341 lines
6.8 KiB
C++
341 lines
6.8 KiB
C++
/*************************************************************************/
|
|
/* math_funcs.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "math_funcs.h"
|
|
|
|
#include "core/os/os.h"
|
|
#include "float.h"
|
|
#include <math.h>
|
|
uint32_t Math::default_seed = 1;
|
|
|
|
#define PHI 0x9e3779b9
|
|
|
|
#if 0
|
|
static uint32_t Q[4096];
|
|
#endif
|
|
|
|
uint32_t Math::rand_from_seed(uint32_t *seed) {
|
|
|
|
#if 1
|
|
uint32_t k;
|
|
uint32_t s = (*seed);
|
|
if (s == 0)
|
|
s = 0x12345987;
|
|
k = s / 127773;
|
|
s = 16807 * (s - k * 127773) - 2836 * k;
|
|
// if (s < 0)
|
|
// s += 2147483647;
|
|
(*seed) = s;
|
|
return (s & Math::RANDOM_MAX);
|
|
#else
|
|
*seed = *seed * 1103515245 + 12345;
|
|
return (*seed % ((unsigned int)RANDOM_MAX + 1));
|
|
#endif
|
|
}
|
|
|
|
void Math::seed(uint32_t x) {
|
|
#if 0
|
|
int i;
|
|
|
|
Q[0] = x;
|
|
Q[1] = x + PHI;
|
|
Q[2] = x + PHI + PHI;
|
|
|
|
for (i = 3; i < 4096; i++)
|
|
Q[i] = Q[i - 3] ^ Q[i - 2] ^ PHI ^ i;
|
|
#else
|
|
default_seed = x;
|
|
#endif
|
|
}
|
|
|
|
void Math::randomize() {
|
|
|
|
OS::Time time = OS::get_singleton()->get_time();
|
|
seed(OS::get_singleton()->get_ticks_usec() * (time.hour + 1) * (time.min + 1) * (time.sec + 1) * rand()); /* *OS::get_singleton()->get_time().sec); // windows doesn't have get_time(), returns always 0 */
|
|
}
|
|
|
|
uint32_t Math::rand() {
|
|
|
|
return rand_from_seed(&default_seed) & 0x7FFFFFFF;
|
|
}
|
|
|
|
double Math::randf() {
|
|
|
|
return (double)rand() / (double)RANDOM_MAX;
|
|
}
|
|
|
|
double Math::sin(double p_x) {
|
|
|
|
return ::sin(p_x);
|
|
}
|
|
|
|
double Math::cos(double p_x) {
|
|
|
|
return ::cos(p_x);
|
|
}
|
|
|
|
double Math::tan(double p_x) {
|
|
|
|
return ::tan(p_x);
|
|
}
|
|
double Math::sinh(double p_x) {
|
|
|
|
return ::sinh(p_x);
|
|
}
|
|
|
|
double Math::cosh(double p_x) {
|
|
|
|
return ::cosh(p_x);
|
|
}
|
|
|
|
double Math::tanh(double p_x) {
|
|
|
|
return ::tanh(p_x);
|
|
}
|
|
|
|
double Math::deg2rad(double p_y) {
|
|
|
|
return p_y * Math_PI / 180.0;
|
|
}
|
|
|
|
double Math::rad2deg(double p_y) {
|
|
|
|
return p_y * 180.0 / Math_PI;
|
|
}
|
|
|
|
double Math::round(double p_val) {
|
|
|
|
if (p_val >= 0) {
|
|
return ::floor(p_val + 0.5);
|
|
} else {
|
|
p_val = -p_val;
|
|
return -::floor(p_val + 0.5);
|
|
}
|
|
}
|
|
|
|
double Math::asin(double p_x) {
|
|
|
|
return ::asin(p_x);
|
|
}
|
|
|
|
double Math::acos(double p_x) {
|
|
|
|
return ::acos(p_x);
|
|
}
|
|
|
|
double Math::atan(double p_x) {
|
|
|
|
return ::atan(p_x);
|
|
}
|
|
|
|
double Math::dectime(double p_value, double p_amount, double p_step) {
|
|
|
|
float sgn = p_value < 0 ? -1.0 : 1.0;
|
|
float val = absf(p_value);
|
|
val -= p_amount * p_step;
|
|
if (val < 0.0)
|
|
val = 0.0;
|
|
return val * sgn;
|
|
}
|
|
|
|
double Math::atan2(double p_y, double p_x) {
|
|
|
|
return ::atan2(p_y, p_x);
|
|
}
|
|
double Math::sqrt(double p_x) {
|
|
|
|
return ::sqrt(p_x);
|
|
}
|
|
|
|
double Math::fmod(double p_x, double p_y) {
|
|
|
|
return ::fmod(p_x, p_y);
|
|
}
|
|
|
|
double Math::fposmod(double p_x, double p_y) {
|
|
|
|
if (p_x >= 0) {
|
|
|
|
return Math::fmod(p_x, p_y);
|
|
|
|
} else {
|
|
|
|
return p_y - Math::fmod(-p_x, p_y);
|
|
}
|
|
}
|
|
double Math::floor(double p_x) {
|
|
|
|
return ::floor(p_x);
|
|
}
|
|
|
|
double Math::ceil(double p_x) {
|
|
|
|
return ::ceil(p_x);
|
|
}
|
|
|
|
int Math::step_decimals(double p_step) {
|
|
|
|
static const int maxn = 9;
|
|
static const double sd[maxn] = {
|
|
0.9999, // somehow compensate for floating point error
|
|
0.09999,
|
|
0.009999,
|
|
0.0009999,
|
|
0.00009999,
|
|
0.000009999,
|
|
0.0000009999,
|
|
0.00000009999,
|
|
0.000000009999
|
|
};
|
|
|
|
double as = absf(p_step);
|
|
for (int i = 0; i < maxn; i++) {
|
|
if (as >= sd[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return maxn;
|
|
}
|
|
|
|
double Math::ease(double p_x, double p_c) {
|
|
|
|
if (p_x < 0)
|
|
p_x = 0;
|
|
else if (p_x > 1.0)
|
|
p_x = 1.0;
|
|
if (p_c > 0) {
|
|
if (p_c < 1.0) {
|
|
return 1.0 - Math::pow(1.0 - p_x, 1.0 / p_c);
|
|
} else {
|
|
return Math::pow(p_x, p_c);
|
|
}
|
|
} else if (p_c < 0) {
|
|
//inout ease
|
|
|
|
if (p_x < 0.5) {
|
|
return Math::pow(p_x * 2.0, -p_c) * 0.5;
|
|
} else {
|
|
return (1.0 - Math::pow(1.0 - (p_x - 0.5) * 2.0, -p_c)) * 0.5 + 0.5;
|
|
}
|
|
} else
|
|
return 0; // no ease (raw)
|
|
}
|
|
|
|
double Math::stepify(double p_value, double p_step) {
|
|
|
|
if (p_step != 0) {
|
|
|
|
p_value = floor(p_value / p_step + 0.5) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
|
|
bool Math::is_nan(double p_val) {
|
|
|
|
return (p_val != p_val);
|
|
}
|
|
|
|
bool Math::is_inf(double p_val) {
|
|
|
|
#ifdef _MSC_VER
|
|
return !_finite(p_val);
|
|
#else
|
|
return isinf(p_val);
|
|
#endif
|
|
}
|
|
|
|
uint32_t Math::larger_prime(uint32_t p_val) {
|
|
|
|
static const uint32_t primes[] = {
|
|
5,
|
|
13,
|
|
23,
|
|
47,
|
|
97,
|
|
193,
|
|
389,
|
|
769,
|
|
1543,
|
|
3079,
|
|
6151,
|
|
12289,
|
|
24593,
|
|
49157,
|
|
98317,
|
|
196613,
|
|
393241,
|
|
786433,
|
|
1572869,
|
|
3145739,
|
|
6291469,
|
|
12582917,
|
|
25165843,
|
|
50331653,
|
|
100663319,
|
|
201326611,
|
|
402653189,
|
|
805306457,
|
|
1610612741,
|
|
0,
|
|
};
|
|
|
|
int idx = 0;
|
|
while (true) {
|
|
|
|
ERR_FAIL_COND_V(primes[idx] == 0, 0);
|
|
if (primes[idx] > p_val)
|
|
return primes[idx];
|
|
idx++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
double Math::random(double from, double to) {
|
|
|
|
unsigned int r = Math::rand();
|
|
double ret = (double)r / (double)RANDOM_MAX;
|
|
return (ret) * (to - from) + from;
|
|
}
|
|
|
|
double Math::pow(double x, double y) {
|
|
|
|
return ::pow(x, y);
|
|
}
|
|
|
|
double Math::log(double x) {
|
|
|
|
return ::log(x);
|
|
}
|
|
double Math::exp(double x) {
|
|
|
|
return ::exp(x);
|
|
}
|