godot/scene/3d/baked_light_instance.cpp
Juan Linietsky 118eed485e ObjectTypeDB was renamed to ClassDB. Types are meant to be more generic to Variant.
All usages of "type" to refer to classes were renamed to "class"
ClassDB has been exposed to GDScript.
OBJ_TYPE() macro is now GDCLASS()
2017-01-02 23:03:46 -03:00

1838 lines
43 KiB
C++

/*************************************************************************/
/* baked_light_instance.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "baked_light_instance.h"
#include "scene/scene_string_names.h"
#include "mesh_instance.h"
#include "light.h"
#include "math.h"
#define FINDMINMAX(x0,x1,x2,min,max) \
min = max = x0; \
if(x1<min) min=x1;\
if(x1>max) max=x1;\
if(x2<min) min=x2;\
if(x2>max) max=x2;
static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox)
{
int q;
Vector3 vmin,vmax;
for(q=0;q<=2;q++)
{
if(normal[q]>0.0f)
{
vmin[q]=-maxbox[q];
vmax[q]=maxbox[q];
}
else
{
vmin[q]=maxbox[q];
vmax[q]=-maxbox[q];
}
}
if(normal.dot(vmin)+d>0.0f) return false;
if(normal.dot(vmax)+d>=0.0f) return true;
return false;
}
/*======================== X-tests ========================*/
#define AXISTEST_X01(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p2 = a*v2.y - b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_X2(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p1 = a*v1.y - b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Y-tests ========================*/
#define AXISTEST_Y02(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p2 = -a*v2.x + b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Y1(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p1 = -a*v1.x + b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Z-tests ========================*/
#define AXISTEST_Z12(a, b, fa, fb) \
p1 = a*v1.x - b*v1.y; \
p2 = a*v2.x - b*v2.y; \
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Z0(a, b, fa, fb) \
p0 = a*v0.x - b*v0.y; \
p1 = a*v1.x - b*v1.y; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) {
/* use separating axis theorem to test overlap between triangle and box */
/* need to test for overlap in these directions: */
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
/* we do not even need to test these) */
/* 2) normal of the triangle */
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
/* this gives 3x3=9 more tests */
Vector3 v0,v1,v2;
float min,max,d,p0,p1,p2,rad,fex,fey,fez;
Vector3 normal,e0,e1,e2;
/* This is the fastest branch on Sun */
/* move everything so that the boxcenter is in (0,0,0) */
v0=triverts[0]-boxcenter;
v1=triverts[1]-boxcenter;
v2=triverts[2]-boxcenter;
/* compute triangle edges */
e0=v1-v0; /* tri edge 0 */
e1=v2-v1; /* tri edge 1 */
e2=v0-v2; /* tri edge 2 */
/* Bullet 3: */
/* test the 9 tests first (this was faster) */
fex = Math::abs(e0.x);
fey = Math::abs(e0.y);
fez = Math::abs(e0.z);
AXISTEST_X01(e0.z, e0.y, fez, fey);
AXISTEST_Y02(e0.z, e0.x, fez, fex);
AXISTEST_Z12(e0.y, e0.x, fey, fex);
fex = Math::abs(e1.x);
fey = Math::abs(e1.y);
fez = Math::abs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z0(e1.y, e1.x, fey, fex);
fex = Math::abs(e2.x);
fey = Math::abs(e2.y);
fez = Math::abs(e2.z);
AXISTEST_X2(e2.z, e2.y, fez, fey);
AXISTEST_Y1(e2.z, e2.x, fez, fex);
AXISTEST_Z12(e2.y, e2.x, fey, fex);
/* Bullet 1: */
/* first test overlap in the {x,y,z}-directions */
/* find min, max of the triangle each direction, and test for overlap in */
/* that direction -- this is equivalent to testing a minimal AABB around */
/* the triangle against the AABB */
/* test in X-direction */
FINDMINMAX(v0.x,v1.x,v2.x,min,max);
if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
/* test in Y-direction */
FINDMINMAX(v0.y,v1.y,v2.y,min,max);
if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
/* test in Z-direction */
FINDMINMAX(v0.z,v1.z,v2.z,min,max);
if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
/* Bullet 2: */
/* test if the box intersects the plane of the triangle */
/* compute plane equation of triangle: normal*x+d=0 */
normal=e0.cross(e1);
d=-normal.dot(v0); /* plane eq: normal.x+d=0 */
if(!planeBoxOverlap(normal,d,boxhalfsize)) return false;
return true; /* box and triangle overlaps */
}
Vector<Color> BakedLight::_get_bake_texture(Image &p_image,const Color& p_color) {
Vector<Color> ret;
if (p_image.empty()) {
ret.resize(bake_texture_size*bake_texture_size);
for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
ret[i]=p_color;
}
return ret;
}
p_image.convert(Image::FORMAT_RGBA8);
p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC);
DVector<uint8_t>::Read r = p_image.get_data().read();
ret.resize(bake_texture_size*bake_texture_size);
for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
Color c;
c.r = r[i*4+0]/255.0;
c.g = r[i*4+1]/255.0;
c.b = r[i*4+2]/255.0;
c.a = r[i*4+3]/255.0;
ret[i]=c;
}
return ret;
}
BakedLight::MaterialCache BakedLight::_get_material_cache(Ref<Material> p_material) {
//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
Ref<FixedSpatialMaterial> mat = p_material;
Ref<Material> material = mat; //hack for now
if (material_cache.has(material)) {
return material_cache[material];
}
MaterialCache mc;
if (mat.is_valid()) {
Ref<ImageTexture> albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO);
Image img_albedo;
if (albedo_tex.is_valid()) {
img_albedo = albedo_tex->get_data();
}
mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo());
Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
emission_col.r*=mat->get_emission_energy();
emission_col.g*=mat->get_emission_energy();
emission_col.b*=mat->get_emission_energy();
Image img_emission;
if (emission_tex.is_valid()) {
img_emission = emission_tex->get_data();
}
mc.emission=_get_bake_texture(img_emission,emission_col);
} else {
Image empty;
mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7));
mc.emission=_get_bake_texture(empty,Color(0,0,0));
}
material_cache[p_material]=mc;
return mc;
}
static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) {
if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2)
return p_uv[0];
if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2)
return p_uv[1];
if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2)
return p_uv[2];
Vector3 v0 = p_vtx[1] - p_vtx[0];
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
float d00 = v0.dot( v0);
float d01 = v0.dot( v1);
float d11 = v1.dot( v1);
float d20 = v2.dot( v0);
float d21 = v2.dot( v1);
float denom = (d00 * d11 - d01 * d01);
if (denom==0)
return p_uv[0];
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w;
}
void BakedLight::_plot_face(int p_idx, int p_level, const Vector3 *p_vtx, const Vector2* p_uv, const MaterialCache& p_material, const AABB &p_aabb) {
if (p_level==cell_subdiv-1) {
//plot the face by guessing it's albedo and emission value
//find best axis to map to, for scanning values
int closest_axis;
float closest_dot;
Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;
for(int i=0;i<3;i++) {
Vector3 axis;
axis[i]=1.0;
float dot=ABS(normal.dot(axis));
if (i==0 || dot>closest_dot) {
closest_axis=i;
closest_dot=dot;
}
}
Vector3 axis;
axis[closest_axis]=1.0;
Vector3 t1;
t1[(closest_axis+1)%3]=1.0;
Vector3 t2;
t2[(closest_axis+2)%3]=1.0;
t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
float alpha=0.0;
//map to a grid average in the best axis for this face
for(int i=0;i<color_scan_cell_width;i++) {
Vector3 ofs_i=float(i)*t1;
for(int j=0;j<color_scan_cell_width;j++) {
Vector3 ofs_j=float(j)*t2;
Vector3 from = p_aabb.pos+ofs_i+ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
Vector3 half = (to-from)*0.5;
//is in this cell?
if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
continue; //face does not span this cell
}
//go from -size to +size*2 to avoid skipping collisions
Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;
Vector3 intersection;
if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
//no intersect? look in edges
float closest_dist=1e20;
for(int j=0;j<3;j++) {
Vector3 c;
Vector3 inters;
Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
float d=c.distance_to(intersection);
if (j==0 || d<closest_dist) {
closest_dist=d;
intersection=inters;
}
}
}
Vector2 uv = get_uv(intersection,p_vtx,p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
int ofs = uv_y*bake_texture_size+uv_x;
albedo_accum.r+=p_material.albedo[ofs].r;
albedo_accum.g+=p_material.albedo[ofs].g;
albedo_accum.b+=p_material.albedo[ofs].b;
albedo_accum.a+=p_material.albedo[ofs].a;
emission_accum.r+=p_material.emission[ofs].r;
emission_accum.g+=p_material.emission[ofs].g;
emission_accum.b+=p_material.emission[ofs].b;
alpha+=1.0;
}
}
if (alpha==0) {
//could not in any way get texture information.. so use closest point to center
Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);
Vector2 uv = get_uv(inters,p_vtx,p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
int ofs = uv_y*bake_texture_size+uv_x;
alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);
albedo_accum.r=p_material.albedo[ofs].r*alpha;
albedo_accum.g=p_material.albedo[ofs].g*alpha;
albedo_accum.b=p_material.albedo[ofs].b*alpha;
albedo_accum.a=p_material.albedo[ofs].a*alpha;
emission_accum.r=p_material.emission[ofs].r*alpha;
emission_accum.g=p_material.emission[ofs].g*alpha;
emission_accum.b=p_material.emission[ofs].b*alpha;
zero_alphas++;
} else {
float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
alpha*=accdiv;
albedo_accum.r*=accdiv;
albedo_accum.g*=accdiv;
albedo_accum.b*=accdiv;
albedo_accum.a*=accdiv;
emission_accum.r*=accdiv;
emission_accum.g*=accdiv;
emission_accum.b*=accdiv;
}
//put this temporarily here, corrected in a later step
bake_cells_write[p_idx].albedo[0]+=albedo_accum.r;
bake_cells_write[p_idx].albedo[1]+=albedo_accum.g;
bake_cells_write[p_idx].albedo[2]+=albedo_accum.b;
bake_cells_write[p_idx].light[0]+=emission_accum.r;
bake_cells_write[p_idx].light[1]+=emission_accum.g;
bake_cells_write[p_idx].light[2]+=emission_accum.b;
bake_cells_write[p_idx].alpha+=alpha;
static const Vector3 side_normals[6]={
Vector3(-1, 0, 0),
Vector3( 1, 0, 0),
Vector3( 0,-1, 0),
Vector3( 0, 1, 0),
Vector3( 0, 0,-1),
Vector3( 0, 0, 1),
};
for(int i=0;i<6;i++) {
if (normal.dot(side_normals[i])>CMP_EPSILON) {
bake_cells_write[p_idx].used_sides|=(1<<i);
}
}
} else {
//go down
for(int i=0;i<8;i++) {
AABB aabb=p_aabb;
aabb.size*=0.5;
if (i&1)
aabb.pos.x+=aabb.size.x;
if (i&2)
aabb.pos.y+=aabb.size.y;
if (i&4)
aabb.pos.z+=aabb.size.z;
{
AABB test_aabb=aabb;
//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test
if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
//does not fit in child, go on
continue;
}
}
if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) {
//sub cell must be created
if (bake_cells_used==(1<<bake_cells_alloc)) {
//exhausted cells, creating more space
bake_cells_alloc++;
bake_cells_write=DVector<BakeCell>::Write();
bake_cells.resize(1<<bake_cells_alloc);
bake_cells_write=bake_cells.write();
}
bake_cells_write[p_idx].childs[i]=bake_cells_used;
bake_cells_level_used[p_level+1]++;
bake_cells_used++;
}
_plot_face(bake_cells_write[p_idx].childs[i],p_level+1,p_vtx,p_uv,p_material,aabb);
}
}
}
void BakedLight::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z) {
if (p_level==cell_subdiv-1) {
float alpha = bake_cells_write[p_idx].alpha;
bake_cells_write[p_idx].albedo[0]/=alpha;
bake_cells_write[p_idx].albedo[1]/=alpha;
bake_cells_write[p_idx].albedo[2]/=alpha;
//transfer emission to light
bake_cells_write[p_idx].light[0]/=alpha;
bake_cells_write[p_idx].light[1]/=alpha;
bake_cells_write[p_idx].light[2]/=alpha;
bake_cells_write[p_idx].alpha=1.0;
//remove neighbours from used sides
for(int n=0;n<6;n++) {
int ofs[3]={0,0,0};
ofs[n/2]=(n&1)?1:-1;
//convert to x,y,z on this level
int x=p_x;
int y=p_y;
int z=p_z;
x+=ofs[0];
y+=ofs[1];
z+=ofs[2];
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = 1<<p_level;
int half=size/2;
if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) {
//neighbour is out, can't use it
bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n));
continue;
}
uint32_t neighbour=0;
for(int i=0;i<cell_subdiv-1;i++) {
BakeCell *bc = &bake_cells_write[neighbour];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
neighbour = bc->childs[child];
if (neighbour==CHILD_EMPTY) {
break;
}
half>>=1;
}
if (neighbour!=CHILD_EMPTY) {
bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n));
}
}
} else {
//go down
float alpha_average=0;
int half = cells_per_axis >> (p_level+1);
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_fixup_plot(child,p_level+1,nx,ny,nz);
alpha_average+=bake_cells_write[child].alpha;
}
bake_cells_write[p_idx].alpha=alpha_average/8.0;
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
bake_cells_write[p_idx].albedo[0]=0;
bake_cells_write[p_idx].albedo[1]=0;
bake_cells_write[p_idx].albedo[2]=0;
}
//clean up light
bake_cells_write[p_idx].light_pass=0;
//find neighbours
}
void BakedLight::_bake_add_mesh(const Transform& p_xform,Ref<Mesh>& p_mesh) {
for(int i=0;i<p_mesh->get_surface_count();i++) {
if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i));
Array a = p_mesh->surface_get_arrays(i);
DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
DVector<Vector3>::Read vr=vertices.read();
DVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
DVector<Vector2>::Read uvr;
DVector<int> index = a[Mesh::ARRAY_INDEX];
bool read_uv=false;
if (uv.size()) {
uvr=uv.read();
read_uv=true;
}
if (index.size()) {
int facecount = index.size()/3;
DVector<int>::Read ir=index.read();
for(int j=0;j<facecount;j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for(int k=0;k<3;k++) {
vtxs[k]=p_xform.xform(vr[ir[j*3+k]]);
}
if (read_uv) {
for(int k=0;k<3;k++) {
uvs[k]=uvr[ir[j*3+k]];
}
}
//plot face
_plot_face(0,0,vtxs,uvs,material,bounds);
}
} else {
int facecount = vertices.size()/3;
for(int j=0;j<facecount;j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for(int k=0;k<3;k++) {
vtxs[k]=p_xform.xform(vr[j*3+k]);
}
if (read_uv) {
for(int k=0;k<3;k++) {
uvs[k]=uvr[j*3+k];
}
}
//plot face
_plot_face(0,0,vtxs,uvs,material,bounds);
}
}
}
}
void BakedLight::_bake_add_to_aabb(const Transform& p_xform,Ref<Mesh>& p_mesh,bool &first) {
for(int i=0;i<p_mesh->get_surface_count();i++) {
if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
Array a = p_mesh->surface_get_arrays(i);
DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
int vc = vertices.size();
DVector<Vector3>::Read vr=vertices.read();
if (first) {
bounds.pos=p_xform.xform(vr[0]);
first=false;
}
for(int j=0;j<vc;j++) {
bounds.expand_to(p_xform.xform(vr[j]));
}
}
}
void BakedLight::bake() {
bake_cells_alloc=16;
bake_cells.resize(1<<bake_cells_alloc);
bake_cells_used=1;
cells_per_axis=(1<<(cell_subdiv-1));
zero_alphas=0;
bool aabb_first=true;
print_line("Generating AABB");
bake_cells_level_used.resize(cell_subdiv);
for(int i=0;i<cell_subdiv;i++) {
bake_cells_level_used[i]=0;
}
int count=0;
for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) {
print_line("aabb geom "+itos(count)+"/"+itos(geometries.size()));
GeometryInstance *geom = E->get();
if (geom->cast_to<MeshInstance>()) {
MeshInstance *mesh_instance = geom->cast_to<MeshInstance>();
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_bake_add_to_aabb(geom->get_relative_transform(this),mesh,aabb_first);
}
}
count++;
}
print_line("AABB: "+bounds);
ERR_FAIL_COND(aabb_first);
bake_cells_write = bake_cells.write();
count=0;
for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) {
GeometryInstance *geom = E->get();
print_line("plot geom "+itos(count)+"/"+itos(geometries.size()));
if (geom->cast_to<MeshInstance>()) {
MeshInstance *mesh_instance = geom->cast_to<MeshInstance>();
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_bake_add_mesh(geom->get_relative_transform(this),mesh);
}
}
count++;
}
_fixup_plot(0, 0,0,0,0);
bake_cells_write=DVector<BakeCell>::Write();
bake_cells.resize(bake_cells_used);
print_line("total bake cells used: "+itos(bake_cells_used));
for(int i=0;i<cell_subdiv;i++) {
print_line("level "+itos(i)+": "+itos(bake_cells_level_used[i]));
}
print_line("zero alphas: "+itos(zero_alphas));
}
void BakedLight::_bake_directional(int p_idx, int p_level, int p_x,int p_y,int p_z,const Vector3& p_dir,const Color& p_color,int p_sign) {
if (p_level==cell_subdiv-1) {
Vector3 end;
end.x = float(p_x+0.5) / cells_per_axis;
end.y = float(p_y+0.5) / cells_per_axis;
end.z = float(p_z+0.5) / cells_per_axis;
end = bounds.pos + bounds.size*end;
float max_ray_len = (bounds.size).length()*1.2;
Vector3 begin = end + max_ray_len*-p_dir;
//clip begin
for(int i=0;i<3;i++) {
if (ABS(p_dir[i])<CMP_EPSILON) {
continue; // parallel to axis, don't clip
}
Plane p;
p.normal[i]=1.0;
p.d=bounds.pos[i];
if (p_dir[i]<0) {
p.d+=bounds.size[i];
}
Vector3 inters;
if (p.intersects_segment(end,begin,&inters)) {
begin=inters;
}
}
int idx = _plot_ray(begin,end);
if (idx>=0 && light_pass!=bake_cells_write[idx].light_pass) {
//hit something, add or remove light to it
Color albedo = Color(bake_cells_write[idx].albedo[0],bake_cells_write[idx].albedo[1],bake_cells_write[idx].albedo[2]);
bake_cells_write[idx].light[0]+=albedo.r*p_color.r*p_sign;
bake_cells_write[idx].light[1]+=albedo.g*p_color.g*p_sign;
bake_cells_write[idx].light[2]+=albedo.b*p_color.b*p_sign;
bake_cells_write[idx].light_pass=light_pass;
}
} else {
int half = cells_per_axis >> (p_level+1);
//go down
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_bake_directional(child,p_level+1,nx,ny,nz,p_dir,p_color,p_sign);
}
}
}
void BakedLight::_bake_light(Light* p_light) {
if (p_light->cast_to<DirectionalLight>()) {
DirectionalLight * dl = p_light->cast_to<DirectionalLight>();
Transform rel_xf = dl->get_relative_transform(this);
Vector3 light_dir = -rel_xf.basis.get_axis(2);
Color color = dl->get_color();
float nrg = dl->get_param(Light::PARAM_ENERGY);;
color.r*=nrg;
color.g*=nrg;
color.b*=nrg;
light_pass++;
_bake_directional(0,0,0,0,0,light_dir,color,1);
}
}
void BakedLight::_upscale_light(int p_idx,int p_level) {
//go down
float light_accum[3]={0,0,0};
float alpha_accum=0;
bool check_children = p_level < (cell_subdiv -2);
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
if (check_children) {
_upscale_light(child,p_level+1);
}
light_accum[0]+=bake_cells_write[child].light[0];
light_accum[1]+=bake_cells_write[child].light[1];
light_accum[2]+=bake_cells_write[child].light[2];
alpha_accum+=bake_cells_write[child].alpha;
}
bake_cells_write[p_idx].light[0]=light_accum[0]/8.0;
bake_cells_write[p_idx].light[1]=light_accum[1]/8.0;
bake_cells_write[p_idx].light[2]=light_accum[2]/8.0;
bake_cells_write[p_idx].alpha=alpha_accum/8.0;
}
void BakedLight::bake_lights() {
ERR_FAIL_COND(bake_cells.size()==0);
bake_cells_write = bake_cells.write();
for(Set<Light*>::Element *E=lights.front();E;E=E->next()) {
_bake_light(E->get());
}
_upscale_light(0,0);
bake_cells_write=DVector<BakeCell>::Write();
}
Color BakedLight::_cone_trace(const Vector3& p_from, const Vector3& p_dir, float p_half_angle) {
Color color(0,0,0,0);
float tha = Math::tan(p_half_angle);//tan half angle
Vector3 from =(p_from-bounds.pos)/bounds.size; //convert to 0..1
from/=cells_per_axis; //convert to voxels of size 1
Vector3 dir = (p_dir/bounds.size).normalized();
float max_dist = Vector3(cells_per_axis,cells_per_axis,cells_per_axis).length();
float dist = 1.0;
// self occlusion in flat surfaces
float alpha=0;
while(dist < max_dist && alpha < 0.95) {
#if 0
// smallest sample diameter possible is the voxel size
float diameter = MAX(1.0, 2.0 * tha * dist);
float lod = log2(diameter);
Vector3 sample_pos = from + dist * dir;
Color samples_base[2][8]={{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)},
{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}};
float levelf = Math::fposmod(lod,1.0);
float fx = Math::fposmod(sample_pos.x,1.0);
float fy = Math::fposmod(sample_pos.y,1.0);
float fz = Math::fposmod(sample_pos.z,1.0);
for(int l=0;l<2;l++){
int bx = Math::floor(sample_pos.x);
int by = Math::floor(sample_pos.y);
int bz = Math::floor(sample_pos.z);
int lodn=int(Math::floor(lod))-l;
bx>>=lodn;
by>>=lodn;
bz>>=lodn;
int limit = MAX(0,cell_subdiv-lodn-1);
for(int c=0;c<8;c++) {
int x = bx;
int y = by;
int z = bz;
if (c&1) {
x+=1;
}
if (c&2) {
y+=1;
}
if (c&4) {
z+=1;
}
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = cells_per_axis>>lodn;
int half=size/2;
bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size;
if (outside)
continue;
uint32_t cell=0;
for(int i=0;i<limit;i++) {
BakeCell *bc = &bake_cells_write[cell];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
cell = bc->childs[child];
if (cell==CHILD_EMPTY)
break;
half>>=1;
}
if (cell!=CHILD_EMPTY) {
samples_base[l][c].r=bake_cells_write[cell].light[0];
samples_base[l][c].g=bake_cells_write[cell].light[1];
samples_base[l][c].b=bake_cells_write[cell].light[2];
samples_base[l][c].a=bake_cells_write[cell].alpha;
}
}
}
Color m0x0 = samples_base[0][0].linear_interpolate(samples_base[0][1],fx);
Color m0x1 = samples_base[0][2].linear_interpolate(samples_base[0][3],fx);
Color m0y0 = m0x0.linear_interpolate(m0x1,fy);
m0x0 = samples_base[0][4].linear_interpolate(samples_base[0][5],fx);
m0x1 = samples_base[0][6].linear_interpolate(samples_base[0][7],fx);
Color m0y1 = m0x0.linear_interpolate(m0x1,fy);
Color m0z = m0y0.linear_interpolate(m0y1,fz);
Color m1x0 = samples_base[1][0].linear_interpolate(samples_base[1][1],fx);
Color m1x1 = samples_base[1][2].linear_interpolate(samples_base[1][3],fx);
Color m1y0 = m1x0.linear_interpolate(m1x1,fy);
m1x0 = samples_base[1][4].linear_interpolate(samples_base[1][5],fx);
m1x1 = samples_base[1][6].linear_interpolate(samples_base[1][7],fx);
Color m1y1 = m1x0.linear_interpolate(m1x1,fy);
Color m1z = m1y0.linear_interpolate(m1y1,fz);
Color m = m0z.linear_interpolate(m1z,levelf);
#else
float diameter = 1.0;
Vector3 sample_pos = from + dist * dir;
Color m(0,0,0,0);
{
int x = Math::floor(sample_pos.x);
int y = Math::floor(sample_pos.y);
int z = Math::floor(sample_pos.z);
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = cells_per_axis;
int half=size/2;
bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size;
if (!outside) {
uint32_t cell=0;
for(int i=0;i<cell_subdiv-1;i++) {
BakeCell *bc = &bake_cells_write[cell];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
cell = bc->childs[child];
if (cell==CHILD_EMPTY)
break;
half>>=1;
}
if (cell!=CHILD_EMPTY) {
m.r=bake_cells_write[cell].light[0];
m.g=bake_cells_write[cell].light[1];
m.b=bake_cells_write[cell].light[2];
m.a=bake_cells_write[cell].alpha;
}
}
}
#endif
// front-to-back compositing
float a = (1.0 - alpha);
color.r += a * m.r;
color.g += a * m.g;
color.b += a * m.b;
alpha += a * m.a;
//occlusion += a * voxelColor.a;
//occlusion += (a * voxelColor.a) / (1.0 + 0.03 * diameter);
dist += diameter * 0.5; // smoother
//dist += diameter; // faster but misses more voxels
}
return color;
}
void BakedLight::_bake_radiance(int p_idx, int p_level, int p_x,int p_y,int p_z) {
if (p_level==cell_subdiv-1) {
const int NUM_CONES = 6;
Vector3 cone_directions[6] = {
Vector3(1, 0, 0),
Vector3(0.5, 0.866025, 0),
Vector3( 0.5, 0.267617, 0.823639),
Vector3( 0.5, -0.700629, 0.509037),
Vector3( 0.5, -0.700629, -0.509037),
Vector3( 0.5, 0.267617, -0.823639)
};
float coneWeights[6] = {0.25, 0.15, 0.15, 0.15, 0.15, 0.15};
Vector3 pos = (Vector3(p_x,p_y,p_z)/float(cells_per_axis))*bounds.size+bounds.pos;
Vector3 voxel_size = bounds.size/float(cells_per_axis);
pos+=voxel_size*0.5;
Color accum;
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
int freepix=0;
for(int i=0;i<6;i++) {
if (!(bake_cells_write[p_idx].used_sides&(1<<i)))
continue;
if ((i&1)==0)
bake_cells_write[p_idx].light[i/2]=1.0;
freepix++;
continue;
int ofs = i/2;
Vector3 dir;
if ((i&1)==0)
dir[ofs]=1.0;
else
dir[ofs]=-1.0;
for(int j=0;j<1;j++) {
Vector3 cone_dir;
cone_dir.x = cone_directions[j][(ofs+0)%3];
cone_dir.y = cone_directions[j][(ofs+1)%3];
cone_dir.z = cone_directions[j][(ofs+2)%3];
cone_dir[ofs]*=dir[ofs];
Color res = _cone_trace(pos+dir*voxel_size,cone_dir,Math::deg2rad(29.9849));
accum.r+=res.r;//*coneWeights[j];
accum.g+=res.g;//*coneWeights[j];
accum.b+=res.b;//*coneWeights[j];
}
}
#if 0
if (freepix==0) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==1) {
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==2) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=1;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==3) {
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[1]=1;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==4) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=1;
}
if (freepix==5) {
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=1;
}
if (freepix==6) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[0]=1;
}
#endif
//bake_cells_write[p_idx].radiance[0]=accum.r;
//bake_cells_write[p_idx].radiance[1]=accum.g;
//bake_cells_write[p_idx].radiance[2]=accum.b;
} else {
int half = cells_per_axis >> (p_level+1);
//go down
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_bake_radiance(child,p_level+1,nx,ny,nz);
}
}
}
void BakedLight::bake_radiance() {
ERR_FAIL_COND(bake_cells.size()==0);
bake_cells_write = bake_cells.write();
_bake_radiance(0,0,0,0,0);
bake_cells_write=DVector<BakeCell>::Write();
}
int BakedLight::_find_cell(int x,int y, int z) {
uint32_t cell=0;
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = cells_per_axis;
int half=size/2;
if (x<0 || x>=size)
return -1;
if (y<0 || y>=size)
return -1;
if (z<0 || z>=size)
return -1;
for(int i=0;i<cell_subdiv-1;i++) {
BakeCell *bc = &bake_cells_write[cell];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
cell = bc->childs[child];
if (cell==CHILD_EMPTY)
return -1;
half>>=1;
}
return cell;
}
int BakedLight::_plot_ray(const Vector3& p_from, const Vector3& p_to) {
Vector3 from = (p_from - bounds.pos) / bounds.size;
Vector3 to = (p_to - bounds.pos) / bounds.size;
int x1 = Math::floor(from.x*cells_per_axis);
int y1 = Math::floor(from.y*cells_per_axis);
int z1 = Math::floor(from.z*cells_per_axis);
int x2 = Math::floor(to.x*cells_per_axis);
int y2 = Math::floor(to.y*cells_per_axis);
int z2 = Math::floor(to.z*cells_per_axis);
int i, dx, dy, dz, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2;
int point[3];
point[0] = x1;
point[1] = y1;
point[2] = z1;
dx = x2 - x1;
dy = y2 - y1;
dz = z2 - z1;
x_inc = (dx < 0) ? -1 : 1;
l = ABS(dx);
y_inc = (dy < 0) ? -1 : 1;
m = ABS(dy);
z_inc = (dz < 0) ? -1 : 1;
n = ABS(dz);
dx2 = l << 1;
dy2 = m << 1;
dz2 = n << 1;
if ((l >= m) && (l >= n)) {
err_1 = dy2 - l;
err_2 = dz2 - l;
for (i = 0; i < l; i++) {
int cell = _find_cell(point[0],point[1],point[2]);
if (cell>=0)
return cell;
if (err_1 > 0) {
point[1] += y_inc;
err_1 -= dx2;
}
if (err_2 > 0) {
point[2] += z_inc;
err_2 -= dx2;
}
err_1 += dy2;
err_2 += dz2;
point[0] += x_inc;
}
} else if ((m >= l) && (m >= n)) {
err_1 = dx2 - m;
err_2 = dz2 - m;
for (i = 0; i < m; i++) {
int cell = _find_cell(point[0],point[1],point[2]);
if (cell>=0)
return cell;
if (err_1 > 0) {
point[0] += x_inc;
err_1 -= dy2;
}
if (err_2 > 0) {
point[2] += z_inc;
err_2 -= dy2;
}
err_1 += dx2;
err_2 += dz2;
point[1] += y_inc;
}
} else {
err_1 = dy2 - n;
err_2 = dx2 - n;
for (i = 0; i < n; i++) {
int cell = _find_cell(point[0],point[1],point[2]);
if (cell>=0)
return cell;
if (err_1 > 0) {
point[1] += y_inc;
err_1 -= dz2;
}
if (err_2 > 0) {
point[0] += x_inc;
err_2 -= dz2;
}
err_1 += dy2;
err_2 += dx2;
point[2] += z_inc;
}
}
return _find_cell(point[0],point[1],point[2]);
}
void BakedLight::set_cell_subdiv(int p_subdiv) {
cell_subdiv=p_subdiv;
// VS::get_singleton()->baked_light_set_subdivision(baked_light,p_subdiv);
}
int BakedLight::get_cell_subdiv() const {
return cell_subdiv;
}
AABB BakedLight::get_aabb() const {
return AABB(Vector3(0,0,0),Vector3(1,1,1));
}
DVector<Face3> BakedLight::get_faces(uint32_t p_usage_flags) const {
return DVector<Face3>();
}
String BakedLight::get_configuration_warning() const {
return String();
}
void BakedLight::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,DebugMode p_mode,Ref<MultiMesh> &p_multimesh,int &idx) {
if (p_level==cell_subdiv-1) {
Vector3 center = p_aabb.pos+p_aabb.size*0.5;
Transform xform;
xform.origin=center;
xform.basis.scale(p_aabb.size*0.5);
p_multimesh->set_instance_transform(idx,xform);
Color col;
switch(p_mode) {
case DEBUG_ALBEDO: {
col=Color(bake_cells_write[p_idx].albedo[0],bake_cells_write[p_idx].albedo[1],bake_cells_write[p_idx].albedo[2]);
} break;
case DEBUG_LIGHT: {
col=Color(bake_cells_write[p_idx].light[0],bake_cells_write[p_idx].light[1],bake_cells_write[p_idx].light[2]);
Color colr=Color(bake_cells_write[p_idx].radiance[0],bake_cells_write[p_idx].radiance[1],bake_cells_write[p_idx].radiance[2]);
col.r+=colr.r;
col.g+=colr.g;
col.b+=colr.b;
} break;
}
p_multimesh->set_instance_color(idx,col);
idx++;
} else {
for(int i=0;i<8;i++) {
if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY)
continue;
AABB aabb=p_aabb;
aabb.size*=0.5;
if (i&1)
aabb.pos.x+=aabb.size.x;
if (i&2)
aabb.pos.y+=aabb.size.y;
if (i&4)
aabb.pos.z+=aabb.size.z;
_debug_mesh(bake_cells_write[p_idx].childs[i],p_level+1,aabb,p_mode,p_multimesh,idx);
}
}
}
void BakedLight::create_debug_mesh(DebugMode p_mode) {
Ref<MultiMesh> mm;
mm.instance();
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_color_format(MultiMesh::COLOR_8BIT);
mm->set_instance_count(bake_cells_level_used[cell_subdiv-1]);
Ref<Mesh> mesh;
mesh.instance();
{
Array arr;
arr.resize(Mesh::ARRAY_MAX);
DVector<Vector3> vertices;
DVector<Color> colors;
int vtx_idx=0;
#define ADD_VTX(m_idx);\
vertices.push_back( face_points[m_idx] );\
colors.push_back( Color(1,1,1,1) );\
vtx_idx++;\
for (int i=0;i<6;i++) {
Vector3 face_points[4];
for (int j=0;j<4;j++) {
float v[3];
v[0]=1.0;
v[1]=1-2*((j>>1)&1);
v[2]=v[1]*(1-2*(j&1));
for (int k=0;k<3;k++) {
if (i<3)
face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
else
face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
}
}
//tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
arr[Mesh::ARRAY_VERTEX]=vertices;
arr[Mesh::ARRAY_COLOR]=colors;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr);
}
{
Ref<FixedSpatialMaterial> fsm;
fsm.instance();
fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true);
fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true);
fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true);
fsm->set_albedo(Color(1,1,1,1));
mesh->surface_set_material(0,fsm);
}
mm->set_mesh(mesh);
bake_cells_write = bake_cells.write();
int idx=0;
_debug_mesh(0,0,bounds,p_mode,mm,idx);
print_line("written: "+itos(idx)+" total: "+itos(bake_cells_level_used[cell_subdiv-1]));
MultiMeshInstance *mmi = memnew( MultiMeshInstance );
mmi->set_multimesh(mm);
add_child(mmi);
if (get_tree()->get_edited_scene_root()==this){
mmi->set_owner(this);
} else {
mmi->set_owner(get_owner());
}
}
void BakedLight::_debug_mesh_albedo() {
create_debug_mesh(DEBUG_ALBEDO);
}
void BakedLight::_debug_mesh_light() {
create_debug_mesh(DEBUG_LIGHT);
}
void BakedLight::_bind_methods() {
ClassDB::bind_method(_MD("set_cell_subdiv","steps"),&BakedLight::set_cell_subdiv);
ClassDB::bind_method(_MD("get_cell_subdiv"),&BakedLight::get_cell_subdiv);
ClassDB::bind_method(_MD("bake"),&BakedLight::bake);
ClassDB::set_method_flags(get_class_static(),_SCS("bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ClassDB::bind_method(_MD("bake_lights"),&BakedLight::bake_lights);
ClassDB::set_method_flags(get_class_static(),_SCS("bake_lights"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ClassDB::bind_method(_MD("bake_radiance"),&BakedLight::bake_radiance);
ClassDB::set_method_flags(get_class_static(),_SCS("bake_radiance"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ClassDB::bind_method(_MD("debug_mesh_albedo"),&BakedLight::_debug_mesh_albedo);
ClassDB::set_method_flags(get_class_static(),_SCS("debug_mesh_albedo"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ClassDB::bind_method(_MD("debug_mesh_light"),&BakedLight::_debug_mesh_light);
ClassDB::set_method_flags(get_class_static(),_SCS("debug_mesh_light"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ADD_PROPERTY(PropertyInfo(Variant::INT,"cell_subdiv"),_SCS("set_cell_subdiv"),_SCS("get_cell_subdiv"));
ADD_SIGNAL( MethodInfo("baked_light_changed"));
}
BakedLight::BakedLight() {
// baked_light=VisualServer::get_singleton()->baked_light_create();
VS::get_singleton()->instance_set_base(get_instance(),baked_light);
cell_subdiv=8;
bake_texture_size=128;
color_scan_cell_width=8;
light_pass=0;
}
BakedLight::~BakedLight() {
VS::get_singleton()->free(baked_light);
}
/////////////////////////
#if 0
void BakedLightSampler::set_param(Param p_param,float p_value) {
ERR_FAIL_INDEX(p_param,PARAM_MAX);
params[p_param]=p_value;
VS::get_singleton()->baked_light_sampler_set_param(base,VS::BakedLightSamplerParam(p_param),p_value);
}
float BakedLightSampler::get_param(Param p_param) const{
ERR_FAIL_INDEX_V(p_param,PARAM_MAX,0);
return params[p_param];
}
void BakedLightSampler::set_resolution(int p_resolution){
ERR_FAIL_COND(p_resolution<4 || p_resolution>32);
resolution=p_resolution;
VS::get_singleton()->baked_light_sampler_set_resolution(base,resolution);
}
int BakedLightSampler::get_resolution() const {
return resolution;
}
AABB BakedLightSampler::get_aabb() const {
float r = get_param(PARAM_RADIUS);
return AABB( Vector3(-r,-r,-r),Vector3(r*2,r*2,r*2));
}
DVector<Face3> BakedLightSampler::get_faces(uint32_t p_usage_flags) const {
return DVector<Face3>();
}
void BakedLightSampler::_bind_methods() {
ClassDB::bind_method(_MD("set_param","param","value"),&BakedLightSampler::set_param);
ClassDB::bind_method(_MD("get_param","param"),&BakedLightSampler::get_param);
ClassDB::bind_method(_MD("set_resolution","resolution"),&BakedLightSampler::set_resolution);
ClassDB::bind_method(_MD("get_resolution"),&BakedLightSampler::get_resolution);
BIND_CONSTANT( PARAM_RADIUS );
BIND_CONSTANT( PARAM_STRENGTH );
BIND_CONSTANT( PARAM_ATTENUATION );
BIND_CONSTANT( PARAM_DETAIL_RATIO );
BIND_CONSTANT( PARAM_MAX );
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/radius",PROPERTY_HINT_RANGE,"0.01,1024,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_RADIUS);
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/strength",PROPERTY_HINT_RANGE,"0.01,16,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_STRENGTH);
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/attenuation",PROPERTY_HINT_EXP_EASING),_SCS("set_param"),_SCS("get_param"),PARAM_ATTENUATION);
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/detail_ratio",PROPERTY_HINT_RANGE,"0.01,1.0,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_DETAIL_RATIO);
// ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/detail_ratio",PROPERTY_HINT_RANGE,"0,20,1"),_SCS("set_param"),_SCS("get_param"),PARAM_DETAIL_RATIO);
ADD_PROPERTY( PropertyInfo(Variant::REAL,"params/resolution",PROPERTY_HINT_RANGE,"4,32,1"),_SCS("set_resolution"),_SCS("get_resolution"));
}
BakedLightSampler::BakedLightSampler() {
base = VS::get_singleton()->baked_light_sampler_create();
set_base(base);
params[PARAM_RADIUS]=1.0;
params[PARAM_STRENGTH]=1.0;
params[PARAM_ATTENUATION]=1.0;
params[PARAM_DETAIL_RATIO]=0.1;
resolution=16;
}
BakedLightSampler::~BakedLightSampler(){
VS::get_singleton()->free(base);
}
#endif