The error check was added for `FileAccessUnix` but it's not an error when both
`p_src` and `p_length` are zero.
Added correct error checks to all implementations to prevent the actual
erroneous case: `p_src` is nullptr but `p_length > 0` (risk of null pointer
indexing).
Fixes#33564.
(cherry picked from commit 01d5c463be)
This changes the types of a big number of variables.
General rules:
- Using `uint64_t` in general. We also considered `int64_t` but eventually
settled on keeping it unsigned, which is also closer to what one would expect
with `size_t`/`off_t`.
- We only keep `int64_t` for `seek_end` (takes a negative offset from the end)
and for the `Variant` bindings, since `Variant::INT` is `int64_t`. This means
we only need to guard against passing negative values in `core_bind.cpp`.
- Using `uint32_t` integers for concepts not needing such a huge range, like
pages, blocks, etc.
In addition:
- Improve usage of integer types in some related places; namely, `DirAccess`,
core binds.
Note:
- On Windows, `_ftelli64` reports invalid values when using 32-bit MinGW with
version < 8.0. This was an upstream bug fixed in 8.0. It breaks support for
big files on 32-bit Windows builds made with that toolchain. We might add a
workaround.
Fixes#44363.
Fixesgodotengine/godot-proposals#400.
Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
In the legacy renderer unrigged polys would display with no transform applied, whereas the software skinning didn't deal with these at all (outputted them with position zero). This PR simply copies the source to destination verts and replicates the legacy behaviour.
All my earlier test cases for software skinning had the polys parent transform to be identity. This works fine until you had cases where the user had moved the transform of the parent nodes of skinned polys.
This PR fixes this situation by taking into account the final (concatenated) transform of the polys RELATIVE to the skeleton base transform. It does this by applying the inverse skeleton base transform to the poly final transform.
Since we clone the environments to build thirdparty code, we don't get an
explicit dependency on the build objects produced by that environment.
So when we update thirdparty code, Godot code using it is not necessarily
rebuilt (I think it is for changed headers, but not for changed .c/.cpp files),
which can lead to an invalid compilation output (linking old Godot .o files
with a newer, potentially ABI breaking version of thirdparty code).
This was only seen as really problematic with bullet updates (leading to
crashes when rebuilding Godot after a bullet update without cleaning .o files),
but it's safer to fix it everywhere, even if it's a LOT of hacky boilerplate.
(cherry picked from commit c7b53c03ae)
We've been using standard C library functions `memcpy`/`memset` for these since
2016 with 67f65f6639.
There was still the possibility for third-party platform ports to override the
definitions with a custom header, but this doesn't seem useful anymore.
Backport of #48239.
The final_modulate was incorrectly being set in the uniform on light passes in GLES3 in situations where color was baked in the vertices. This was already correct in GLES2. This PR makes prevents setting final_modulate in this situation.
The translation to larger vertex formats was assuming that batches were rects, and not accounting that the num_commands had a different meaning for lines and polys, so the calculation for number of vertices to translate was incorrect in these cases.
Also prevents infinite loop if a single polygon has too many vertices to fit in the batch buffer.
When users create an invalid shader, the shader->valid flag is set to false. Batching previously assumes that shaders are valid, and this can result in primitives with invalid shader being joined, causing visual errors.
This PR prevents joining items that have invalid shaders.
Allows users to override default API usage, in order to get best performance on different platforms.
Also changes the default legacy flags to use STREAM rather than DYNAMIC.
When using modulate_fvf, final_modulate was still being applied on CPU in some circumstances, AS WELL as in the shader. This double application resulted in the wrong color.
This PR prevents CPU multiplication of final_modulate when modulate_fvf is in use.
It also applies an OR to the joined item flags with each item joined. This fixes a bug where a smaller FVF is used than required, resulting in incorrect colors.
In rare cases default batches could occur which were containing commands that were not owned by the first item referenced by the joined item. This had assumed to be the case, and would read the wrong command, or crash.
Instead for safety in this PR we now store a pointer to the parent item in default batches, and use this to determine the correct command list instead of assuming.
An earlier PR #46898 had flipped the rotation basis polarity. This turns out to also need a corresponding flip for the light angles for the lighting to make sense.