).rgb;
|
||||
#endif
|
||||
|
||||
|
||||
glow *= glow_intensity;
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef USE_REINDHART_TONEMAPPER
|
||||
|
||||
color.rgb = tonemap_reindhart(color.rgb,white);
|
||||
color.rgb = tonemap_reindhart(color.rgb, white);
|
||||
|
||||
# if defined(USING_GLOW)
|
||||
glow = tonemap_reindhart(glow,white);
|
||||
# endif
|
||||
#if defined(USING_GLOW)
|
||||
glow = tonemap_reindhart(glow, white);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_FILMIC_TONEMAPPER
|
||||
|
||||
color.rgb = tonemap_filmic(color.rgb,white);
|
||||
color.rgb = tonemap_filmic(color.rgb, white);
|
||||
|
||||
# if defined(USING_GLOW)
|
||||
glow = tonemap_filmic(glow,white);
|
||||
# endif
|
||||
#if defined(USING_GLOW)
|
||||
glow = tonemap_filmic(glow, white);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
@ -252,26 +231,26 @@ void main() {
|
||||
|
||||
color.rgb = tonemap_aces(color.rgb);
|
||||
|
||||
# if defined(USING_GLOW)
|
||||
#if defined(USING_GLOW)
|
||||
glow = tonemap_aces(glow);
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
//regular Linear -> SRGB conversion
|
||||
vec3 a = vec3(0.055);
|
||||
color.rgb = mix( (vec3(1.0)+a)*pow(color.rgb,vec3(1.0/2.4))-a , 12.92*color.rgb , lessThan(color.rgb,vec3(0.0031308)));
|
||||
color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
|
||||
|
||||
#if defined(USING_GLOW)
|
||||
glow = mix( (vec3(1.0)+a)*pow(glow,vec3(1.0/2.4))-a , 12.92*glow , lessThan(glow,vec3(0.0031308)));
|
||||
glow = mix((vec3(1.0) + a) * pow(glow, vec3(1.0 / 2.4)) - a, 12.92 * glow, lessThan(glow, vec3(0.0031308)));
|
||||
#endif
|
||||
|
||||
//glow needs to be added in SRGB space (together with image space effects)
|
||||
//glow needs to be added in SRGB space (together with image space effects)
|
||||
|
||||
color.rgb = clamp(color.rgb,0.0,1.0);
|
||||
color.rgb = clamp(color.rgb, 0.0, 1.0);
|
||||
|
||||
#if defined(USING_GLOW)
|
||||
glow = clamp(glow,0.0,1.0);
|
||||
glow = clamp(glow, 0.0, 1.0);
|
||||
#endif
|
||||
|
||||
#ifdef USE_GLOW_REPLACE
|
||||
@ -291,33 +270,32 @@ void main() {
|
||||
{
|
||||
|
||||
glow = (glow * 0.5) + 0.5;
|
||||
color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r)));
|
||||
color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g)));
|
||||
color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b)));
|
||||
color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r)));
|
||||
color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g)));
|
||||
color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(USING_GLOW) && !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE)
|
||||
//additive
|
||||
color.rgb+=glow;
|
||||
color.rgb += glow;
|
||||
#endif
|
||||
|
||||
#ifdef USE_BCS
|
||||
|
||||
color.rgb = mix(vec3(0.0),color.rgb,bcs.x);
|
||||
color.rgb = mix(vec3(0.5),color.rgb,bcs.y);
|
||||
color.rgb = mix(vec3(dot(vec3(1.0),color.rgb)*0.33333),color.rgb,bcs.z);
|
||||
color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
|
||||
color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
|
||||
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef USE_COLOR_CORRECTION
|
||||
|
||||
color.r = texture(color_correction,vec2(color.r,0.0)).r;
|
||||
color.g = texture(color_correction,vec2(color.g,0.0)).g;
|
||||
color.b = texture(color_correction,vec2(color.b,0.0)).b;
|
||||
color.r = texture(color_correction, vec2(color.r, 0.0)).r;
|
||||
color.g = texture(color_correction, vec2(color.g, 0.0)).g;
|
||||
color.b = texture(color_correction, vec2(color.b, 0.0)).b;
|
||||
#endif
|
||||
|
||||
|
||||
frag_color=vec4(color.rgb,1.0);
|
||||
frag_color = vec4(color.rgb, 1.0);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user