687 lines
18 KiB
C++
687 lines
18 KiB
C++
/*************************************************************************/
|
|
/* array.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "array.h"
|
|
|
|
#include "container_type_validate.h"
|
|
#include "core/object/class_db.h"
|
|
#include "core/object/script_language.h"
|
|
#include "core/templates/hashfuncs.h"
|
|
#include "core/templates/search_array.h"
|
|
#include "core/templates/vector.h"
|
|
#include "core/variant/callable.h"
|
|
#include "core/variant/variant.h"
|
|
|
|
class ArrayPrivate {
|
|
public:
|
|
SafeRefCount refcount;
|
|
Vector<Variant> array;
|
|
|
|
ContainerTypeValidate typed;
|
|
};
|
|
|
|
void Array::_ref(const Array &p_from) const {
|
|
ArrayPrivate *_fp = p_from._p;
|
|
|
|
ERR_FAIL_COND(!_fp); // should NOT happen.
|
|
|
|
if (_fp == _p) {
|
|
return; // whatever it is, nothing to do here move along
|
|
}
|
|
|
|
bool success = _fp->refcount.ref();
|
|
|
|
ERR_FAIL_COND(!success); // should really not happen either
|
|
|
|
_unref();
|
|
|
|
_p = p_from._p;
|
|
}
|
|
|
|
void Array::_unref() const {
|
|
if (!_p) {
|
|
return;
|
|
}
|
|
|
|
if (_p->refcount.unref()) {
|
|
memdelete(_p);
|
|
}
|
|
_p = nullptr;
|
|
}
|
|
|
|
Variant &Array::operator[](int p_idx) {
|
|
return _p->array.write[p_idx];
|
|
}
|
|
|
|
const Variant &Array::operator[](int p_idx) const {
|
|
return _p->array[p_idx];
|
|
}
|
|
|
|
int Array::size() const {
|
|
return _p->array.size();
|
|
}
|
|
|
|
bool Array::is_empty() const {
|
|
return _p->array.is_empty();
|
|
}
|
|
|
|
void Array::clear() {
|
|
_p->array.clear();
|
|
}
|
|
|
|
bool Array::operator==(const Array &p_array) const {
|
|
return recursive_equal(p_array, 0);
|
|
}
|
|
|
|
bool Array::operator!=(const Array &p_array) const {
|
|
return !recursive_equal(p_array, 0);
|
|
}
|
|
|
|
bool Array::recursive_equal(const Array &p_array, int recursion_count) const {
|
|
// Cheap checks
|
|
if (_p == p_array._p) {
|
|
return true;
|
|
}
|
|
const Vector<Variant> &a1 = _p->array;
|
|
const Vector<Variant> &a2 = p_array._p->array;
|
|
const int size = a1.size();
|
|
if (size != a2.size()) {
|
|
return false;
|
|
}
|
|
|
|
// Heavy O(n) check
|
|
if (recursion_count > MAX_RECURSION) {
|
|
ERR_PRINT("Max recursion reached");
|
|
return true;
|
|
}
|
|
recursion_count++;
|
|
for (int i = 0; i < size; i++) {
|
|
if (!a1[i].hash_compare(a2[i], recursion_count)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Array::operator<(const Array &p_array) const {
|
|
int a_len = size();
|
|
int b_len = p_array.size();
|
|
|
|
int min_cmp = MIN(a_len, b_len);
|
|
|
|
for (int i = 0; i < min_cmp; i++) {
|
|
if (operator[](i) < p_array[i]) {
|
|
return true;
|
|
} else if (p_array[i] < operator[](i)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return a_len < b_len;
|
|
}
|
|
|
|
bool Array::operator<=(const Array &p_array) const {
|
|
return !operator>(p_array);
|
|
}
|
|
bool Array::operator>(const Array &p_array) const {
|
|
return p_array < *this;
|
|
}
|
|
bool Array::operator>=(const Array &p_array) const {
|
|
return !operator<(p_array);
|
|
}
|
|
|
|
uint32_t Array::hash() const {
|
|
return recursive_hash(0);
|
|
}
|
|
|
|
uint32_t Array::recursive_hash(int recursion_count) const {
|
|
if (recursion_count > MAX_RECURSION) {
|
|
ERR_PRINT("Max recursion reached");
|
|
return 0;
|
|
}
|
|
|
|
uint32_t h = hash_djb2_one_32(Variant::ARRAY);
|
|
|
|
recursion_count++;
|
|
for (int i = 0; i < _p->array.size(); i++) {
|
|
h = hash_djb2_one_32(_p->array[i].recursive_hash(recursion_count), h);
|
|
}
|
|
return h;
|
|
}
|
|
|
|
bool Array::_assign(const Array &p_array) {
|
|
if (_p->typed.type != Variant::OBJECT && _p->typed.type == p_array._p->typed.type) {
|
|
//same type or untyped, just reference, should be fine
|
|
_ref(p_array);
|
|
} else if (_p->typed.type == Variant::NIL) { //from typed to untyped, must copy, but this is cheap anyway
|
|
_p->array = p_array._p->array;
|
|
} else if (p_array._p->typed.type == Variant::NIL) { //from untyped to typed, must try to check if they are all valid
|
|
if (_p->typed.type == Variant::OBJECT) {
|
|
//for objects, it needs full validation, either can be converted or fail
|
|
for (int i = 0; i < p_array._p->array.size(); i++) {
|
|
if (!_p->typed.validate(p_array._p->array[i], "assign")) {
|
|
return false;
|
|
}
|
|
}
|
|
_p->array = p_array._p->array; //then just copy, which is cheap anyway
|
|
|
|
} else {
|
|
//for non objects, we need to check if there is a valid conversion, which needs to happen one by one, so this is the worst case.
|
|
Vector<Variant> new_array;
|
|
new_array.resize(p_array._p->array.size());
|
|
for (int i = 0; i < p_array._p->array.size(); i++) {
|
|
Variant src_val = p_array._p->array[i];
|
|
if (src_val.get_type() == _p->typed.type) {
|
|
new_array.write[i] = src_val;
|
|
} else if (Variant::can_convert_strict(src_val.get_type(), _p->typed.type)) {
|
|
Variant *ptr = &src_val;
|
|
Callable::CallError ce;
|
|
Variant::construct(_p->typed.type, new_array.write[i], (const Variant **)&ptr, 1, ce);
|
|
if (ce.error != Callable::CallError::CALL_OK) {
|
|
ERR_FAIL_V_MSG(false, "Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'.");
|
|
}
|
|
} else {
|
|
ERR_FAIL_V_MSG(false, "Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'.");
|
|
}
|
|
}
|
|
|
|
_p->array = new_array;
|
|
}
|
|
} else if (_p->typed.can_reference(p_array._p->typed)) { //same type or compatible
|
|
_ref(p_array);
|
|
} else {
|
|
ERR_FAIL_V_MSG(false, "Assignment of arrays of incompatible types.");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Array::operator=(const Array &p_array) {
|
|
_ref(p_array);
|
|
}
|
|
|
|
void Array::push_back(const Variant &p_value) {
|
|
ERR_FAIL_COND(!_p->typed.validate(p_value, "push_back"));
|
|
_p->array.push_back(p_value);
|
|
}
|
|
|
|
void Array::append_array(const Array &p_array) {
|
|
ERR_FAIL_COND(!_p->typed.validate(p_array, "append_array"));
|
|
_p->array.append_array(p_array._p->array);
|
|
}
|
|
|
|
Error Array::resize(int p_new_size) {
|
|
return _p->array.resize(p_new_size);
|
|
}
|
|
|
|
Error Array::insert(int p_pos, const Variant &p_value) {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "insert"), ERR_INVALID_PARAMETER);
|
|
return _p->array.insert(p_pos, p_value);
|
|
}
|
|
|
|
void Array::fill(const Variant &p_value) {
|
|
ERR_FAIL_COND(!_p->typed.validate(p_value, "fill"));
|
|
_p->array.fill(p_value);
|
|
}
|
|
|
|
void Array::erase(const Variant &p_value) {
|
|
ERR_FAIL_COND(!_p->typed.validate(p_value, "erase"));
|
|
_p->array.erase(p_value);
|
|
}
|
|
|
|
Variant Array::front() const {
|
|
ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
|
|
return operator[](0);
|
|
}
|
|
|
|
Variant Array::back() const {
|
|
ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
|
|
return operator[](_p->array.size() - 1);
|
|
}
|
|
|
|
int Array::find(const Variant &p_value, int p_from) const {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find"), -1);
|
|
return _p->array.find(p_value, p_from);
|
|
}
|
|
|
|
int Array::rfind(const Variant &p_value, int p_from) const {
|
|
if (_p->array.size() == 0) {
|
|
return -1;
|
|
}
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "rfind"), -1);
|
|
|
|
if (p_from < 0) {
|
|
// Relative offset from the end
|
|
p_from = _p->array.size() + p_from;
|
|
}
|
|
if (p_from < 0 || p_from >= _p->array.size()) {
|
|
// Limit to array boundaries
|
|
p_from = _p->array.size() - 1;
|
|
}
|
|
|
|
for (int i = p_from; i >= 0; i--) {
|
|
if (_p->array[i] == p_value) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int Array::find_last(const Variant &p_value) const {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find_last"), -1);
|
|
return rfind(p_value);
|
|
}
|
|
|
|
int Array::count(const Variant &p_value) const {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "count"), 0);
|
|
if (_p->array.size() == 0) {
|
|
return 0;
|
|
}
|
|
|
|
int amount = 0;
|
|
for (int i = 0; i < _p->array.size(); i++) {
|
|
if (_p->array[i] == p_value) {
|
|
amount++;
|
|
}
|
|
}
|
|
|
|
return amount;
|
|
}
|
|
|
|
bool Array::has(const Variant &p_value) const {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "use 'has'"), false);
|
|
|
|
return _p->array.find(p_value, 0) != -1;
|
|
}
|
|
|
|
void Array::remove_at(int p_pos) {
|
|
_p->array.remove_at(p_pos);
|
|
}
|
|
|
|
void Array::set(int p_idx, const Variant &p_value) {
|
|
ERR_FAIL_COND(!_p->typed.validate(p_value, "set"));
|
|
|
|
operator[](p_idx) = p_value;
|
|
}
|
|
|
|
const Variant &Array::get(int p_idx) const {
|
|
return operator[](p_idx);
|
|
}
|
|
|
|
Array Array::duplicate(bool p_deep) const {
|
|
return recursive_duplicate(p_deep, 0);
|
|
}
|
|
|
|
Array Array::recursive_duplicate(bool p_deep, int recursion_count) const {
|
|
Array new_arr;
|
|
|
|
if (recursion_count > MAX_RECURSION) {
|
|
ERR_PRINT("Max recursion reached");
|
|
return new_arr;
|
|
}
|
|
|
|
int element_count = size();
|
|
new_arr.resize(element_count);
|
|
new_arr._p->typed = _p->typed;
|
|
if (p_deep) {
|
|
recursion_count++;
|
|
for (int i = 0; i < element_count; i++) {
|
|
new_arr[i] = get(i).recursive_duplicate(true, recursion_count);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < element_count; i++) {
|
|
new_arr[i] = get(i);
|
|
}
|
|
}
|
|
|
|
return new_arr;
|
|
}
|
|
|
|
Array Array::slice(int p_begin, int p_end, int p_step, bool p_deep) const {
|
|
Array result;
|
|
|
|
ERR_FAIL_COND_V_MSG(p_step == 0, result, "Slice step cannot be zero.");
|
|
|
|
if (p_end < 0) {
|
|
p_end += size() + 1;
|
|
}
|
|
|
|
ERR_FAIL_INDEX_V(p_begin, size(), result);
|
|
ERR_FAIL_INDEX_V(p_end, size() + 1, result);
|
|
|
|
ERR_FAIL_COND_V_MSG(p_step > 0 && p_begin > p_end, result, "Slice is positive, but bounds is decreasing");
|
|
ERR_FAIL_COND_V_MSG(p_step < 0 && p_begin < p_end, result, "Slice is negative, but bounds is increasing");
|
|
|
|
int result_size = (p_end - p_begin) / p_step;
|
|
result.resize(result_size);
|
|
|
|
for (int src_idx = p_begin, dest_idx = 0; dest_idx < result_size; ++dest_idx) {
|
|
result[dest_idx] = p_deep ? get(src_idx).duplicate(true) : get(src_idx);
|
|
src_idx += p_step;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Array Array::filter(const Callable &p_callable) const {
|
|
Array new_arr;
|
|
new_arr.resize(size());
|
|
int accepted_count = 0;
|
|
|
|
const Variant *argptrs[1];
|
|
for (int i = 0; i < size(); i++) {
|
|
argptrs[0] = &get(i);
|
|
|
|
Variant result;
|
|
Callable::CallError ce;
|
|
p_callable.call(argptrs, 1, result, ce);
|
|
if (ce.error != Callable::CallError::CALL_OK) {
|
|
ERR_FAIL_V_MSG(Array(), "Error calling method from 'filter': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
|
|
}
|
|
|
|
if (result.operator bool()) {
|
|
new_arr[accepted_count] = get(i);
|
|
accepted_count++;
|
|
}
|
|
}
|
|
|
|
new_arr.resize(accepted_count);
|
|
|
|
return new_arr;
|
|
}
|
|
|
|
Array Array::map(const Callable &p_callable) const {
|
|
Array new_arr;
|
|
new_arr.resize(size());
|
|
|
|
const Variant *argptrs[1];
|
|
for (int i = 0; i < size(); i++) {
|
|
argptrs[0] = &get(i);
|
|
|
|
Variant result;
|
|
Callable::CallError ce;
|
|
p_callable.call(argptrs, 1, result, ce);
|
|
if (ce.error != Callable::CallError::CALL_OK) {
|
|
ERR_FAIL_V_MSG(Array(), "Error calling method from 'map': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
|
|
}
|
|
|
|
new_arr[i] = result;
|
|
}
|
|
|
|
return new_arr;
|
|
}
|
|
|
|
Variant Array::reduce(const Callable &p_callable, const Variant &p_accum) const {
|
|
int start = 0;
|
|
Variant ret = p_accum;
|
|
if (ret == Variant() && size() > 0) {
|
|
ret = front();
|
|
start = 1;
|
|
}
|
|
|
|
const Variant *argptrs[2];
|
|
for (int i = start; i < size(); i++) {
|
|
argptrs[0] = &ret;
|
|
argptrs[1] = &get(i);
|
|
|
|
Variant result;
|
|
Callable::CallError ce;
|
|
p_callable.call(argptrs, 2, result, ce);
|
|
if (ce.error != Callable::CallError::CALL_OK) {
|
|
ERR_FAIL_V_MSG(Variant(), "Error calling method from 'reduce': " + Variant::get_callable_error_text(p_callable, argptrs, 2, ce));
|
|
}
|
|
ret = result;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct _ArrayVariantSort {
|
|
_FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const {
|
|
bool valid = false;
|
|
Variant res;
|
|
Variant::evaluate(Variant::OP_LESS, p_l, p_r, res, valid);
|
|
if (!valid) {
|
|
res = false;
|
|
}
|
|
return res;
|
|
}
|
|
};
|
|
|
|
void Array::sort() {
|
|
_p->array.sort_custom<_ArrayVariantSort>();
|
|
}
|
|
|
|
struct _ArrayVariantSortCustom {
|
|
Callable func;
|
|
|
|
_FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const {
|
|
const Variant *args[2] = { &p_l, &p_r };
|
|
Callable::CallError err;
|
|
Variant res;
|
|
func.call(args, 2, res, err);
|
|
ERR_FAIL_COND_V_MSG(err.error != Callable::CallError::CALL_OK, false,
|
|
"Error calling sorting method: " + Variant::get_callable_error_text(func, args, 1, err));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
void Array::sort_custom(Callable p_callable) {
|
|
SortArray<Variant, _ArrayVariantSortCustom, true> avs;
|
|
avs.compare.func = p_callable;
|
|
avs.sort(_p->array.ptrw(), _p->array.size());
|
|
}
|
|
|
|
void Array::shuffle() {
|
|
const int n = _p->array.size();
|
|
if (n < 2) {
|
|
return;
|
|
}
|
|
Variant *data = _p->array.ptrw();
|
|
for (int i = n - 1; i >= 1; i--) {
|
|
const int j = Math::rand() % (i + 1);
|
|
const Variant tmp = data[j];
|
|
data[j] = data[i];
|
|
data[i] = tmp;
|
|
}
|
|
}
|
|
|
|
int Array::bsearch(const Variant &p_value, bool p_before) {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "binary search"), -1);
|
|
SearchArray<Variant, _ArrayVariantSort> avs;
|
|
return avs.bisect(_p->array.ptrw(), _p->array.size(), p_value, p_before);
|
|
}
|
|
|
|
int Array::bsearch_custom(const Variant &p_value, Callable p_callable, bool p_before) {
|
|
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "custom binary search"), -1);
|
|
|
|
SearchArray<Variant, _ArrayVariantSortCustom> avs;
|
|
avs.compare.func = p_callable;
|
|
|
|
return avs.bisect(_p->array.ptrw(), _p->array.size(), p_value, p_before);
|
|
}
|
|
|
|
void Array::reverse() {
|
|
_p->array.reverse();
|
|
}
|
|
|
|
void Array::push_front(const Variant &p_value) {
|
|
ERR_FAIL_COND(!_p->typed.validate(p_value, "push_front"));
|
|
_p->array.insert(0, p_value);
|
|
}
|
|
|
|
Variant Array::pop_back() {
|
|
if (!_p->array.is_empty()) {
|
|
const int n = _p->array.size() - 1;
|
|
const Variant ret = _p->array.get(n);
|
|
_p->array.resize(n);
|
|
return ret;
|
|
}
|
|
return Variant();
|
|
}
|
|
|
|
Variant Array::pop_front() {
|
|
if (!_p->array.is_empty()) {
|
|
const Variant ret = _p->array.get(0);
|
|
_p->array.remove_at(0);
|
|
return ret;
|
|
}
|
|
return Variant();
|
|
}
|
|
|
|
Variant Array::pop_at(int p_pos) {
|
|
if (_p->array.is_empty()) {
|
|
// Return `null` without printing an error to mimic `pop_back()` and `pop_front()` behavior.
|
|
return Variant();
|
|
}
|
|
|
|
if (p_pos < 0) {
|
|
// Relative offset from the end
|
|
p_pos = _p->array.size() + p_pos;
|
|
}
|
|
|
|
ERR_FAIL_INDEX_V_MSG(
|
|
p_pos,
|
|
_p->array.size(),
|
|
Variant(),
|
|
vformat(
|
|
"The calculated index %s is out of bounds (the array has %s elements). Leaving the array untouched and returning `null`.",
|
|
p_pos,
|
|
_p->array.size()));
|
|
|
|
const Variant ret = _p->array.get(p_pos);
|
|
_p->array.remove_at(p_pos);
|
|
return ret;
|
|
}
|
|
|
|
Variant Array::min() const {
|
|
Variant minval;
|
|
for (int i = 0; i < size(); i++) {
|
|
if (i == 0) {
|
|
minval = get(i);
|
|
} else {
|
|
bool valid;
|
|
Variant ret;
|
|
Variant test = get(i);
|
|
Variant::evaluate(Variant::OP_LESS, test, minval, ret, valid);
|
|
if (!valid) {
|
|
return Variant(); //not a valid comparison
|
|
}
|
|
if (bool(ret)) {
|
|
//is less
|
|
minval = test;
|
|
}
|
|
}
|
|
}
|
|
return minval;
|
|
}
|
|
|
|
Variant Array::max() const {
|
|
Variant maxval;
|
|
for (int i = 0; i < size(); i++) {
|
|
if (i == 0) {
|
|
maxval = get(i);
|
|
} else {
|
|
bool valid;
|
|
Variant ret;
|
|
Variant test = get(i);
|
|
Variant::evaluate(Variant::OP_GREATER, test, maxval, ret, valid);
|
|
if (!valid) {
|
|
return Variant(); //not a valid comparison
|
|
}
|
|
if (bool(ret)) {
|
|
//is less
|
|
maxval = test;
|
|
}
|
|
}
|
|
}
|
|
return maxval;
|
|
}
|
|
|
|
const void *Array::id() const {
|
|
return _p->array.ptr();
|
|
}
|
|
|
|
Array::Array(const Array &p_from, uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
|
|
_p = memnew(ArrayPrivate);
|
|
_p->refcount.init();
|
|
set_typed(p_type, p_class_name, p_script);
|
|
_assign(p_from);
|
|
}
|
|
|
|
bool Array::typed_assign(const Array &p_other) {
|
|
return _assign(p_other);
|
|
}
|
|
|
|
void Array::set_typed(uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
|
|
ERR_FAIL_COND_MSG(_p->array.size() > 0, "Type can only be set when array is empty.");
|
|
ERR_FAIL_COND_MSG(_p->refcount.get() > 1, "Type can only be set when array has no more than one user.");
|
|
ERR_FAIL_COND_MSG(_p->typed.type != Variant::NIL, "Type can only be set once.");
|
|
ERR_FAIL_COND_MSG(p_class_name != StringName() && p_type != Variant::OBJECT, "Class names can only be set for type OBJECT");
|
|
Ref<Script> script = p_script;
|
|
ERR_FAIL_COND_MSG(script.is_valid() && p_class_name == StringName(), "Script class can only be set together with base class name");
|
|
|
|
_p->typed.type = Variant::Type(p_type);
|
|
_p->typed.class_name = p_class_name;
|
|
_p->typed.script = script;
|
|
_p->typed.where = "TypedArray";
|
|
}
|
|
|
|
bool Array::is_typed() const {
|
|
return _p->typed.type != Variant::NIL;
|
|
}
|
|
|
|
uint32_t Array::get_typed_builtin() const {
|
|
return _p->typed.type;
|
|
}
|
|
|
|
StringName Array::get_typed_class_name() const {
|
|
return _p->typed.class_name;
|
|
}
|
|
|
|
Variant Array::get_typed_script() const {
|
|
return _p->typed.script;
|
|
}
|
|
|
|
Array::Array(const Array &p_from) {
|
|
_p = nullptr;
|
|
_ref(p_from);
|
|
}
|
|
|
|
Array::Array() {
|
|
_p = memnew(ArrayPrivate);
|
|
_p->refcount.init();
|
|
}
|
|
|
|
Array::~Array() {
|
|
_unref();
|
|
}
|