With this PR it's possible to add a collision during the Mesh import, directly in editor.
To generate the shape is possible to chose between the following options:
- Decompose Convex: The Mesh is decomposed in one or many Convex Shapes (Using the VHACD library).
- Simple Convex: Is generated a convex shape that enclose the entire mesh.
- Trimesh: Generate a trimesh shape using the Mesh faces.
- Box: Add a primitive box shape, where you can tweak the `size`, `position`, `rotation`.
- Sphere: Add a primitive sphere shape, where you can tweak the `radius`, `position`, `rotation`.
- Cylinder: Add a primitive cylinder shape, where you can tweak the `height`, `radius`, `position`, `rotation`.
- Capsule: Add a primitive capsule shape, where you can tweak the `height`, `radius`, `position`, `rotation`.
It's also possible to chose the generated body, so you can create:
- Rigid Body.
- Static Body.
- Area.
Tentative fix for missing bones when bones are not sorted as expected.
For example, if the root comes last, all child bones are removed and
the skeleton ends up with just the root.
Changes:
- Rename few methods/property and group them in the editor when it's possible
- Make MotionResult API consistency with KinematicCollision
- Return a boolean in move_and_slide if there was a collision
- New methods:
- get_floor_angle on CharacterBody to get the floor angle.
- get_angle on KinematicCollision to get the collision angle.
- get_last_slide_collision to quickly get the latest collision of move_and_slide.
This PR and commit adds a new IK system for 3D with the Skeleton3D node
that adds several new IK solvers, as well as additional changes and functionality
for making bone manipulation in Godot easier.
This work was sponsored by GSoC 2020 and TwistedTwigleg
Full list of changes:
* Adds a SkeletonModification3D resource
* This resource is the base where all IK code is written and executed
* Adds a SkeletonModificationStack3D resource
* This node oversees the execution of the modifications and acts as a bridge of sorts for the modifications to the Skeleton3D node
* Adds SkeletonModification3D resources for LookAt, CCDIK, FABRIK, Jiggle, and TwoBoneIK
* Each modification is in it's own file
* Several changes to Skeletons, listed below:
* Added local_pose_override, which acts just like global_pose_override but keeps bone-child relationships intract
* So if you move a bone using local_pose_override, all of the bones that are children will also be moved. This is different than global_pose_override, which only affects the individual bone
* Internally bones keep track of their children. This removes the need of a processing list, makes it possible to update just a few select bones at a time, and makes it easier to traverse down the bone chain
* Additional functions added for converting from world transform to global poses, global poses to local poses, and all the same changes but backwards (local to global, global to world). This makes it much easier to work with bone transforms without needing to think too much about how to convert them.
* New signal added, bone_pose_changed, that can be used to tell if a specific bone changed its transform. Needed for BoneAttachment3D
* Added functions for getting the forward position of a bone
* BoneAttachment3D node refactored heavily
* BoneAttachment3D node is now completely standalone in its functionality.
* This makes the code easier and less interconnected, as well as allowing them to function properly without being direct children of Skeleton3D nodes
* BoneAttachment3D now can be set either using the index or the bone name.
* BoneAttachment3D nodes can now set the bone transform instead of just following it. This is disabled by default for compatibility
* BoneAttachment3D now shows a warning when not configured correctly
* Added rotate_to_align function in Basis
* Added class reference documentation for all changes
- Back to 1-based layer names to make it clearer in editor UI
- Layer bit accessors are renamed to layer value and 1-based too
- Uniform errors and documentation in render and physics
- Fix a few remaining collision_layer used in place of collision_mask
This makes it clearer that this property is only about physics FPS,
not rendering FPS.
The `physics_fps` project setting was also renamed to
`physics_ticks_per_second` for consistency.
Infinite inertia:
Not needed anymore, since it's now possible to set one-directional
collision layers in order for characters to ignore rigid bodies, while
rigid bodies still collide with characters.
Ray shapes:
They were introduced as a work around to allow constant speed on slopes,
which is now possible with the new property in CharacterBody instead.
Same thing that was already done in 2D, applies moving platform motion
by using a call to move_and_collide that excludes the platform itself,
instead of making it part of the body motion.
Helps with handling walls and slopes correctly when the character walks
on the moving platform.
Also made some minor adjustments to the 2D version and documentation.
Co-authored-by: fabriceci <fabricecipolla@gmail.com>
When synchronizing CharacterBody motion with moving the platform using
direct body state, only the linear velocity was taken into account.
This change exposes velocity at local point in direct body state and
uses it in move_and_slide to get the proper velocity that includes
rotations.
* Simplified code a lot, bias based on normalized cascade size.
* Lets scale cascades, max distance, etc. without creating acne.
* Fixed normal biasing in directional shadows.
I removed normal biasing in both omni and spot shadows, since the technique can't be easily implemented there.
Will need to be replaced by something else.
* Clean-up of node_3d_editor_plugin.{h,cpp}: removed unused code, fixed some bugs.
* Moved node_3d_editor_gizmos.{h,cpp} to editor/plugins.
* Added support for multiple gizmos per node. This means custom gizmos will no longer override the built-in ones and that multiple gizmos can be used in more complex nodes.
* Added support for handle IDs. When adding handles to a gizmo, an ID can be specified for each one, making it easier to work with gizmos that have a variable number of handles.
* Added support for subgizmos, selectable elements that can be transformed without needing a node of their own. By overriding _subgizmo_intersect_frustum() and/or _subgizmo_intersect_ray() gizmos can define which subgizmos should be selected on a region or click selection. Subgizmo transformations are applied using get/set/commit virtual methods, similar to how handles work.