338 lines
9.2 KiB
C#
338 lines
9.2 KiB
C#
using System;
|
|
using System.Runtime.InteropServices;
|
|
#if REAL_T_IS_DOUBLE
|
|
using real_t = System.Double;
|
|
#else
|
|
using real_t = System.Single;
|
|
#endif
|
|
|
|
namespace Godot
|
|
{
|
|
[StructLayout(LayoutKind.Sequential)]
|
|
public struct Quat : IEquatable<Quat>
|
|
{
|
|
private static readonly Quat identity = new Quat(0f, 0f, 0f, 1f);
|
|
|
|
public real_t x;
|
|
public real_t y;
|
|
public real_t z;
|
|
public real_t w;
|
|
|
|
public static Quat Identity
|
|
{
|
|
get { return identity; }
|
|
}
|
|
|
|
public real_t this[int index]
|
|
{
|
|
get
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0:
|
|
return x;
|
|
case 1:
|
|
return y;
|
|
case 2:
|
|
return z;
|
|
case 3:
|
|
return w;
|
|
default:
|
|
throw new IndexOutOfRangeException();
|
|
}
|
|
}
|
|
set
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0:
|
|
x = value;
|
|
break;
|
|
case 1:
|
|
y = value;
|
|
break;
|
|
case 2:
|
|
z = value;
|
|
break;
|
|
case 3:
|
|
w = value;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfRangeException();
|
|
}
|
|
}
|
|
}
|
|
|
|
public Quat CubicSlerp(Quat b, Quat preA, Quat postB, real_t t)
|
|
{
|
|
real_t t2 = (1.0f - t) * t * 2f;
|
|
Quat sp = Slerp(b, t);
|
|
Quat sq = preA.Slerpni(postB, t);
|
|
return sp.Slerpni(sq, t2);
|
|
}
|
|
|
|
public real_t Dot(Quat b)
|
|
{
|
|
return x * b.x + y * b.y + z * b.z + w * b.w;
|
|
}
|
|
|
|
public Quat Inverse()
|
|
{
|
|
return new Quat(-x, -y, -z, w);
|
|
}
|
|
|
|
public real_t Length()
|
|
{
|
|
return Mathf.Sqrt(LengthSquared());
|
|
}
|
|
|
|
public real_t LengthSquared()
|
|
{
|
|
return Dot(this);
|
|
}
|
|
|
|
public Quat Normalized()
|
|
{
|
|
return this / Length();
|
|
}
|
|
|
|
public void Set(real_t x, real_t y, real_t z, real_t w)
|
|
{
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
this.w = w;
|
|
}
|
|
public void Set(Quat q)
|
|
{
|
|
x = q.x;
|
|
y = q.y;
|
|
z = q.z;
|
|
w = q.w;
|
|
}
|
|
|
|
public Quat Slerp(Quat b, real_t t)
|
|
{
|
|
// Calculate cosine
|
|
real_t cosom = x * b.x + y * b.y + z * b.z + w * b.w;
|
|
|
|
var to1 = new real_t[4];
|
|
|
|
// Adjust signs if necessary
|
|
if (cosom < 0.0)
|
|
{
|
|
cosom = -cosom; to1[0] = -b.x;
|
|
to1[1] = -b.y;
|
|
to1[2] = -b.z;
|
|
to1[3] = -b.w;
|
|
}
|
|
else
|
|
{
|
|
to1[0] = b.x;
|
|
to1[1] = b.y;
|
|
to1[2] = b.z;
|
|
to1[3] = b.w;
|
|
}
|
|
|
|
real_t sinom, scale0, scale1;
|
|
|
|
// Calculate coefficients
|
|
if ((1.0 - cosom) > Mathf.Epsilon)
|
|
{
|
|
// Standard case (Slerp)
|
|
real_t omega = Mathf.Acos(cosom);
|
|
sinom = Mathf.Sin(omega);
|
|
scale0 = Mathf.Sin((1.0f - t) * omega) / sinom;
|
|
scale1 = Mathf.Sin(t * omega) / sinom;
|
|
}
|
|
else
|
|
{
|
|
// Quaternions are very close so we can do a linear interpolation
|
|
scale0 = 1.0f - t;
|
|
scale1 = t;
|
|
}
|
|
|
|
// Calculate final values
|
|
return new Quat
|
|
(
|
|
scale0 * x + scale1 * to1[0],
|
|
scale0 * y + scale1 * to1[1],
|
|
scale0 * z + scale1 * to1[2],
|
|
scale0 * w + scale1 * to1[3]
|
|
);
|
|
}
|
|
|
|
public Quat Slerpni(Quat b, real_t t)
|
|
{
|
|
real_t dot = Dot(b);
|
|
|
|
if (Mathf.Abs(dot) > 0.9999f)
|
|
{
|
|
return this;
|
|
}
|
|
|
|
real_t theta = Mathf.Acos(dot);
|
|
real_t sinT = 1.0f / Mathf.Sin(theta);
|
|
real_t newFactor = Mathf.Sin(t * theta) * sinT;
|
|
real_t invFactor = Mathf.Sin((1.0f - t) * theta) * sinT;
|
|
|
|
return new Quat
|
|
(
|
|
invFactor * x + newFactor * b.x,
|
|
invFactor * y + newFactor * b.y,
|
|
invFactor * z + newFactor * b.z,
|
|
invFactor * w + newFactor * b.w
|
|
);
|
|
}
|
|
|
|
public Vector3 Xform(Vector3 v)
|
|
{
|
|
Quat q = this * v;
|
|
q *= Inverse();
|
|
return new Vector3(q.x, q.y, q.z);
|
|
}
|
|
|
|
// Constructors
|
|
public Quat(real_t x, real_t y, real_t z, real_t w)
|
|
{
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
this.w = w;
|
|
}
|
|
public Quat(Quat q)
|
|
{
|
|
x = q.x;
|
|
y = q.y;
|
|
z = q.z;
|
|
w = q.w;
|
|
}
|
|
|
|
public Quat(Vector3 axis, real_t angle)
|
|
{
|
|
real_t d = axis.Length();
|
|
real_t angle_t = angle;
|
|
|
|
if (d == 0f)
|
|
{
|
|
x = 0f;
|
|
y = 0f;
|
|
z = 0f;
|
|
w = 0f;
|
|
}
|
|
else
|
|
{
|
|
real_t s = Mathf.Sin(angle_t * 0.5f) / d;
|
|
|
|
x = axis.x * s;
|
|
y = axis.y * s;
|
|
z = axis.z * s;
|
|
w = Mathf.Cos(angle_t * 0.5f);
|
|
}
|
|
}
|
|
|
|
public static Quat operator *(Quat left, Quat right)
|
|
{
|
|
return new Quat
|
|
(
|
|
left.w * right.x + left.x * right.w + left.y * right.z - left.z * right.y,
|
|
left.w * right.y + left.y * right.w + left.z * right.x - left.x * right.z,
|
|
left.w * right.z + left.z * right.w + left.x * right.y - left.y * right.x,
|
|
left.w * right.w - left.x * right.x - left.y * right.y - left.z * right.z
|
|
);
|
|
}
|
|
|
|
public static Quat operator +(Quat left, Quat right)
|
|
{
|
|
return new Quat(left.x + right.x, left.y + right.y, left.z + right.z, left.w + right.w);
|
|
}
|
|
|
|
public static Quat operator -(Quat left, Quat right)
|
|
{
|
|
return new Quat(left.x - right.x, left.y - right.y, left.z - right.z, left.w - right.w);
|
|
}
|
|
|
|
public static Quat operator -(Quat left)
|
|
{
|
|
return new Quat(-left.x, -left.y, -left.z, -left.w);
|
|
}
|
|
|
|
public static Quat operator *(Quat left, Vector3 right)
|
|
{
|
|
return new Quat
|
|
(
|
|
left.w * right.x + left.y * right.z - left.z * right.y,
|
|
left.w * right.y + left.z * right.x - left.x * right.z,
|
|
left.w * right.z + left.x * right.y - left.y * right.x,
|
|
-left.x * right.x - left.y * right.y - left.z * right.z
|
|
);
|
|
}
|
|
|
|
public static Quat operator *(Vector3 left, Quat right)
|
|
{
|
|
return new Quat
|
|
(
|
|
right.w * left.x + right.y * left.z - right.z * left.y,
|
|
right.w * left.y + right.z * left.x - right.x * left.z,
|
|
right.w * left.z + right.x * left.y - right.y * left.x,
|
|
-right.x * left.x - right.y * left.y - right.z * left.z
|
|
);
|
|
}
|
|
|
|
public static Quat operator *(Quat left, real_t right)
|
|
{
|
|
return new Quat(left.x * right, left.y * right, left.z * right, left.w * right);
|
|
}
|
|
|
|
public static Quat operator *(real_t left, Quat right)
|
|
{
|
|
return new Quat(right.x * left, right.y * left, right.z * left, right.w * left);
|
|
}
|
|
|
|
public static Quat operator /(Quat left, real_t right)
|
|
{
|
|
return left * (1.0f / right);
|
|
}
|
|
|
|
public static bool operator ==(Quat left, Quat right)
|
|
{
|
|
return left.Equals(right);
|
|
}
|
|
|
|
public static bool operator !=(Quat left, Quat right)
|
|
{
|
|
return !left.Equals(right);
|
|
}
|
|
|
|
public override bool Equals(object obj)
|
|
{
|
|
if (obj is Vector2)
|
|
{
|
|
return Equals((Vector2)obj);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public bool Equals(Quat other)
|
|
{
|
|
return x == other.x && y == other.y && z == other.z && w == other.w;
|
|
}
|
|
|
|
public override int GetHashCode()
|
|
{
|
|
return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode();
|
|
}
|
|
|
|
public override string ToString()
|
|
{
|
|
return String.Format("({0}, {1}, {2}, {3})", x.ToString(), y.ToString(), z.ToString(), w.ToString());
|
|
}
|
|
|
|
public string ToString(string format)
|
|
{
|
|
return String.Format("({0}, {1}, {2}, {3})", x.ToString(format), y.ToString(format), z.ToString(format), w.ToString(format));
|
|
}
|
|
}
|
|
}
|