godot/core/variant/variant_utility.cpp
Yaohua Xiong f9fa182abc Refactor Curve3D::_bake() method
The main change is to caculate tangent directly from bezier curve, without going
through discretized polyline, avoiding pitfalls of discretization.

Other changes are:
1. Add an bezier_derivative() method for Vector3, Vector2, and Math;
2. Add an tesselate_even_length() method to Curve3D, which tesselate bezier curve to even length segments adaptively;
3. Cache the tangent vectors in baked_tangent_vector_cache;
2022-11-24 10:52:06 +08:00

1689 lines
72 KiB
C++

/*************************************************************************/
/* variant_utility.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "variant.h"
#include "core/core_string_names.h"
#include "core/io/marshalls.h"
#include "core/object/ref_counted.h"
#include "core/os/os.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid.h"
#include "core/templates/rid_owner.h"
#include "core/variant/binder_common.h"
#include "core/variant/variant_parser.h"
struct VariantUtilityFunctions {
// Math
static inline double sin(double arg) {
return Math::sin(arg);
}
static inline double cos(double arg) {
return Math::cos(arg);
}
static inline double tan(double arg) {
return Math::tan(arg);
}
static inline double sinh(double arg) {
return Math::sinh(arg);
}
static inline double cosh(double arg) {
return Math::cosh(arg);
}
static inline double tanh(double arg) {
return Math::tanh(arg);
}
static inline double asin(double arg) {
return Math::asin(arg);
}
static inline double acos(double arg) {
return Math::acos(arg);
}
static inline double atan(double arg) {
return Math::atan(arg);
}
static inline double atan2(double y, double x) {
return Math::atan2(y, x);
}
static inline double sqrt(double x) {
return Math::sqrt(x);
}
static inline double fmod(double b, double r) {
return Math::fmod(b, r);
}
static inline double fposmod(double b, double r) {
return Math::fposmod(b, r);
}
static inline int64_t posmod(int64_t b, int64_t r) {
return Math::posmod(b, r);
}
static inline Variant floor(Variant x, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
switch (x.get_type()) {
case Variant::INT: {
return VariantInternalAccessor<int64_t>::get(&x);
} break;
case Variant::FLOAT: {
return Math::floor(VariantInternalAccessor<double>::get(&x));
} break;
case Variant::VECTOR2: {
return VariantInternalAccessor<Vector2>::get(&x).floor();
} break;
case Variant::VECTOR3: {
return VariantInternalAccessor<Vector3>::get(&x).floor();
} break;
case Variant::VECTOR4: {
return VariantInternalAccessor<Vector4>::get(&x).floor();
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return Variant();
}
}
}
static inline double floorf(double x) {
return Math::floor(x);
}
static inline int64_t floori(double x) {
return int64_t(Math::floor(x));
}
static inline Variant ceil(Variant x, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
switch (x.get_type()) {
case Variant::INT: {
return VariantInternalAccessor<int64_t>::get(&x);
} break;
case Variant::FLOAT: {
return Math::ceil(VariantInternalAccessor<double>::get(&x));
} break;
case Variant::VECTOR2: {
return VariantInternalAccessor<Vector2>::get(&x).ceil();
} break;
case Variant::VECTOR3: {
return VariantInternalAccessor<Vector3>::get(&x).ceil();
} break;
case Variant::VECTOR4: {
return VariantInternalAccessor<Vector4>::get(&x).ceil();
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return Variant();
}
}
}
static inline double ceilf(double x) {
return Math::ceil(x);
}
static inline int64_t ceili(double x) {
return int64_t(Math::ceil(x));
}
static inline Variant round(Variant x, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
switch (x.get_type()) {
case Variant::INT: {
return VariantInternalAccessor<int64_t>::get(&x);
} break;
case Variant::FLOAT: {
return Math::round(VariantInternalAccessor<double>::get(&x));
} break;
case Variant::VECTOR2: {
return VariantInternalAccessor<Vector2>::get(&x).round();
} break;
case Variant::VECTOR3: {
return VariantInternalAccessor<Vector3>::get(&x).round();
} break;
case Variant::VECTOR4: {
return VariantInternalAccessor<Vector4>::get(&x).round();
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return Variant();
}
}
}
static inline double roundf(double x) {
return Math::round(x);
}
static inline int64_t roundi(double x) {
return int64_t(Math::round(x));
}
static inline Variant abs(const Variant &x, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
switch (x.get_type()) {
case Variant::INT: {
return ABS(VariantInternalAccessor<int64_t>::get(&x));
} break;
case Variant::FLOAT: {
return Math::absd(VariantInternalAccessor<double>::get(&x));
} break;
case Variant::VECTOR2: {
return VariantInternalAccessor<Vector2>::get(&x).abs();
} break;
case Variant::VECTOR2I: {
return VariantInternalAccessor<Vector2i>::get(&x).abs();
} break;
case Variant::VECTOR3: {
return VariantInternalAccessor<Vector3>::get(&x).abs();
} break;
case Variant::VECTOR3I: {
return VariantInternalAccessor<Vector3i>::get(&x).abs();
} break;
case Variant::VECTOR4: {
return VariantInternalAccessor<Vector4>::get(&x).abs();
} break;
case Variant::VECTOR4I: {
return VariantInternalAccessor<Vector4i>::get(&x).abs();
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return Variant();
}
}
}
static inline double absf(double x) {
return Math::absd(x);
}
static inline int64_t absi(int64_t x) {
return ABS(x);
}
static inline Variant sign(const Variant &x, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
switch (x.get_type()) {
case Variant::INT: {
return SIGN(VariantInternalAccessor<int64_t>::get(&x));
} break;
case Variant::FLOAT: {
return SIGN(VariantInternalAccessor<double>::get(&x));
} break;
case Variant::VECTOR2: {
return VariantInternalAccessor<Vector2>::get(&x).sign();
} break;
case Variant::VECTOR2I: {
return VariantInternalAccessor<Vector2i>::get(&x).sign();
} break;
case Variant::VECTOR3: {
return VariantInternalAccessor<Vector3>::get(&x).sign();
} break;
case Variant::VECTOR3I: {
return VariantInternalAccessor<Vector3i>::get(&x).sign();
} break;
case Variant::VECTOR4: {
return VariantInternalAccessor<Vector4>::get(&x).sign();
} break;
case Variant::VECTOR4I: {
return VariantInternalAccessor<Vector4i>::get(&x).sign();
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return Variant();
}
}
}
static inline double signf(double x) {
return SIGN(x);
}
static inline int64_t signi(int64_t x) {
return SIGN(x);
}
static inline double pow(double x, double y) {
return Math::pow(x, y);
}
static inline double log(double x) {
return Math::log(x);
}
static inline double exp(double x) {
return Math::exp(x);
}
static inline bool is_nan(double x) {
return Math::is_nan(x);
}
static inline bool is_inf(double x) {
return Math::is_inf(x);
}
static inline bool is_equal_approx(double x, double y) {
return Math::is_equal_approx(x, y);
}
static inline bool is_zero_approx(double x) {
return Math::is_zero_approx(x);
}
static inline bool is_finite(double x) {
return Math::is_finite(x);
}
static inline double ease(float x, float curve) {
return Math::ease(x, curve);
}
static inline int step_decimals(float step) {
return Math::step_decimals(step);
}
static inline double snapped(double value, double step) {
return Math::snapped(value, step);
}
static inline Variant lerp(const Variant &from, const Variant &to, double weight, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
if (from.get_type() != to.get_type()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 1;
return Variant();
}
switch (from.get_type()) {
case Variant::INT: {
return lerpf(VariantInternalAccessor<int64_t>::get(&from), to, weight);
} break;
case Variant::FLOAT: {
return lerpf(VariantInternalAccessor<double>::get(&from), to, weight);
} break;
case Variant::VECTOR2: {
return VariantInternalAccessor<Vector2>::get(&from).lerp(VariantInternalAccessor<Vector2>::get(&to), weight);
} break;
case Variant::VECTOR3: {
return VariantInternalAccessor<Vector3>::get(&from).lerp(VariantInternalAccessor<Vector3>::get(&to), weight);
} break;
case Variant::VECTOR4: {
return VariantInternalAccessor<Vector4>::get(&from).lerp(VariantInternalAccessor<Vector4>::get(&to), weight);
} break;
case Variant::QUATERNION: {
return VariantInternalAccessor<Quaternion>::get(&from).slerp(VariantInternalAccessor<Quaternion>::get(&to), weight);
} break;
case Variant::BASIS: {
return VariantInternalAccessor<Basis>::get(&from).slerp(VariantInternalAccessor<Basis>::get(&to), weight);
} break;
case Variant::COLOR: {
return VariantInternalAccessor<Color>::get(&from).lerp(VariantInternalAccessor<Color>::get(&to), weight);
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return Variant();
}
}
}
static inline double lerpf(double from, double to, double weight) {
return Math::lerp(from, to, weight);
}
static inline double cubic_interpolate(double from, double to, double pre, double post, double weight) {
return Math::cubic_interpolate(from, to, pre, post, weight);
}
static inline double cubic_interpolate_angle(double from, double to, double pre, double post, double weight) {
return Math::cubic_interpolate_angle(from, to, pre, post, weight);
}
static inline double cubic_interpolate_in_time(double from, double to, double pre, double post, double weight,
double to_t, double pre_t, double post_t) {
return Math::cubic_interpolate_in_time(from, to, pre, post, weight, to_t, pre_t, post_t);
}
static inline double cubic_interpolate_angle_in_time(double from, double to, double pre, double post, double weight,
double to_t, double pre_t, double post_t) {
return Math::cubic_interpolate_angle_in_time(from, to, pre, post, weight, to_t, pre_t, post_t);
}
static inline double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
return Math::bezier_interpolate(p_start, p_control_1, p_control_2, p_end, p_t);
}
static inline double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
return Math::bezier_derivative(p_start, p_control_1, p_control_2, p_end, p_t);
}
static inline double lerp_angle(double from, double to, double weight) {
return Math::lerp_angle(from, to, weight);
}
static inline double inverse_lerp(double from, double to, double weight) {
return Math::inverse_lerp(from, to, weight);
}
static inline double remap(double value, double istart, double istop, double ostart, double ostop) {
return Math::remap(value, istart, istop, ostart, ostop);
}
static inline double smoothstep(double from, double to, double val) {
return Math::smoothstep(from, to, val);
}
static inline double move_toward(double from, double to, double delta) {
return Math::move_toward(from, to, delta);
}
static inline double deg_to_rad(double angle_deg) {
return Math::deg_to_rad(angle_deg);
}
static inline double rad_to_deg(double angle_rad) {
return Math::rad_to_deg(angle_rad);
}
static inline double linear_to_db(double linear) {
return Math::linear_to_db(linear);
}
static inline double db_to_linear(double db) {
return Math::db_to_linear(db);
}
static inline Variant wrap(const Variant &p_x, const Variant &p_min, const Variant &p_max, Callable::CallError &r_error) {
Variant::Type x_type = p_x.get_type();
if (x_type != Variant::INT && x_type != Variant::FLOAT) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = x_type;
return Variant();
}
Variant::Type min_type = p_min.get_type();
if (min_type != Variant::INT && min_type != Variant::FLOAT) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 1;
r_error.expected = x_type;
return Variant();
}
Variant::Type max_type = p_max.get_type();
if (max_type != Variant::INT && max_type != Variant::FLOAT) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 2;
r_error.expected = x_type;
return Variant();
}
Variant value;
switch (x_type) {
case Variant::INT: {
if (x_type != min_type || x_type != max_type) {
value = wrapf((double)p_x, (double)p_min, (double)p_max);
} else {
value = wrapi((int)p_x, (int)p_min, (int)p_max);
}
} break;
case Variant::FLOAT: {
value = wrapf((double)p_x, (double)p_min, (double)p_max);
} break;
default:
break;
}
r_error.error = Callable::CallError::CALL_OK;
return value;
}
static inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
return Math::wrapi(value, min, max);
}
static inline double wrapf(double value, double min, double max) {
return Math::wrapf(value, min, max);
}
static inline double pingpong(double value, double length) {
return Math::pingpong(value, length);
}
static inline Variant max(const Variant **p_args, int p_argcount, Callable::CallError &r_error) {
if (p_argcount < 2) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.expected = 2;
return Variant();
}
Variant base = *p_args[0];
Variant ret;
for (int i = 1; i < p_argcount; i++) {
bool valid;
Variant::evaluate(Variant::OP_LESS, base, *p_args[i], ret, valid);
if (!valid) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.expected = base.get_type();
r_error.argument = i;
return Variant();
}
if (ret.booleanize()) {
base = *p_args[i];
}
}
r_error.error = Callable::CallError::CALL_OK;
return base;
}
static inline double maxf(double x, double y) {
return MAX(x, y);
}
static inline int64_t maxi(int64_t x, int64_t y) {
return MAX(x, y);
}
static inline Variant min(const Variant **p_args, int p_argcount, Callable::CallError &r_error) {
if (p_argcount < 2) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.expected = 2;
return Variant();
}
Variant base = *p_args[0];
Variant ret;
for (int i = 1; i < p_argcount; i++) {
bool valid;
Variant::evaluate(Variant::OP_GREATER, base, *p_args[i], ret, valid);
if (!valid) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.expected = base.get_type();
r_error.argument = i;
return Variant();
}
if (ret.booleanize()) {
base = *p_args[i];
}
}
r_error.error = Callable::CallError::CALL_OK;
return base;
}
static inline double minf(double x, double y) {
return MIN(x, y);
}
static inline int64_t mini(int64_t x, int64_t y) {
return MIN(x, y);
}
static inline Variant clamp(const Variant &x, const Variant &min, const Variant &max, Callable::CallError &r_error) {
Variant value = x;
Variant ret;
bool valid;
Variant::evaluate(Variant::OP_LESS, value, min, ret, valid);
if (!valid) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.expected = value.get_type();
r_error.argument = 1;
return Variant();
}
if (ret.booleanize()) {
value = min;
}
Variant::evaluate(Variant::OP_GREATER, value, max, ret, valid);
if (!valid) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.expected = value.get_type();
r_error.argument = 2;
return Variant();
}
if (ret.booleanize()) {
value = max;
}
r_error.error = Callable::CallError::CALL_OK;
return value;
}
static inline double clampf(double x, double min, double max) {
return CLAMP(x, min, max);
}
static inline int64_t clampi(int64_t x, int64_t min, int64_t max) {
return CLAMP(x, min, max);
}
static inline int64_t nearest_po2(int64_t x) {
return nearest_power_of_2_templated(uint64_t(x));
}
// Random
static inline void randomize() {
Math::randomize();
}
static inline int64_t randi() {
return Math::rand();
}
static inline double randf() {
return Math::randf();
}
static inline double randfn(double mean, double deviation) {
return Math::randfn(mean, deviation);
}
static inline int64_t randi_range(int64_t from, int64_t to) {
return Math::random((int32_t)from, (int32_t)to);
}
static inline double randf_range(double from, double to) {
return Math::random(from, to);
}
static inline void seed(int64_t s) {
return Math::seed(s);
}
static inline PackedInt64Array rand_from_seed(int64_t seed) {
uint64_t s = seed;
PackedInt64Array arr;
arr.resize(2);
arr.write[0] = Math::rand_from_seed(&s);
arr.write[1] = s;
return arr;
}
// Utility
static inline Variant weakref(const Variant &obj, Callable::CallError &r_error) {
if (obj.get_type() == Variant::OBJECT) {
r_error.error = Callable::CallError::CALL_OK;
if (obj.is_ref_counted()) {
Ref<WeakRef> wref = memnew(WeakRef);
Ref<RefCounted> r = obj;
if (r.is_valid()) {
wref->set_ref(r);
}
return wref;
} else {
Ref<WeakRef> wref = memnew(WeakRef);
Object *o = obj.get_validated_object();
if (o) {
wref->set_obj(o);
}
return wref;
}
} else if (obj.get_type() == Variant::NIL) {
r_error.error = Callable::CallError::CALL_OK;
Ref<WeakRef> wref = memnew(WeakRef);
return wref;
} else {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
return Variant();
}
}
static inline int64_t _typeof(const Variant &obj) {
return obj.get_type();
}
static inline String str(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
return String();
}
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
r_error.error = Callable::CallError::CALL_OK;
return s;
}
static inline String error_string(Error error) {
if (error < 0 || error >= ERR_MAX) {
return String("(invalid error code)");
}
return String(error_names[error]);
}
static inline void print(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
print_line(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline void print_rich(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
print_line_rich(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline void print_verbose(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
if (OS::get_singleton()->is_stdout_verbose()) {
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
// No need to use `print_verbose()` as this call already only happens
// when verbose mode is enabled. This avoids performing string argument concatenation
// when not needed.
print_line(s);
}
r_error.error = Callable::CallError::CALL_OK;
}
static inline void printerr(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
print_error(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline void printt(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
String s;
for (int i = 0; i < p_arg_count; i++) {
if (i) {
s += "\t";
}
s += p_args[i]->operator String();
}
print_line(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline void prints(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
String s;
for (int i = 0; i < p_arg_count; i++) {
if (i) {
s += " ";
}
s += p_args[i]->operator String();
}
print_line(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline void printraw(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
OS::get_singleton()->print("%s", s.utf8().get_data());
r_error.error = Callable::CallError::CALL_OK;
}
static inline void push_error(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
}
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
ERR_PRINT(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline void push_warning(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) {
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
}
String s;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
s = os;
} else {
s += os;
}
}
WARN_PRINT(s);
r_error.error = Callable::CallError::CALL_OK;
}
static inline String var_to_str(const Variant &p_var) {
String vars;
VariantWriter::write_to_string(p_var, vars);
return vars;
}
static inline Variant str_to_var(const String &p_var) {
VariantParser::StreamString ss;
ss.s = p_var;
String errs;
int line;
Variant ret;
(void)VariantParser::parse(&ss, ret, errs, line);
return ret;
}
static inline PackedByteArray var_to_bytes(const Variant &p_var) {
int len;
Error err = encode_variant(p_var, nullptr, len, false);
if (err != OK) {
return PackedByteArray();
}
PackedByteArray barr;
barr.resize(len);
{
uint8_t *w = barr.ptrw();
err = encode_variant(p_var, w, len, false);
if (err != OK) {
return PackedByteArray();
}
}
return barr;
}
static inline PackedByteArray var_to_bytes_with_objects(const Variant &p_var) {
int len;
Error err = encode_variant(p_var, nullptr, len, true);
if (err != OK) {
return PackedByteArray();
}
PackedByteArray barr;
barr.resize(len);
{
uint8_t *w = barr.ptrw();
err = encode_variant(p_var, w, len, true);
if (err != OK) {
return PackedByteArray();
}
}
return barr;
}
static inline Variant bytes_to_var(const PackedByteArray &p_arr) {
Variant ret;
{
const uint8_t *r = p_arr.ptr();
Error err = decode_variant(ret, r, p_arr.size(), nullptr, false);
if (err != OK) {
return Variant();
}
}
return ret;
}
static inline Variant bytes_to_var_with_objects(const PackedByteArray &p_arr) {
Variant ret;
{
const uint8_t *r = p_arr.ptr();
Error err = decode_variant(ret, r, p_arr.size(), nullptr, true);
if (err != OK) {
return Variant();
}
}
return ret;
}
static inline int64_t hash(const Variant &p_arr) {
return p_arr.hash();
}
static inline Object *instance_from_id(int64_t p_id) {
ObjectID id = ObjectID((uint64_t)p_id);
Object *ret = ObjectDB::get_instance(id);
return ret;
}
static inline bool is_instance_id_valid(int64_t p_id) {
return ObjectDB::get_instance(ObjectID((uint64_t)p_id)) != nullptr;
}
static inline bool is_instance_valid(const Variant &p_instance) {
if (p_instance.get_type() != Variant::OBJECT) {
return false;
}
return p_instance.get_validated_object() != nullptr;
}
static inline uint64_t rid_allocate_id() {
return RID_AllocBase::_gen_id();
}
static inline RID rid_from_int64(uint64_t p_base) {
return RID::from_uint64(p_base);
}
};
#ifdef DEBUG_METHODS_ENABLED
#define VCALLR *ret = p_func(VariantCasterAndValidate<P>::cast(p_args, Is, r_error)...)
#define VCALL p_func(VariantCasterAndValidate<P>::cast(p_args, Is, r_error)...)
#else
#define VCALLR *ret = p_func(VariantCaster<P>::cast(*p_args[Is])...)
#define VCALL p_func(VariantCaster<P>::cast(*p_args[Is])...)
#endif
template <class R, class... P, size_t... Is>
static _FORCE_INLINE_ void call_helperpr(R (*p_func)(P...), Variant *ret, const Variant **p_args, Callable::CallError &r_error, IndexSequence<Is...>) {
r_error.error = Callable::CallError::CALL_OK;
VCALLR;
(void)p_args; // avoid gcc warning
(void)r_error;
}
template <class R, class... P, size_t... Is>
static _FORCE_INLINE_ void validated_call_helperpr(R (*p_func)(P...), Variant *ret, const Variant **p_args, IndexSequence<Is...>) {
*ret = p_func(VariantCaster<P>::cast(*p_args[Is])...);
(void)p_args;
}
template <class R, class... P, size_t... Is>
static _FORCE_INLINE_ void ptr_call_helperpr(R (*p_func)(P...), void *ret, const void **p_args, IndexSequence<Is...>) {
PtrToArg<R>::encode(p_func(PtrToArg<P>::convert(p_args[Is])...), ret);
(void)p_args;
}
template <class R, class... P>
static _FORCE_INLINE_ void call_helperr(R (*p_func)(P...), Variant *ret, const Variant **p_args, Callable::CallError &r_error) {
call_helperpr(p_func, ret, p_args, r_error, BuildIndexSequence<sizeof...(P)>{});
}
template <class R, class... P>
static _FORCE_INLINE_ void validated_call_helperr(R (*p_func)(P...), Variant *ret, const Variant **p_args) {
validated_call_helperpr(p_func, ret, p_args, BuildIndexSequence<sizeof...(P)>{});
}
template <class R, class... P>
static _FORCE_INLINE_ void ptr_call_helperr(R (*p_func)(P...), void *ret, const void **p_args) {
ptr_call_helperpr(p_func, ret, p_args, BuildIndexSequence<sizeof...(P)>{});
}
template <class R, class... P>
static _FORCE_INLINE_ int get_arg_count_helperr(R (*p_func)(P...)) {
return sizeof...(P);
}
template <class R, class... P>
static _FORCE_INLINE_ Variant::Type get_arg_type_helperr(R (*p_func)(P...), int p_arg) {
return call_get_argument_type<P...>(p_arg);
}
template <class R, class... P>
static _FORCE_INLINE_ Variant::Type get_ret_type_helperr(R (*p_func)(P...)) {
return GetTypeInfo<R>::VARIANT_TYPE;
}
// WITHOUT RET
template <class... P, size_t... Is>
static _FORCE_INLINE_ void call_helperp(void (*p_func)(P...), const Variant **p_args, Callable::CallError &r_error, IndexSequence<Is...>) {
r_error.error = Callable::CallError::CALL_OK;
VCALL;
(void)p_args;
(void)r_error;
}
template <class... P, size_t... Is>
static _FORCE_INLINE_ void validated_call_helperp(void (*p_func)(P...), const Variant **p_args, IndexSequence<Is...>) {
p_func(VariantCaster<P>::cast(*p_args[Is])...);
(void)p_args;
}
template <class... P, size_t... Is>
static _FORCE_INLINE_ void ptr_call_helperp(void (*p_func)(P...), const void **p_args, IndexSequence<Is...>) {
p_func(PtrToArg<P>::convert(p_args[Is])...);
(void)p_args;
}
template <class... P>
static _FORCE_INLINE_ void call_helper(void (*p_func)(P...), const Variant **p_args, Callable::CallError &r_error) {
call_helperp(p_func, p_args, r_error, BuildIndexSequence<sizeof...(P)>{});
}
template <class... P>
static _FORCE_INLINE_ void validated_call_helper(void (*p_func)(P...), const Variant **p_args) {
validated_call_helperp(p_func, p_args, BuildIndexSequence<sizeof...(P)>{});
}
template <class... P>
static _FORCE_INLINE_ void ptr_call_helper(void (*p_func)(P...), const void **p_args) {
ptr_call_helperp(p_func, p_args, BuildIndexSequence<sizeof...(P)>{});
}
template <class... P>
static _FORCE_INLINE_ int get_arg_count_helper(void (*p_func)(P...)) {
return sizeof...(P);
}
template <class... P>
static _FORCE_INLINE_ Variant::Type get_arg_type_helper(void (*p_func)(P...), int p_arg) {
return call_get_argument_type<P...>(p_arg);
}
template <class... P>
static _FORCE_INLINE_ Variant::Type get_ret_type_helper(void (*p_func)(P...)) {
return Variant::NIL;
}
#define FUNCBINDR(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
call_helperr(VariantUtilityFunctions::m_func, r_ret, p_args, r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
validated_call_helperr(VariantUtilityFunctions::m_func, r_ret, p_args); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
ptr_call_helperr(VariantUtilityFunctions::m_func, ret, p_args); \
} \
static int get_argument_count() { \
return get_arg_count_helperr(VariantUtilityFunctions::m_func); \
} \
static Variant::Type get_argument_type(int p_arg) { \
return get_arg_type_helperr(VariantUtilityFunctions::m_func, p_arg); \
} \
static Variant::Type get_return_type() { \
return get_ret_type_helperr(VariantUtilityFunctions::m_func); \
} \
static bool has_return_type() { \
return true; \
} \
static bool is_vararg() { return false; } \
static Variant::UtilityFunctionType get_type() { return m_category; } \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
#define FUNCBINDVR(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
r_error.error = Callable::CallError::CALL_OK; \
*r_ret = VariantUtilityFunctions::m_func(*p_args[0], r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
Callable::CallError ce; \
*r_ret = VariantUtilityFunctions::m_func(*p_args[0], ce); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
Callable::CallError ce; \
PtrToArg<Variant>::encode(VariantUtilityFunctions::m_func(PtrToArg<Variant>::convert(p_args[0]), ce), ret); \
} \
static int get_argument_count() { \
return 1; \
} \
static Variant::Type get_argument_type(int p_arg) { \
return Variant::NIL; \
} \
static Variant::Type get_return_type() { \
return Variant::NIL; \
} \
static bool has_return_type() { \
return true; \
} \
static bool is_vararg() { return false; } \
static Variant::UtilityFunctionType get_type() { return m_category; } \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
#define FUNCBINDVR3(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
r_error.error = Callable::CallError::CALL_OK; \
*r_ret = VariantUtilityFunctions::m_func(*p_args[0], *p_args[1], *p_args[2], r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
Callable::CallError ce; \
*r_ret = VariantUtilityFunctions::m_func(*p_args[0], *p_args[1], *p_args[2], ce); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
Callable::CallError ce; \
Variant r; \
r = VariantUtilityFunctions::m_func(PtrToArg<Variant>::convert(p_args[0]), PtrToArg<Variant>::convert(p_args[1]), PtrToArg<Variant>::convert(p_args[2]), ce); \
PtrToArg<Variant>::encode(r, ret); \
} \
static int get_argument_count() { \
return 3; \
} \
static Variant::Type get_argument_type(int p_arg) { \
return Variant::NIL; \
} \
static Variant::Type get_return_type() { \
return Variant::NIL; \
} \
static bool has_return_type() { \
return true; \
} \
static bool is_vararg() { return false; } \
static Variant::UtilityFunctionType get_type() { return m_category; } \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
#define FUNCBINDVARARG(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
r_error.error = Callable::CallError::CALL_OK; \
*r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
Callable::CallError c; \
*r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, c); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
Vector<Variant> args; \
for (int i = 0; i < p_argcount; i++) { \
args.push_back(PtrToArg<Variant>::convert(p_args[i])); \
} \
Vector<const Variant *> argsp; \
for (int i = 0; i < p_argcount; i++) { \
argsp.push_back(&args[i]); \
} \
Variant r; \
validated_call(&r, (const Variant **)argsp.ptr(), p_argcount); \
PtrToArg<Variant>::encode(r, ret); \
} \
static int get_argument_count() { \
return 2; \
} \
static Variant::Type get_argument_type(int p_arg) { \
return Variant::NIL; \
} \
static Variant::Type get_return_type() { \
return Variant::NIL; \
} \
static bool has_return_type() { \
return true; \
} \
static bool is_vararg() { \
return true; \
} \
static Variant::UtilityFunctionType get_type() { \
return m_category; \
} \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
#define FUNCBINDVARARGS(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
r_error.error = Callable::CallError::CALL_OK; \
*r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
Callable::CallError c; \
*r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, c); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
Vector<Variant> args; \
for (int i = 0; i < p_argcount; i++) { \
args.push_back(PtrToArg<Variant>::convert(p_args[i])); \
} \
Vector<const Variant *> argsp; \
for (int i = 0; i < p_argcount; i++) { \
argsp.push_back(&args[i]); \
} \
Variant r; \
validated_call(&r, (const Variant **)argsp.ptr(), p_argcount); \
PtrToArg<String>::encode(r.operator String(), ret); \
} \
static int get_argument_count() { \
return 1; \
} \
static Variant::Type get_argument_type(int p_arg) { \
return Variant::NIL; \
} \
static Variant::Type get_return_type() { \
return Variant::STRING; \
} \
static bool has_return_type() { \
return true; \
} \
static bool is_vararg() { \
return true; \
} \
static Variant::UtilityFunctionType get_type() { \
return m_category; \
} \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
#define FUNCBINDVARARGV(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
r_error.error = Callable::CallError::CALL_OK; \
VariantUtilityFunctions::m_func(p_args, p_argcount, r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
Callable::CallError c; \
VariantUtilityFunctions::m_func(p_args, p_argcount, c); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
Vector<Variant> args; \
for (int i = 0; i < p_argcount; i++) { \
args.push_back(PtrToArg<Variant>::convert(p_args[i])); \
} \
Vector<const Variant *> argsp; \
for (int i = 0; i < p_argcount; i++) { \
argsp.push_back(&args[i]); \
} \
Variant r; \
validated_call(&r, (const Variant **)argsp.ptr(), p_argcount); \
} \
static int get_argument_count() { \
return 1; \
} \
static Variant::Type get_argument_type(int p_arg) { \
return Variant::NIL; \
} \
static Variant::Type get_return_type() { \
return Variant::NIL; \
} \
static bool has_return_type() { \
return false; \
} \
static bool is_vararg() { \
return true; \
} \
static Variant::UtilityFunctionType get_type() { \
return m_category; \
} \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
#define FUNCBIND(m_func, m_args, m_category) \
class Func_##m_func { \
public: \
static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \
call_helper(VariantUtilityFunctions::m_func, p_args, r_error); \
} \
static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \
validated_call_helper(VariantUtilityFunctions::m_func, p_args); \
} \
static void ptrcall(void *ret, const void **p_args, int p_argcount) { \
ptr_call_helper(VariantUtilityFunctions::m_func, p_args); \
} \
static int get_argument_count() { \
return get_arg_count_helper(VariantUtilityFunctions::m_func); \
} \
static Variant::Type get_argument_type(int p_arg) { \
return get_arg_type_helper(VariantUtilityFunctions::m_func, p_arg); \
} \
static Variant::Type get_return_type() { \
return get_ret_type_helper(VariantUtilityFunctions::m_func); \
} \
static bool has_return_type() { \
return false; \
} \
static bool is_vararg() { return false; } \
static Variant::UtilityFunctionType get_type() { return m_category; } \
}; \
register_utility_function<Func_##m_func>(#m_func, m_args)
struct VariantUtilityFunctionInfo {
void (*call_utility)(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) = nullptr;
Variant::ValidatedUtilityFunction validated_call_utility = nullptr;
Variant::PTRUtilityFunction ptr_call_utility = nullptr;
Vector<String> argnames;
bool is_vararg = false;
bool returns_value = false;
int argcount = 0;
Variant::Type (*get_arg_type)(int) = nullptr;
Variant::Type return_type;
Variant::UtilityFunctionType type;
};
static OAHashMap<StringName, VariantUtilityFunctionInfo> utility_function_table;
static List<StringName> utility_function_name_table;
template <class T>
static void register_utility_function(const String &p_name, const Vector<String> &argnames) {
String name = p_name;
if (name.begins_with("_")) {
name = name.substr(1, name.length() - 1);
}
StringName sname = name;
ERR_FAIL_COND(utility_function_table.has(sname));
VariantUtilityFunctionInfo bfi;
bfi.call_utility = T::call;
bfi.validated_call_utility = T::validated_call;
bfi.ptr_call_utility = T::ptrcall;
bfi.is_vararg = T::is_vararg();
bfi.argnames = argnames;
bfi.argcount = T::get_argument_count();
if (!bfi.is_vararg) {
ERR_FAIL_COND_MSG(argnames.size() != bfi.argcount, "wrong number of arguments binding utility function: " + name);
}
bfi.get_arg_type = T::get_argument_type;
bfi.return_type = T::get_return_type();
bfi.type = T::get_type();
bfi.returns_value = T::has_return_type();
utility_function_table.insert(sname, bfi);
utility_function_name_table.push_back(sname);
}
void Variant::_register_variant_utility_functions() {
// Math
FUNCBINDR(sin, sarray("angle_rad"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cos, sarray("angle_rad"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(tan, sarray("angle_rad"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(sinh, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cosh, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(tanh, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(asin, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(acos, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(atan, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(atan2, sarray("y", "x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(sqrt, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(fmod, sarray("x", "y"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(fposmod, sarray("x", "y"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(posmod, sarray("x", "y"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR(floor, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(floorf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(floori, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR(ceil, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(ceilf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(ceili, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR(round, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(roundf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(roundi, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR(abs, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(absf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(absi, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR(sign, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(signf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(signi, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(pow, sarray("base", "exp"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(log, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(exp, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(is_nan, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(is_inf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(is_equal_approx, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(is_zero_approx, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(is_finite, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(ease, sarray("x", "curve"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(step_decimals, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(snapped, sarray("x", "step"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR3(lerp, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(lerpf, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cubic_interpolate, sarray("from", "to", "pre", "post", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cubic_interpolate_angle, sarray("from", "to", "pre", "post", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cubic_interpolate_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(cubic_interpolate_angle_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(bezier_interpolate, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(bezier_derivative, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(lerp_angle, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(inverse_lerp, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(remap, sarray("value", "istart", "istop", "ostart", "ostop"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(smoothstep, sarray("from", "to", "x"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(move_toward, sarray("from", "to", "delta"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(deg_to_rad, sarray("deg"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(rad_to_deg, sarray("rad"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(linear_to_db, sarray("lin"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(db_to_linear, sarray("db"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR3(wrap, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(wrapi, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(wrapf, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVARARG(max, sarray(), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(maxi, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(maxf, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVARARG(min, sarray(), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(mini, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(minf, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDVR3(clamp, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(clampi, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(clampf, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(nearest_po2, sarray("value"), Variant::UTILITY_FUNC_TYPE_MATH);
FUNCBINDR(pingpong, sarray("value", "length"), Variant::UTILITY_FUNC_TYPE_MATH);
// Random
FUNCBIND(randomize, sarray(), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBINDR(randi, sarray(), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBINDR(randf, sarray(), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBINDR(randi_range, sarray("from", "to"), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBINDR(randf_range, sarray("from", "to"), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBINDR(randfn, sarray("mean", "deviation"), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBIND(seed, sarray("base"), Variant::UTILITY_FUNC_TYPE_RANDOM);
FUNCBINDR(rand_from_seed, sarray("seed"), Variant::UTILITY_FUNC_TYPE_RANDOM);
// Utility
FUNCBINDVR(weakref, sarray("obj"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(_typeof, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGS(str, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(error_string, sarray("error"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(print, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(print_rich, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(printerr, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(printt, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(prints, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(printraw, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(print_verbose, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(push_error, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDVARARGV(push_warning, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(var_to_str, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(str_to_var, sarray("string"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(var_to_bytes, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(bytes_to_var, sarray("bytes"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(var_to_bytes_with_objects, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(bytes_to_var_with_objects, sarray("bytes"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(hash, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(instance_from_id, sarray("instance_id"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(is_instance_id_valid, sarray("id"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(is_instance_valid, sarray("instance"), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(rid_allocate_id, Vector<String>(), Variant::UTILITY_FUNC_TYPE_GENERAL);
FUNCBINDR(rid_from_int64, sarray("base"), Variant::UTILITY_FUNC_TYPE_GENERAL);
}
void Variant::_unregister_variant_utility_functions() {
utility_function_table.clear();
utility_function_name_table.clear();
}
void Variant::call_utility_function(const StringName &p_name, Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
r_error.argument = 0;
r_error.expected = 0;
return;
}
if (unlikely(!bfi->is_vararg && p_argcount < bfi->argcount)) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 0;
r_error.expected = bfi->argcount;
return;
}
if (unlikely(!bfi->is_vararg && p_argcount > bfi->argcount)) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
r_error.argument = 0;
r_error.expected = bfi->argcount;
return;
}
bfi->call_utility(r_ret, p_args, p_argcount, r_error);
}
bool Variant::has_utility_function(const StringName &p_name) {
return utility_function_table.has(p_name);
}
Variant::ValidatedUtilityFunction Variant::get_validated_utility_function(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return nullptr;
}
return bfi->validated_call_utility;
}
Variant::PTRUtilityFunction Variant::get_ptr_utility_function(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return nullptr;
}
return bfi->ptr_call_utility;
}
Variant::UtilityFunctionType Variant::get_utility_function_type(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return Variant::UTILITY_FUNC_TYPE_MATH;
}
return bfi->type;
}
MethodInfo Variant::get_utility_function_info(const StringName &p_name) {
MethodInfo info;
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (bfi) {
info.name = p_name;
if (bfi->returns_value && bfi->return_type == Variant::NIL) {
info.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
}
info.return_val.type = bfi->return_type;
if (bfi->is_vararg) {
info.flags |= METHOD_FLAG_VARARG;
}
for (int i = 0; i < bfi->argnames.size(); ++i) {
PropertyInfo arg;
arg.type = bfi->get_arg_type(i);
arg.name = bfi->argnames[i];
info.arguments.push_back(arg);
}
}
return info;
}
int Variant::get_utility_function_argument_count(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return 0;
}
return bfi->argcount;
}
Variant::Type Variant::get_utility_function_argument_type(const StringName &p_name, int p_arg) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return Variant::NIL;
}
return bfi->get_arg_type(p_arg);
}
String Variant::get_utility_function_argument_name(const StringName &p_name, int p_arg) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return String();
}
ERR_FAIL_INDEX_V(p_arg, bfi->argnames.size(), String());
ERR_FAIL_COND_V(bfi->is_vararg, String());
return bfi->argnames[p_arg];
}
bool Variant::has_utility_function_return_value(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return false;
}
return bfi->returns_value;
}
Variant::Type Variant::get_utility_function_return_type(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return Variant::NIL;
}
return bfi->return_type;
}
bool Variant::is_utility_function_vararg(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
if (!bfi) {
return false;
}
return bfi->is_vararg;
}
uint32_t Variant::get_utility_function_hash(const StringName &p_name) {
const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name);
ERR_FAIL_COND_V(!bfi, 0);
uint32_t hash = hash_murmur3_one_32(bfi->is_vararg);
hash = hash_murmur3_one_32(bfi->returns_value, hash);
if (bfi->returns_value) {
hash = hash_murmur3_one_32(bfi->return_type, hash);
}
hash = hash_murmur3_one_32(bfi->argcount, hash);
for (int i = 0; i < bfi->argcount; i++) {
hash = hash_murmur3_one_32(bfi->get_arg_type(i), hash);
}
return hash_fmix32(hash);
}
void Variant::get_utility_function_list(List<StringName> *r_functions) {
for (const StringName &E : utility_function_name_table) {
r_functions->push_back(E);
}
}
int Variant::get_utility_function_count() {
return utility_function_name_table.size();
}