godot/scene/animation/tween_interpolaters.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

408 lines
13 KiB
C++

/*************************************************************************/
/* tween_interpolaters.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "tween.h"
const real_t pi = 3.1415926535898;
///////////////////////////////////////////////////////////////////////////
// linear
///////////////////////////////////////////////////////////////////////////
namespace linear {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return c * t / d + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
return c * t / d + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
return c * t / d + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return c * t / d + b;
}
};
///////////////////////////////////////////////////////////////////////////
// sine
///////////////////////////////////////////////////////////////////////////
namespace sine {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return -c * cos(t / d * (pi / 2)) + c + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
return c * sin(t / d * (pi / 2)) + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
return -c / 2 * (cos(pi * t / d) - 1) + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// quint
///////////////////////////////////////////////////////////////////////////
namespace quint {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return c * pow(t / d, 5) + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
return c * (pow(t / d - 1, 5) + 1) + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
t = t / d * 2;
if (t < 1) return c / 2 * pow(t, 5) + b;
return c / 2 * (pow(t - 2, 5) + 2) + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// quart
///////////////////////////////////////////////////////////////////////////
namespace quart {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return c * pow(t / d, 4) + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
return -c * (pow(t / d - 1, 4) - 1) + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
t = t / d * 2;
if (t < 1) return c / 2 * pow(t, 4) + b;
return -c / 2 * (pow(t - 2, 4) - 2) + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// quad
///////////////////////////////////////////////////////////////////////////
namespace quad {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return c * pow(t / d, 2) + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
t = t / d;
return -c * t * (t - 2) + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
t = t / d * 2;
if (t < 1) return c / 2 * pow(t, 2) + b;
return -c / 2 * ((t - 1) * (t - 3) - 1) + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// expo
///////////////////////////////////////////////////////////////////////////
namespace expo {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
if (t == 0) return b;
return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
if (t == d) return b + c;
return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
if (t == 0) return b;
if (t == d) return b + c;
t = t / d * 2;
if (t < 1) return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005;
return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// elastic
///////////////////////////////////////////////////////////////////////////
namespace elastic {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
if (t == 0) return b;
if ((t /= d) == 1) return b + c;
float p = d * 0.3f;
float a = c;
float s = p / 4;
float postFix = a * pow(2,10 * (t -= 1)); // this is a fix, again, with post-increment operators
return -(postFix * sin((t * d - s) * (2 * pi) / p )) + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
if (t == 0) return b;
if ((t /= d) == 1) return b + c;
float p = d * 0.3f;
float a = c;
float s = p / 4;
return (a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p ) + c + b);
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
if (t == 0) return b;
if ((t /= d / 2) == 2) return b + c;
float p = d * (0.3f * 1.5f);
float a = c;
float s = p / 4;
if (t < 1) {
float postFix = a * pow(2, 10 * (t -= 1)); // postIncrement is evil
return -0.5f * (postFix * sin((t * d - s) * (2 * pi) / p)) + b;
}
float postFix = a * pow(2, -10 * (t -= 1)); // postIncrement is evil
return postFix * sin((t * d - s) * (2 * pi) / p ) * 0.5f + c + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// cubic
///////////////////////////////////////////////////////////////////////////
namespace cubic {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return c * (t /= d) * t * t + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
return c * ((t = t / d - 1) * t * t + 1) + b;
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
if ((t /= d / 2) < 1) return c / 2 * t * t * t + b;
return c / 2 * ((t -= 2) * t * t + 2) + b;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// circ
///////////////////////////////////////////////////////////////////////////
namespace circ {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return -c * (sqrt(1 - (t /= d) * t) - 1) + b; // TODO: ehrich: operation with t is undefined
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
return c * sqrt(1 - (t = t / d - 1) * t) + b; // TODO: ehrich: operation with t is undefined
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
if ((t /= d / 2) < 1) return -c / 2 * (sqrt(1 - t * t) - 1) + b;
return c / 2 * (sqrt(1 - t * (t -= 2)) + 1) + b; // TODO: ehrich: operation with t is undefined
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// bounce
///////////////////////////////////////////////////////////////////////////
namespace bounce {
static real_t out(real_t t, real_t b, real_t c, real_t d);
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
return c - out(d - t, 0, c, d) + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
if ((t /= d) < (1 / 2.75f)) {
return c*(7.5625f*t*t) + b;
} else if (t < (2/2.75f)) {
float postFix = t-=(1.5f/2.75f);
return c*(7.5625f*(postFix)*t + .75f) + b;
} else if (t < (2.5/2.75)) {
float postFix = t-=(2.25f/2.75f);
return c*(7.5625f*(postFix)*t + .9375f) + b;
} else {
float postFix = t-=(2.625f/2.75f);
return c*(7.5625f*(postFix)*t + .984375f) + b;
}
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? in(t * 2, b, c / 2, d)
: out((t * 2) - d, b + c / 2, c / 2, d)
;
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
///////////////////////////////////////////////////////////////////////////
// back
///////////////////////////////////////////////////////////////////////////
namespace back {
static real_t in(real_t t, real_t b, real_t c, real_t d)
{
float s = 1.70158f;
float postFix = t /= d;
return c * (postFix) * t * ((s + 1) * t - s) + b;
}
static real_t out(real_t t, real_t b, real_t c, real_t d)
{
float s = 1.70158f;
return c * ((t = t / d- 1) * t * ((s + 1) * t + s) + 1) + b; // TODO: ehrich: operation with t is undefined
}
static real_t in_out(real_t t, real_t b, real_t c, real_t d)
{
float s = 1.70158f;
if ((t /= d / 2) < 1) return c / 2 * (t * t * (((s *= (1.525f)) + 1) * t - s)) + b; // TODO: ehrich: operation with s is undefined
float postFix = t -= 2;
return c / 2 * ((postFix) * t * (((s *= (1.525f)) + 1) * t + s) + 2) + b; // TODO: ehrich: operation with s is undefined
}
static real_t out_in(real_t t, real_t b, real_t c, real_t d)
{
return (t < d / 2)
? out(t * 2, b, c / 2, d)
: in((t * 2) - d, b + c / 2, c / 2, d)
;
}
};
Tween::interpolater Tween::interpolaters[Tween::TRANS_COUNT][Tween::EASE_COUNT] = {
{ &linear::in, &linear::out, &linear::in_out, &linear::out_in },
{ &sine::in, &sine::out, &sine::in_out, &sine::out_in },
{ &quint::in, &quint::out, &quint::in_out, &quint::out_in },
{ &quart::in, &quart::out, &quart::in_out, &quart::out_in },
{ &quad::in, &quad::out, &quad::in_out, &quad::out_in },
{ &expo::in, &expo::out, &expo::in_out, &expo::out_in },
{ &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in },
{ &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in },
{ &circ::in, &circ::out, &circ::in_out, &circ::out_in },
{ &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in },
{ &back::in, &back::out, &back::in_out, &back::out_in },
};
real_t Tween::_run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t t, real_t b, real_t c, real_t d) {
interpolater cb = interpolaters[p_trans_type][p_ease_type];
ERR_FAIL_COND_V(cb == NULL, b);
return cb(t, b, c, d);
}