72087b8158
Disabled backface collision is only applied on face separation axes, because applying it also on edges and vertices was causing some contacts to be wrongly disabled and contact points to be off.
2387 lines
74 KiB
C++
2387 lines
74 KiB
C++
/*************************************************************************/
|
|
/* collision_solver_3d_sat.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "collision_solver_3d_sat.h"
|
|
#include "core/math/geometry_3d.h"
|
|
|
|
#include "gjk_epa.h"
|
|
|
|
#define fallback_collision_solver gjk_epa_calculate_penetration
|
|
|
|
// Cylinder SAT analytic methods and face-circle contact points for cylinder-trimesh and cylinder-box collision are based on ODE colliders.
|
|
|
|
/*
|
|
* Cylinder-trimesh and Cylinder-box colliders by Alen Ladavac
|
|
* Ported to ODE by Nguyen Binh
|
|
*/
|
|
|
|
/*************************************************************************
|
|
* *
|
|
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
|
|
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
|
|
* *
|
|
* This library is free software; you can redistribute it and/or *
|
|
* modify it under the terms of EITHER: *
|
|
* (1) The GNU Lesser General Public License as published by the Free *
|
|
* Software Foundation; either version 2.1 of the License, or (at *
|
|
* your option) any later version. The text of the GNU Lesser *
|
|
* General Public License is included with this library in the *
|
|
* file LICENSE.TXT. *
|
|
* (2) The BSD-style license that is included with this library in *
|
|
* the file LICENSE-BSD.TXT. *
|
|
* *
|
|
* This library is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
|
|
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
|
|
* *
|
|
*************************************************************************/
|
|
|
|
struct _CollectorCallback {
|
|
CollisionSolver3DSW::CallbackResult callback;
|
|
void *userdata;
|
|
bool swap;
|
|
bool collided;
|
|
Vector3 normal;
|
|
Vector3 *prev_axis;
|
|
|
|
_FORCE_INLINE_ void call(const Vector3 &p_point_A, const Vector3 &p_point_B) {
|
|
if (swap) {
|
|
callback(p_point_B, 0, p_point_A, 0, userdata);
|
|
} else {
|
|
callback(p_point_A, 0, p_point_B, 0, userdata);
|
|
}
|
|
}
|
|
};
|
|
|
|
typedef void (*GenerateContactsFunc)(const Vector3 *, int, const Vector3 *, int, _CollectorCallback *);
|
|
|
|
static void _generate_contacts_point_point(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 1);
|
|
ERR_FAIL_COND(p_point_count_B != 1);
|
|
#endif
|
|
|
|
p_callback->call(*p_points_A, *p_points_B);
|
|
}
|
|
|
|
static void _generate_contacts_point_edge(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 1);
|
|
ERR_FAIL_COND(p_point_count_B != 2);
|
|
#endif
|
|
|
|
Vector3 closest_B = Geometry3D::get_closest_point_to_segment_uncapped(*p_points_A, p_points_B);
|
|
p_callback->call(*p_points_A, closest_B);
|
|
}
|
|
|
|
static void _generate_contacts_point_face(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 1);
|
|
ERR_FAIL_COND(p_point_count_B < 3);
|
|
#endif
|
|
|
|
Vector3 closest_B = Plane(p_points_B[0], p_points_B[1], p_points_B[2]).project(*p_points_A);
|
|
|
|
p_callback->call(*p_points_A, closest_B);
|
|
}
|
|
|
|
static void _generate_contacts_point_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 1);
|
|
ERR_FAIL_COND(p_point_count_B != 3);
|
|
#endif
|
|
|
|
Vector3 closest_B = Plane(p_points_B[0], p_points_B[1], p_points_B[2]).project(*p_points_A);
|
|
|
|
p_callback->call(*p_points_A, closest_B);
|
|
}
|
|
|
|
static void _generate_contacts_edge_edge(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 2);
|
|
ERR_FAIL_COND(p_point_count_B != 2); // circle is actually a 4x3 matrix
|
|
#endif
|
|
|
|
Vector3 rel_A = p_points_A[1] - p_points_A[0];
|
|
Vector3 rel_B = p_points_B[1] - p_points_B[0];
|
|
|
|
Vector3 c = rel_A.cross(rel_B).cross(rel_B);
|
|
|
|
if (Math::is_zero_approx(rel_A.dot(c))) {
|
|
// should handle somehow..
|
|
//ERR_PRINT("TODO FIX");
|
|
//return;
|
|
|
|
Vector3 axis = rel_A.normalized(); //make an axis
|
|
Vector3 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]);
|
|
Vector3 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]);
|
|
|
|
//sort all 4 points in axis
|
|
real_t dvec[4] = { axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) };
|
|
|
|
SortArray<real_t> sa;
|
|
sa.sort(dvec, 4);
|
|
|
|
//use the middle ones as contacts
|
|
p_callback->call(base_A + axis * dvec[1], base_B + axis * dvec[1]);
|
|
p_callback->call(base_A + axis * dvec[2], base_B + axis * dvec[2]);
|
|
|
|
return;
|
|
}
|
|
|
|
real_t d = (c.dot(p_points_B[0]) - p_points_A[0].dot(c)) / rel_A.dot(c);
|
|
|
|
if (d < 0.0) {
|
|
d = 0.0;
|
|
} else if (d > 1.0) {
|
|
d = 1.0;
|
|
}
|
|
|
|
Vector3 closest_A = p_points_A[0] + rel_A * d;
|
|
Vector3 closest_B = Geometry3D::get_closest_point_to_segment_uncapped(closest_A, p_points_B);
|
|
p_callback->call(closest_A, closest_B);
|
|
}
|
|
|
|
static void _generate_contacts_edge_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 2);
|
|
ERR_FAIL_COND(p_point_count_B != 3);
|
|
#endif
|
|
|
|
const Vector3 &circle_B_pos = p_points_B[0];
|
|
Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
|
|
Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
|
|
|
|
real_t circle_B_radius = circle_B_line_1.length();
|
|
Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
|
|
|
|
Plane circle_plane(circle_B_pos, circle_B_normal);
|
|
|
|
static const int max_clip = 2;
|
|
Vector3 contact_points[max_clip];
|
|
int num_points = 0;
|
|
|
|
// Project edge point in circle plane.
|
|
const Vector3 &edge_A_1 = p_points_A[0];
|
|
Vector3 proj_point_1 = circle_plane.project(edge_A_1);
|
|
|
|
Vector3 dist_vec = proj_point_1 - circle_B_pos;
|
|
real_t dist_sq = dist_vec.length_squared();
|
|
|
|
// Point 1 is inside disk, add as contact point.
|
|
if (dist_sq <= circle_B_radius * circle_B_radius) {
|
|
contact_points[num_points] = edge_A_1;
|
|
++num_points;
|
|
}
|
|
|
|
const Vector3 &edge_A_2 = p_points_A[1];
|
|
Vector3 proj_point_2 = circle_plane.project(edge_A_2);
|
|
|
|
Vector3 dist_vec_2 = proj_point_2 - circle_B_pos;
|
|
real_t dist_sq_2 = dist_vec_2.length_squared();
|
|
|
|
// Point 2 is inside disk, add as contact point.
|
|
if (dist_sq_2 <= circle_B_radius * circle_B_radius) {
|
|
contact_points[num_points] = edge_A_2;
|
|
++num_points;
|
|
}
|
|
|
|
if (num_points < 2) {
|
|
Vector3 line_vec = proj_point_2 - proj_point_1;
|
|
real_t line_length_sq = line_vec.length_squared();
|
|
|
|
// Create a quadratic formula of the form ax^2 + bx + c = 0
|
|
real_t a, b, c;
|
|
|
|
a = line_length_sq;
|
|
b = 2.0 * dist_vec.dot(line_vec);
|
|
c = dist_sq - circle_B_radius * circle_B_radius;
|
|
|
|
// Solve for t.
|
|
real_t sqrtterm = b * b - 4.0 * a * c;
|
|
|
|
// If the term we intend to square root is less than 0 then the answer won't be real,
|
|
// so the line doesn't intersect.
|
|
if (sqrtterm >= 0) {
|
|
sqrtterm = Math::sqrt(sqrtterm);
|
|
|
|
Vector3 edge_dir = edge_A_2 - edge_A_1;
|
|
|
|
real_t fraction_1 = (-b - sqrtterm) / (2.0 * a);
|
|
if ((fraction_1 > 0.0) && (fraction_1 < 1.0)) {
|
|
Vector3 face_point_1 = edge_A_1 + fraction_1 * edge_dir;
|
|
ERR_FAIL_COND(num_points >= max_clip);
|
|
contact_points[num_points] = face_point_1;
|
|
++num_points;
|
|
}
|
|
|
|
real_t fraction_2 = (-b + sqrtterm) / (2.0 * a);
|
|
if ((fraction_2 > 0.0) && (fraction_2 < 1.0) && !Math::is_equal_approx(fraction_1, fraction_2)) {
|
|
Vector3 face_point_2 = edge_A_1 + fraction_2 * edge_dir;
|
|
ERR_FAIL_COND(num_points >= max_clip);
|
|
contact_points[num_points] = face_point_2;
|
|
++num_points;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate contact points.
|
|
for (int i = 0; i < num_points; i++) {
|
|
const Vector3 &contact_point_A = contact_points[i];
|
|
|
|
real_t d = circle_plane.distance_to(contact_point_A);
|
|
Vector3 closest_B = contact_point_A - circle_plane.normal * d;
|
|
|
|
if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
|
|
continue;
|
|
}
|
|
|
|
p_callback->call(contact_point_A, closest_B);
|
|
}
|
|
}
|
|
|
|
static void _generate_contacts_face_face(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A < 2);
|
|
ERR_FAIL_COND(p_point_count_B < 3);
|
|
#endif
|
|
|
|
static const int max_clip = 32;
|
|
|
|
Vector3 _clipbuf1[max_clip];
|
|
Vector3 _clipbuf2[max_clip];
|
|
Vector3 *clipbuf_src = _clipbuf1;
|
|
Vector3 *clipbuf_dst = _clipbuf2;
|
|
int clipbuf_len = p_point_count_A;
|
|
|
|
// copy A points to clipbuf_src
|
|
for (int i = 0; i < p_point_count_A; i++) {
|
|
clipbuf_src[i] = p_points_A[i];
|
|
}
|
|
|
|
Plane plane_B(p_points_B[0], p_points_B[1], p_points_B[2]);
|
|
|
|
// go through all of B points
|
|
for (int i = 0; i < p_point_count_B; i++) {
|
|
int i_n = (i + 1) % p_point_count_B;
|
|
|
|
Vector3 edge0_B = p_points_B[i];
|
|
Vector3 edge1_B = p_points_B[i_n];
|
|
|
|
Vector3 clip_normal = (edge0_B - edge1_B).cross(plane_B.normal).normalized();
|
|
// make a clip plane
|
|
|
|
Plane clip(edge0_B, clip_normal);
|
|
// avoid double clip if A is edge
|
|
int dst_idx = 0;
|
|
bool edge = clipbuf_len == 2;
|
|
for (int j = 0; j < clipbuf_len; j++) {
|
|
int j_n = (j + 1) % clipbuf_len;
|
|
|
|
Vector3 edge0_A = clipbuf_src[j];
|
|
Vector3 edge1_A = clipbuf_src[j_n];
|
|
|
|
real_t dist0 = clip.distance_to(edge0_A);
|
|
real_t dist1 = clip.distance_to(edge1_A);
|
|
|
|
if (dist0 <= 0) { // behind plane
|
|
|
|
ERR_FAIL_COND(dst_idx >= max_clip);
|
|
clipbuf_dst[dst_idx++] = clipbuf_src[j];
|
|
}
|
|
|
|
// check for different sides and non coplanar
|
|
//if ( (dist0*dist1) < -CMP_EPSILON && !(edge && j)) {
|
|
if ((dist0 * dist1) < 0 && !(edge && j)) {
|
|
// calculate intersection
|
|
Vector3 rel = edge1_A - edge0_A;
|
|
real_t den = clip.normal.dot(rel);
|
|
real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
|
|
Vector3 inters = edge0_A + rel * dist;
|
|
|
|
ERR_FAIL_COND(dst_idx >= max_clip);
|
|
clipbuf_dst[dst_idx] = inters;
|
|
dst_idx++;
|
|
}
|
|
}
|
|
|
|
clipbuf_len = dst_idx;
|
|
SWAP(clipbuf_src, clipbuf_dst);
|
|
}
|
|
|
|
// generate contacts
|
|
//Plane plane_A(p_points_A[0],p_points_A[1],p_points_A[2]);
|
|
|
|
for (int i = 0; i < clipbuf_len; i++) {
|
|
real_t d = plane_B.distance_to(clipbuf_src[i]);
|
|
/*
|
|
if (d>CMP_EPSILON)
|
|
continue;
|
|
*/
|
|
|
|
Vector3 closest_B = clipbuf_src[i] - plane_B.normal * d;
|
|
|
|
if (p_callback->normal.dot(clipbuf_src[i]) >= p_callback->normal.dot(closest_B)) {
|
|
continue;
|
|
}
|
|
|
|
p_callback->call(clipbuf_src[i], closest_B);
|
|
}
|
|
}
|
|
|
|
static void _generate_contacts_face_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A < 3);
|
|
ERR_FAIL_COND(p_point_count_B != 3);
|
|
#endif
|
|
|
|
const Vector3 &circle_B_pos = p_points_B[0];
|
|
Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
|
|
Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
|
|
|
|
// Clip face with circle segments.
|
|
static const int circle_segments = 8;
|
|
Vector3 circle_points[circle_segments];
|
|
|
|
real_t angle_delta = 2.0 * Math_PI / circle_segments;
|
|
|
|
for (int i = 0; i < circle_segments; ++i) {
|
|
Vector3 point_pos = circle_B_pos;
|
|
point_pos += circle_B_line_1 * Math::cos(i * angle_delta);
|
|
point_pos += circle_B_line_2 * Math::sin(i * angle_delta);
|
|
circle_points[i] = point_pos;
|
|
}
|
|
|
|
_generate_contacts_face_face(p_points_A, p_point_count_A, circle_points, circle_segments, p_callback);
|
|
|
|
// Clip face with circle plane.
|
|
Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
|
|
|
|
Plane circle_plane(circle_B_pos, circle_B_normal);
|
|
|
|
static const int max_clip = 32;
|
|
Vector3 contact_points[max_clip];
|
|
int num_points = 0;
|
|
|
|
for (int i = 0; i < p_point_count_A; i++) {
|
|
int i_n = (i + 1) % p_point_count_A;
|
|
|
|
const Vector3 &edge0_A = p_points_A[i];
|
|
const Vector3 &edge1_A = p_points_A[i_n];
|
|
|
|
real_t dist0 = circle_plane.distance_to(edge0_A);
|
|
real_t dist1 = circle_plane.distance_to(edge1_A);
|
|
|
|
// First point in front of plane, generate contact point.
|
|
if (dist0 * circle_plane.d >= 0) {
|
|
ERR_FAIL_COND(num_points >= max_clip);
|
|
contact_points[num_points] = edge0_A;
|
|
++num_points;
|
|
}
|
|
|
|
// Points on different sides, generate contact point.
|
|
if (dist0 * dist1 < 0) {
|
|
// calculate intersection
|
|
Vector3 rel = edge1_A - edge0_A;
|
|
real_t den = circle_plane.normal.dot(rel);
|
|
real_t dist = -(circle_plane.normal.dot(edge0_A) - circle_plane.d) / den;
|
|
Vector3 inters = edge0_A + rel * dist;
|
|
|
|
ERR_FAIL_COND(num_points >= max_clip);
|
|
contact_points[num_points] = inters;
|
|
++num_points;
|
|
}
|
|
}
|
|
|
|
// Generate contact points.
|
|
for (int i = 0; i < num_points; i++) {
|
|
const Vector3 &contact_point_A = contact_points[i];
|
|
|
|
real_t d = circle_plane.distance_to(contact_point_A);
|
|
Vector3 closest_B = contact_point_A - circle_plane.normal * d;
|
|
|
|
if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
|
|
continue;
|
|
}
|
|
|
|
p_callback->call(contact_point_A, closest_B);
|
|
}
|
|
}
|
|
|
|
static void _generate_contacts_circle_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A != 3);
|
|
ERR_FAIL_COND(p_point_count_B != 3);
|
|
#endif
|
|
|
|
const Vector3 &circle_A_pos = p_points_A[0];
|
|
Vector3 circle_A_line_1 = p_points_A[1] - circle_A_pos;
|
|
Vector3 circle_A_line_2 = p_points_A[2] - circle_A_pos;
|
|
|
|
real_t circle_A_radius = circle_A_line_1.length();
|
|
Vector3 circle_A_normal = circle_A_line_1.cross(circle_A_line_2).normalized();
|
|
|
|
const Vector3 &circle_B_pos = p_points_B[0];
|
|
Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
|
|
Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
|
|
|
|
real_t circle_B_radius = circle_B_line_1.length();
|
|
Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
|
|
|
|
static const int max_clip = 4;
|
|
Vector3 contact_points[max_clip];
|
|
int num_points = 0;
|
|
|
|
Vector3 centers_diff = circle_B_pos - circle_A_pos;
|
|
Vector3 norm_proj = circle_A_normal.dot(centers_diff) * circle_A_normal;
|
|
Vector3 comp_proj = centers_diff - norm_proj;
|
|
real_t proj_dist = comp_proj.length();
|
|
if (!Math::is_zero_approx(proj_dist)) {
|
|
comp_proj /= proj_dist;
|
|
if ((proj_dist > circle_A_radius - circle_B_radius) && (proj_dist > circle_B_radius - circle_A_radius)) {
|
|
// Circles are overlapping, use the 2 points of intersection as contacts.
|
|
real_t radius_a_sqr = circle_A_radius * circle_A_radius;
|
|
real_t radius_b_sqr = circle_B_radius * circle_B_radius;
|
|
real_t d_sqr = proj_dist * proj_dist;
|
|
real_t s = (1.0 + (radius_a_sqr - radius_b_sqr) / d_sqr) * 0.5;
|
|
real_t h = Math::sqrt(MAX(radius_a_sqr - d_sqr * s * s, 0.0));
|
|
Vector3 midpoint = circle_A_pos + s * comp_proj * proj_dist;
|
|
Vector3 h_vec = h * circle_A_normal.cross(comp_proj);
|
|
|
|
Vector3 point_A = midpoint + h_vec;
|
|
contact_points[num_points] = point_A;
|
|
++num_points;
|
|
|
|
point_A = midpoint - h_vec;
|
|
contact_points[num_points] = point_A;
|
|
++num_points;
|
|
|
|
// Add 2 points from circle A and B along the line between the centers.
|
|
point_A = circle_A_pos + comp_proj * circle_A_radius;
|
|
contact_points[num_points] = point_A;
|
|
++num_points;
|
|
|
|
point_A = circle_B_pos - comp_proj * circle_B_radius - norm_proj;
|
|
contact_points[num_points] = point_A;
|
|
++num_points;
|
|
} // Otherwise one circle is inside the other one, use 3 arbitrary equidistant points.
|
|
} // Otherwise circles are concentric, use 3 arbitrary equidistant points.
|
|
|
|
if (num_points == 0) {
|
|
// Generate equidistant points.
|
|
if (circle_A_radius < circle_B_radius) {
|
|
// Circle A inside circle B.
|
|
for (int i = 0; i < 3; ++i) {
|
|
Vector3 circle_A_point = circle_A_pos;
|
|
circle_A_point += circle_A_line_1 * Math::cos(2.0 * Math_PI * i / 3.0);
|
|
circle_A_point += circle_A_line_2 * Math::sin(2.0 * Math_PI * i / 3.0);
|
|
|
|
contact_points[num_points] = circle_A_point;
|
|
++num_points;
|
|
}
|
|
} else {
|
|
// Circle B inside circle A.
|
|
for (int i = 0; i < 3; ++i) {
|
|
Vector3 circle_B_point = circle_B_pos;
|
|
circle_B_point += circle_B_line_1 * Math::cos(2.0 * Math_PI * i / 3.0);
|
|
circle_B_point += circle_B_line_2 * Math::sin(2.0 * Math_PI * i / 3.0);
|
|
|
|
Vector3 circle_A_point = circle_B_point - norm_proj;
|
|
|
|
contact_points[num_points] = circle_A_point;
|
|
++num_points;
|
|
}
|
|
}
|
|
}
|
|
|
|
Plane circle_B_plane(circle_B_pos, circle_B_normal);
|
|
|
|
// Generate contact points.
|
|
for (int i = 0; i < num_points; i++) {
|
|
const Vector3 &contact_point_A = contact_points[i];
|
|
|
|
real_t d = circle_B_plane.distance_to(contact_point_A);
|
|
Vector3 closest_B = contact_point_A - circle_B_plane.normal * d;
|
|
|
|
if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
|
|
continue;
|
|
}
|
|
|
|
p_callback->call(contact_point_A, closest_B);
|
|
}
|
|
}
|
|
|
|
static void _generate_contacts_from_supports(const Vector3 *p_points_A, int p_point_count_A, Shape3DSW::FeatureType p_feature_type_A, const Vector3 *p_points_B, int p_point_count_B, Shape3DSW::FeatureType p_feature_type_B, _CollectorCallback *p_callback) {
|
|
#ifdef DEBUG_ENABLED
|
|
ERR_FAIL_COND(p_point_count_A < 1);
|
|
ERR_FAIL_COND(p_point_count_B < 1);
|
|
#endif
|
|
|
|
static const GenerateContactsFunc generate_contacts_func_table[4][4] = {
|
|
{
|
|
_generate_contacts_point_point,
|
|
_generate_contacts_point_edge,
|
|
_generate_contacts_point_face,
|
|
_generate_contacts_point_circle,
|
|
},
|
|
{
|
|
nullptr,
|
|
_generate_contacts_edge_edge,
|
|
_generate_contacts_face_face,
|
|
_generate_contacts_edge_circle,
|
|
},
|
|
{
|
|
nullptr,
|
|
nullptr,
|
|
_generate_contacts_face_face,
|
|
_generate_contacts_face_circle,
|
|
},
|
|
{
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
_generate_contacts_circle_circle,
|
|
},
|
|
};
|
|
|
|
int pointcount_B;
|
|
int pointcount_A;
|
|
const Vector3 *points_A;
|
|
const Vector3 *points_B;
|
|
int version_A;
|
|
int version_B;
|
|
|
|
if (p_feature_type_A > p_feature_type_B) {
|
|
//swap
|
|
p_callback->swap = !p_callback->swap;
|
|
p_callback->normal = -p_callback->normal;
|
|
|
|
pointcount_B = p_point_count_A;
|
|
pointcount_A = p_point_count_B;
|
|
points_A = p_points_B;
|
|
points_B = p_points_A;
|
|
version_A = p_feature_type_B;
|
|
version_B = p_feature_type_A;
|
|
} else {
|
|
pointcount_B = p_point_count_B;
|
|
pointcount_A = p_point_count_A;
|
|
points_A = p_points_A;
|
|
points_B = p_points_B;
|
|
version_A = p_feature_type_A;
|
|
version_B = p_feature_type_B;
|
|
}
|
|
|
|
GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B];
|
|
ERR_FAIL_COND(!contacts_func);
|
|
contacts_func(points_A, pointcount_A, points_B, pointcount_B, p_callback);
|
|
}
|
|
|
|
template <class ShapeA, class ShapeB, bool withMargin = false>
|
|
class SeparatorAxisTest {
|
|
const ShapeA *shape_A;
|
|
const ShapeB *shape_B;
|
|
const Transform3D *transform_A;
|
|
const Transform3D *transform_B;
|
|
real_t best_depth;
|
|
Vector3 best_axis;
|
|
_CollectorCallback *callback;
|
|
real_t margin_A;
|
|
real_t margin_B;
|
|
Vector3 separator_axis;
|
|
|
|
public:
|
|
_FORCE_INLINE_ bool test_previous_axis() {
|
|
if (callback && callback->prev_axis && *callback->prev_axis != Vector3()) {
|
|
return test_axis(*callback->prev_axis);
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ bool test_axis(const Vector3 &p_axis, bool p_directional = false) {
|
|
Vector3 axis = p_axis;
|
|
|
|
if (Math::abs(axis.x) < CMP_EPSILON &&
|
|
Math::abs(axis.y) < CMP_EPSILON &&
|
|
Math::abs(axis.z) < CMP_EPSILON) {
|
|
// strange case, try an upwards separator
|
|
axis = Vector3(0.0, 1.0, 0.0);
|
|
}
|
|
|
|
real_t min_A, max_A, min_B, max_B;
|
|
|
|
shape_A->project_range(axis, *transform_A, min_A, max_A);
|
|
shape_B->project_range(axis, *transform_B, min_B, max_B);
|
|
|
|
if (withMargin) {
|
|
min_A -= margin_A;
|
|
max_A += margin_A;
|
|
min_B -= margin_B;
|
|
max_B += margin_B;
|
|
}
|
|
|
|
min_B -= (max_A - min_A) * 0.5;
|
|
max_B += (max_A - min_A) * 0.5;
|
|
|
|
min_B -= (min_A + max_A) * 0.5;
|
|
max_B -= (min_A + max_A) * 0.5;
|
|
|
|
if (min_B > 0.0 || max_B < 0.0) {
|
|
separator_axis = axis;
|
|
return false; // doesn't contain 0
|
|
}
|
|
|
|
//use the smallest depth
|
|
|
|
if (min_B < 0.0) { // could be +0.0, we don't want it to become -0.0
|
|
if (p_directional) {
|
|
min_B = max_B;
|
|
axis = -axis;
|
|
} else {
|
|
min_B = -min_B;
|
|
}
|
|
}
|
|
|
|
if (max_B < min_B) {
|
|
if (max_B < best_depth) {
|
|
best_depth = max_B;
|
|
best_axis = axis;
|
|
}
|
|
} else {
|
|
if (min_B < best_depth) {
|
|
best_depth = min_B;
|
|
best_axis = -axis; // keep it as A axis
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static _FORCE_INLINE_ void test_contact_points(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, void *p_userdata) {
|
|
SeparatorAxisTest<ShapeA, ShapeB, withMargin> *separator = (SeparatorAxisTest<ShapeA, ShapeB, withMargin> *)p_userdata;
|
|
Vector3 axis = (p_point_B - p_point_A);
|
|
real_t depth = axis.length();
|
|
|
|
// Filter out bogus directions with a threshold and re-testing axis.
|
|
if (separator->best_depth - depth > 0.001) {
|
|
separator->test_axis(axis / depth);
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ void generate_contacts() {
|
|
// nothing to do, don't generate
|
|
if (best_axis == Vector3(0.0, 0.0, 0.0)) {
|
|
return;
|
|
}
|
|
|
|
if (!callback->callback) {
|
|
//just was checking intersection?
|
|
callback->collided = true;
|
|
if (callback->prev_axis) {
|
|
*callback->prev_axis = best_axis;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static const int max_supports = 16;
|
|
|
|
Vector3 supports_A[max_supports];
|
|
int support_count_A;
|
|
Shape3DSW::FeatureType support_type_A;
|
|
shape_A->get_supports(transform_A->basis.xform_inv(-best_axis).normalized(), max_supports, supports_A, support_count_A, support_type_A);
|
|
for (int i = 0; i < support_count_A; i++) {
|
|
supports_A[i] = transform_A->xform(supports_A[i]);
|
|
}
|
|
|
|
if (withMargin) {
|
|
for (int i = 0; i < support_count_A; i++) {
|
|
supports_A[i] += -best_axis * margin_A;
|
|
}
|
|
}
|
|
|
|
Vector3 supports_B[max_supports];
|
|
int support_count_B;
|
|
Shape3DSW::FeatureType support_type_B;
|
|
shape_B->get_supports(transform_B->basis.xform_inv(best_axis).normalized(), max_supports, supports_B, support_count_B, support_type_B);
|
|
for (int i = 0; i < support_count_B; i++) {
|
|
supports_B[i] = transform_B->xform(supports_B[i]);
|
|
}
|
|
|
|
if (withMargin) {
|
|
for (int i = 0; i < support_count_B; i++) {
|
|
supports_B[i] += best_axis * margin_B;
|
|
}
|
|
}
|
|
|
|
callback->normal = best_axis;
|
|
if (callback->prev_axis) {
|
|
*callback->prev_axis = best_axis;
|
|
}
|
|
_generate_contacts_from_supports(supports_A, support_count_A, support_type_A, supports_B, support_count_B, support_type_B, callback);
|
|
|
|
callback->collided = true;
|
|
}
|
|
|
|
_FORCE_INLINE_ SeparatorAxisTest(const ShapeA *p_shape_A, const Transform3D &p_transform_A, const ShapeB *p_shape_B, const Transform3D &p_transform_B, _CollectorCallback *p_callback, real_t p_margin_A = 0, real_t p_margin_B = 0) {
|
|
best_depth = 1e15;
|
|
shape_A = p_shape_A;
|
|
shape_B = p_shape_B;
|
|
transform_A = &p_transform_A;
|
|
transform_B = &p_transform_B;
|
|
callback = p_callback;
|
|
margin_A = p_margin_A;
|
|
margin_B = p_margin_B;
|
|
}
|
|
};
|
|
|
|
/****** SAT TESTS *******/
|
|
|
|
typedef void (*CollisionFunc)(const Shape3DSW *, const Transform3D &, const Shape3DSW *, const Transform3D &, _CollectorCallback *p_callback, real_t, real_t);
|
|
|
|
template <bool withMargin>
|
|
static void _collision_sphere_sphere(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const SphereShape3DSW *sphere_A = static_cast<const SphereShape3DSW *>(p_a);
|
|
const SphereShape3DSW *sphere_B = static_cast<const SphereShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<SphereShape3DSW, SphereShape3DSW, withMargin> separator(sphere_A, p_transform_a, sphere_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
// previous axis
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis((p_transform_a.origin - p_transform_b.origin).normalized())) {
|
|
return;
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_sphere_box(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const SphereShape3DSW *sphere_A = static_cast<const SphereShape3DSW *>(p_a);
|
|
const BoxShape3DSW *box_B = static_cast<const BoxShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<SphereShape3DSW, BoxShape3DSW, withMargin> separator(sphere_A, p_transform_a, box_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// test faces
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// calculate closest point to sphere
|
|
|
|
Vector3 cnormal = p_transform_b.xform_inv(p_transform_a.origin);
|
|
|
|
Vector3 cpoint = p_transform_b.xform(Vector3(
|
|
|
|
(cnormal.x < 0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
|
|
(cnormal.y < 0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
|
|
(cnormal.z < 0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z));
|
|
|
|
// use point to test axis
|
|
Vector3 point_axis = (p_transform_a.origin - cpoint).normalized();
|
|
|
|
if (!separator.test_axis(point_axis)) {
|
|
return;
|
|
}
|
|
|
|
// test edges
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = point_axis.cross(p_transform_b.basis.get_axis(i)).cross(p_transform_b.basis.get_axis(i)).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_sphere_capsule(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const SphereShape3DSW *sphere_A = static_cast<const SphereShape3DSW *>(p_a);
|
|
const CapsuleShape3DSW *capsule_B = static_cast<const CapsuleShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<SphereShape3DSW, CapsuleShape3DSW, withMargin> separator(sphere_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
//capsule sphere 1, sphere
|
|
|
|
Vector3 capsule_axis = p_transform_b.basis.get_axis(1) * (capsule_B->get_height() * 0.5);
|
|
|
|
Vector3 capsule_ball_1 = p_transform_b.origin + capsule_axis;
|
|
|
|
if (!separator.test_axis((capsule_ball_1 - p_transform_a.origin).normalized())) {
|
|
return;
|
|
}
|
|
|
|
//capsule sphere 2, sphere
|
|
|
|
Vector3 capsule_ball_2 = p_transform_b.origin - capsule_axis;
|
|
|
|
if (!separator.test_axis((capsule_ball_2 - p_transform_a.origin).normalized())) {
|
|
return;
|
|
}
|
|
|
|
//capsule edge, sphere
|
|
|
|
Vector3 b2a = p_transform_a.origin - p_transform_b.origin;
|
|
|
|
Vector3 axis = b2a.cross(capsule_axis).cross(capsule_axis).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_sphere_cylinder(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const SphereShape3DSW *sphere_A = static_cast<const SphereShape3DSW *>(p_a);
|
|
const CylinderShape3DSW *cylinder_B = static_cast<const CylinderShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<SphereShape3DSW, CylinderShape3DSW, withMargin> separator(sphere_A, p_transform_a, cylinder_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder B end caps.
|
|
Vector3 cylinder_B_axis = p_transform_b.basis.get_axis(1).normalized();
|
|
if (!separator.test_axis(cylinder_B_axis)) {
|
|
return;
|
|
}
|
|
|
|
Vector3 cylinder_diff = p_transform_b.origin - p_transform_a.origin;
|
|
|
|
// Cylinder B lateral surface.
|
|
if (!separator.test_axis(cylinder_B_axis.cross(cylinder_diff).cross(cylinder_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
// Closest point to cylinder caps.
|
|
const Vector3 &sphere_center = p_transform_a.origin;
|
|
Vector3 cyl_axis = p_transform_b.basis.get_axis(1);
|
|
Vector3 cap_axis = p_transform_b.basis.get_axis(0);
|
|
real_t height_scale = cyl_axis.length();
|
|
real_t cap_dist = cylinder_B->get_height() * 0.5 * height_scale;
|
|
cyl_axis /= height_scale;
|
|
real_t radius_scale = cap_axis.length();
|
|
real_t cap_radius = cylinder_B->get_radius() * radius_scale;
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
Vector3 cap_dir = ((i == 0) ? cyl_axis : -cyl_axis);
|
|
Vector3 cap_pos = p_transform_b.origin + cap_dir * cap_dist;
|
|
|
|
Vector3 closest_point;
|
|
|
|
Vector3 diff = sphere_center - cap_pos;
|
|
Vector3 proj = diff - cap_dir.dot(diff) * cap_dir;
|
|
|
|
real_t proj_len = proj.length();
|
|
if (Math::is_zero_approx(proj_len)) {
|
|
// Point is equidistant to all circle points.
|
|
continue;
|
|
}
|
|
|
|
closest_point = cap_pos + (cap_radius / proj_len) * proj;
|
|
|
|
if (!separator.test_axis((closest_point - sphere_center).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_sphere_convex_polygon(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const SphereShape3DSW *sphere_A = static_cast<const SphereShape3DSW *>(p_a);
|
|
const ConvexPolygonShape3DSW *convex_polygon_B = static_cast<const ConvexPolygonShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<SphereShape3DSW, ConvexPolygonShape3DSW, withMargin> separator(sphere_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
const Geometry3D::MeshData &mesh = convex_polygon_B->get_mesh();
|
|
|
|
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
|
|
int face_count = mesh.faces.size();
|
|
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
|
|
int edge_count = mesh.edges.size();
|
|
const Vector3 *vertices = mesh.vertices.ptr();
|
|
int vertex_count = mesh.vertices.size();
|
|
|
|
// faces of B
|
|
for (int i = 0; i < face_count; i++) {
|
|
Vector3 axis = p_transform_b.xform(faces[i].plane).normal;
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// edges of B
|
|
for (int i = 0; i < edge_count; i++) {
|
|
Vector3 v1 = p_transform_b.xform(vertices[edges[i].a]);
|
|
Vector3 v2 = p_transform_b.xform(vertices[edges[i].b]);
|
|
Vector3 v3 = p_transform_a.origin;
|
|
|
|
Vector3 n1 = v2 - v1;
|
|
Vector3 n2 = v2 - v3;
|
|
|
|
Vector3 axis = n1.cross(n2).cross(n1).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// vertices of B
|
|
for (int i = 0; i < vertex_count; i++) {
|
|
Vector3 v1 = p_transform_b.xform(vertices[i]);
|
|
Vector3 v2 = p_transform_a.origin;
|
|
|
|
Vector3 axis = (v2 - v1).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_sphere_face(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const SphereShape3DSW *sphere_A = static_cast<const SphereShape3DSW *>(p_a);
|
|
const FaceShape3DSW *face_B = static_cast<const FaceShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<SphereShape3DSW, FaceShape3DSW, withMargin> separator(sphere_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
Vector3 vertex[3] = {
|
|
p_transform_b.xform(face_B->vertex[0]),
|
|
p_transform_b.xform(face_B->vertex[1]),
|
|
p_transform_b.xform(face_B->vertex[2]),
|
|
};
|
|
|
|
Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
|
|
|
|
if (!separator.test_axis(normal, !face_B->backface_collision)) {
|
|
return;
|
|
}
|
|
|
|
// edges and points of B
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 n1 = vertex[i] - p_transform_a.origin;
|
|
if (n1.dot(normal) < 0.0) {
|
|
n1 *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(n1.normalized())) {
|
|
return;
|
|
}
|
|
|
|
Vector3 n2 = vertex[(i + 1) % 3] - vertex[i];
|
|
|
|
Vector3 axis = n1.cross(n2).cross(n2).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_box_box(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const BoxShape3DSW *box_A = static_cast<const BoxShape3DSW *>(p_a);
|
|
const BoxShape3DSW *box_B = static_cast<const BoxShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<BoxShape3DSW, BoxShape3DSW, withMargin> separator(box_A, p_transform_a, box_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// test faces of A
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// test faces of B
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// test combined edges
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 axis = p_transform_a.basis.get_axis(i).cross(p_transform_b.basis.get_axis(j));
|
|
|
|
if (Math::is_zero_approx(axis.length_squared())) {
|
|
continue;
|
|
}
|
|
axis.normalize();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (withMargin) {
|
|
//add endpoint test between closest vertices and edges
|
|
|
|
// calculate closest point to sphere
|
|
|
|
Vector3 ab_vec = p_transform_b.origin - p_transform_a.origin;
|
|
|
|
Vector3 cnormal_a = p_transform_a.basis.xform_inv(ab_vec);
|
|
|
|
Vector3 support_a = p_transform_a.xform(Vector3(
|
|
|
|
(cnormal_a.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
|
|
(cnormal_a.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
|
|
(cnormal_a.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
|
|
|
|
Vector3 cnormal_b = p_transform_b.basis.xform_inv(-ab_vec);
|
|
|
|
Vector3 support_b = p_transform_b.xform(Vector3(
|
|
|
|
(cnormal_b.x < 0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
|
|
(cnormal_b.y < 0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
|
|
(cnormal_b.z < 0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z));
|
|
|
|
Vector3 axis_ab = (support_a - support_b);
|
|
|
|
if (!separator.test_axis(axis_ab.normalized())) {
|
|
return;
|
|
}
|
|
|
|
//now try edges, which become cylinders!
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
//a ->b
|
|
Vector3 axis_a = p_transform_a.basis.get_axis(i);
|
|
|
|
if (!separator.test_axis(axis_ab.cross(axis_a).cross(axis_a).normalized())) {
|
|
return;
|
|
}
|
|
|
|
//b ->a
|
|
Vector3 axis_b = p_transform_b.basis.get_axis(i);
|
|
|
|
if (!separator.test_axis(axis_ab.cross(axis_b).cross(axis_b).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_box_capsule(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const BoxShape3DSW *box_A = static_cast<const BoxShape3DSW *>(p_a);
|
|
const CapsuleShape3DSW *capsule_B = static_cast<const CapsuleShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<BoxShape3DSW, CapsuleShape3DSW, withMargin> separator(box_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// faces of A
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
Vector3 cyl_axis = p_transform_b.basis.get_axis(1).normalized();
|
|
|
|
// edges of A, capsule cylinder
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
// cylinder
|
|
Vector3 box_axis = p_transform_a.basis.get_axis(i);
|
|
Vector3 axis = box_axis.cross(cyl_axis);
|
|
if (Math::is_zero_approx(axis.length_squared())) {
|
|
continue;
|
|
}
|
|
|
|
if (!separator.test_axis(axis.normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// points of A, capsule cylinder
|
|
// this sure could be made faster somehow..
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
for (int k = 0; k < 2; k++) {
|
|
Vector3 he = box_A->get_half_extents();
|
|
he.x *= (i * 2 - 1);
|
|
he.y *= (j * 2 - 1);
|
|
he.z *= (k * 2 - 1);
|
|
Vector3 point = p_transform_a.origin;
|
|
for (int l = 0; l < 3; l++) {
|
|
point += p_transform_a.basis.get_axis(l) * he[l];
|
|
}
|
|
|
|
//Vector3 axis = (point - cyl_axis * cyl_axis.dot(point)).normalized();
|
|
Vector3 axis = Plane(cyl_axis, 0).project(point).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// capsule balls, edges of A
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
Vector3 capsule_axis = p_transform_b.basis.get_axis(1) * (capsule_B->get_height() * 0.5);
|
|
|
|
Vector3 sphere_pos = p_transform_b.origin + ((i == 0) ? capsule_axis : -capsule_axis);
|
|
|
|
Vector3 cnormal = p_transform_a.xform_inv(sphere_pos);
|
|
|
|
Vector3 cpoint = p_transform_a.xform(Vector3(
|
|
|
|
(cnormal.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
|
|
(cnormal.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
|
|
(cnormal.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
|
|
|
|
// use point to test axis
|
|
Vector3 point_axis = (sphere_pos - cpoint).normalized();
|
|
|
|
if (!separator.test_axis(point_axis)) {
|
|
return;
|
|
}
|
|
|
|
// test edges of A
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 axis = point_axis.cross(p_transform_a.basis.get_axis(j)).cross(p_transform_a.basis.get_axis(j)).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_box_cylinder(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const BoxShape3DSW *box_A = static_cast<const BoxShape3DSW *>(p_a);
|
|
const CylinderShape3DSW *cylinder_B = static_cast<const CylinderShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<BoxShape3DSW, CylinderShape3DSW, withMargin> separator(box_A, p_transform_a, cylinder_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// Faces of A.
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
Vector3 cyl_axis = p_transform_b.basis.get_axis(1).normalized();
|
|
|
|
// Cylinder end caps.
|
|
{
|
|
if (!separator.test_axis(cyl_axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Edges of A, cylinder lateral surface.
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 box_axis = p_transform_a.basis.get_axis(i);
|
|
Vector3 axis = box_axis.cross(cyl_axis);
|
|
if (Math::is_zero_approx(axis.length_squared())) {
|
|
continue;
|
|
}
|
|
|
|
if (!separator.test_axis(axis.normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Gather points of A.
|
|
Vector3 vertices_A[8];
|
|
Vector3 box_extent = box_A->get_half_extents();
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
for (int k = 0; k < 2; k++) {
|
|
Vector3 extent = box_extent;
|
|
extent.x *= (i * 2 - 1);
|
|
extent.y *= (j * 2 - 1);
|
|
extent.z *= (k * 2 - 1);
|
|
Vector3 &point = vertices_A[i * 2 * 2 + j * 2 + k];
|
|
point = p_transform_a.origin;
|
|
for (int l = 0; l < 3; l++) {
|
|
point += p_transform_a.basis.get_axis(l) * extent[l];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Points of A, cylinder lateral surface.
|
|
for (int i = 0; i < 8; i++) {
|
|
const Vector3 &point = vertices_A[i];
|
|
Vector3 axis = Plane(cyl_axis, 0).project(point).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Edges of A, cylinder end caps rim.
|
|
int edges_start_A[12] = { 0, 2, 4, 6, 0, 1, 4, 5, 0, 1, 2, 3 };
|
|
int edges_end_A[12] = { 1, 3, 5, 7, 2, 3, 6, 7, 4, 5, 6, 7 };
|
|
|
|
Vector3 cap_axis = cyl_axis * (cylinder_B->get_height() * 0.5);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
Vector3 cap_pos = p_transform_b.origin + ((i == 0) ? cap_axis : -cap_axis);
|
|
|
|
for (int e = 0; e < 12; e++) {
|
|
const Vector3 &edge_start = vertices_A[edges_start_A[e]];
|
|
const Vector3 &edge_end = vertices_A[edges_end_A[e]];
|
|
|
|
Vector3 edge_dir = (edge_end - edge_start);
|
|
edge_dir.normalize();
|
|
|
|
real_t edge_dot = edge_dir.dot(cyl_axis);
|
|
if (Math::is_zero_approx(edge_dot)) {
|
|
// Edge is perpendicular to cylinder axis.
|
|
continue;
|
|
}
|
|
|
|
// Calculate intersection between edge and circle plane.
|
|
Vector3 edge_diff = cap_pos - edge_start;
|
|
real_t diff_dot = edge_diff.dot(cyl_axis);
|
|
Vector3 intersection = edge_start + edge_dir * diff_dot / edge_dot;
|
|
|
|
// Calculate tangent that touches intersection.
|
|
Vector3 tangent = (cap_pos - intersection).cross(cyl_axis);
|
|
|
|
// Axis is orthogonal both to tangent and edge direction.
|
|
Vector3 axis = tangent.cross(edge_dir);
|
|
|
|
if (!separator.test_axis(axis.normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_box_convex_polygon(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const BoxShape3DSW *box_A = static_cast<const BoxShape3DSW *>(p_a);
|
|
const ConvexPolygonShape3DSW *convex_polygon_B = static_cast<const ConvexPolygonShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<BoxShape3DSW, ConvexPolygonShape3DSW, withMargin> separator(box_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
const Geometry3D::MeshData &mesh = convex_polygon_B->get_mesh();
|
|
|
|
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
|
|
int face_count = mesh.faces.size();
|
|
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
|
|
int edge_count = mesh.edges.size();
|
|
const Vector3 *vertices = mesh.vertices.ptr();
|
|
int vertex_count = mesh.vertices.size();
|
|
|
|
// faces of A
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// faces of B
|
|
for (int i = 0; i < face_count; i++) {
|
|
Vector3 axis = p_transform_b.xform(faces[i].plane).normal;
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A<->B edges
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 e1 = p_transform_a.basis.get_axis(i);
|
|
|
|
for (int j = 0; j < edge_count; j++) {
|
|
Vector3 e2 = p_transform_b.basis.xform(vertices[edges[j].a]) - p_transform_b.basis.xform(vertices[edges[j].b]);
|
|
|
|
Vector3 axis = e1.cross(e2).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (withMargin) {
|
|
// calculate closest points between vertices and box edges
|
|
for (int v = 0; v < vertex_count; v++) {
|
|
Vector3 vtxb = p_transform_b.xform(vertices[v]);
|
|
Vector3 ab_vec = vtxb - p_transform_a.origin;
|
|
|
|
Vector3 cnormal_a = p_transform_a.basis.xform_inv(ab_vec);
|
|
|
|
Vector3 support_a = p_transform_a.xform(Vector3(
|
|
|
|
(cnormal_a.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
|
|
(cnormal_a.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
|
|
(cnormal_a.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
|
|
|
|
Vector3 axis_ab = support_a - vtxb;
|
|
|
|
if (!separator.test_axis(axis_ab.normalized())) {
|
|
return;
|
|
}
|
|
|
|
//now try edges, which become cylinders!
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
//a ->b
|
|
Vector3 axis_a = p_transform_a.basis.get_axis(i);
|
|
|
|
if (!separator.test_axis(axis_ab.cross(axis_a).cross(axis_a).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//convex edges and box points
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
for (int k = 0; k < 2; k++) {
|
|
Vector3 he = box_A->get_half_extents();
|
|
he.x *= (i * 2 - 1);
|
|
he.y *= (j * 2 - 1);
|
|
he.z *= (k * 2 - 1);
|
|
Vector3 point = p_transform_a.origin;
|
|
for (int l = 0; l < 3; l++) {
|
|
point += p_transform_a.basis.get_axis(l) * he[l];
|
|
}
|
|
|
|
for (int e = 0; e < edge_count; e++) {
|
|
Vector3 p1 = p_transform_b.xform(vertices[edges[e].a]);
|
|
Vector3 p2 = p_transform_b.xform(vertices[edges[e].b]);
|
|
Vector3 n = (p2 - p1);
|
|
|
|
if (!separator.test_axis((point - p2).cross(n).cross(n).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_box_face(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const BoxShape3DSW *box_A = static_cast<const BoxShape3DSW *>(p_a);
|
|
const FaceShape3DSW *face_B = static_cast<const FaceShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<BoxShape3DSW, FaceShape3DSW, withMargin> separator(box_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
Vector3 vertex[3] = {
|
|
p_transform_b.xform(face_B->vertex[0]),
|
|
p_transform_b.xform(face_B->vertex[1]),
|
|
p_transform_b.xform(face_B->vertex[2]),
|
|
};
|
|
|
|
Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
|
|
|
|
if (!separator.test_axis(normal, !face_B->backface_collision)) {
|
|
return;
|
|
}
|
|
|
|
// faces of A
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// combined edges
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 e = vertex[i] - vertex[(i + 1) % 3];
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 axis = e.cross(p_transform_a.basis.get_axis(j)).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (withMargin) {
|
|
// calculate closest points between vertices and box edges
|
|
for (int v = 0; v < 3; v++) {
|
|
Vector3 ab_vec = vertex[v] - p_transform_a.origin;
|
|
|
|
Vector3 cnormal_a = p_transform_a.basis.xform_inv(ab_vec);
|
|
|
|
Vector3 support_a = p_transform_a.xform(Vector3(
|
|
|
|
(cnormal_a.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
|
|
(cnormal_a.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
|
|
(cnormal_a.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
|
|
|
|
Vector3 axis_ab = support_a - vertex[v];
|
|
if (axis_ab.dot(normal) < 0.0) {
|
|
axis_ab *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis_ab.normalized())) {
|
|
return;
|
|
}
|
|
|
|
//now try edges, which become cylinders!
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
//a ->b
|
|
Vector3 axis_a = p_transform_a.basis.get_axis(i);
|
|
|
|
Vector3 axis = axis_ab.cross(axis_a).cross(axis_a).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//convex edges and box points, there has to be a way to speed up this (get closest point?)
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
for (int k = 0; k < 2; k++) {
|
|
Vector3 he = box_A->get_half_extents();
|
|
he.x *= (i * 2 - 1);
|
|
he.y *= (j * 2 - 1);
|
|
he.z *= (k * 2 - 1);
|
|
Vector3 point = p_transform_a.origin;
|
|
for (int l = 0; l < 3; l++) {
|
|
point += p_transform_a.basis.get_axis(l) * he[l];
|
|
}
|
|
|
|
for (int e = 0; e < 3; e++) {
|
|
Vector3 p1 = vertex[e];
|
|
Vector3 p2 = vertex[(e + 1) % 3];
|
|
|
|
Vector3 n = (p2 - p1);
|
|
|
|
Vector3 axis = (point - p2).cross(n).cross(n).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_capsule_capsule(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CapsuleShape3DSW *capsule_A = static_cast<const CapsuleShape3DSW *>(p_a);
|
|
const CapsuleShape3DSW *capsule_B = static_cast<const CapsuleShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CapsuleShape3DSW, CapsuleShape3DSW, withMargin> separator(capsule_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// some values
|
|
|
|
Vector3 capsule_A_axis = p_transform_a.basis.get_axis(1) * (capsule_A->get_height() * 0.5);
|
|
Vector3 capsule_B_axis = p_transform_b.basis.get_axis(1) * (capsule_B->get_height() * 0.5);
|
|
|
|
Vector3 capsule_A_ball_1 = p_transform_a.origin + capsule_A_axis;
|
|
Vector3 capsule_A_ball_2 = p_transform_a.origin - capsule_A_axis;
|
|
Vector3 capsule_B_ball_1 = p_transform_b.origin + capsule_B_axis;
|
|
Vector3 capsule_B_ball_2 = p_transform_b.origin - capsule_B_axis;
|
|
|
|
//balls-balls
|
|
|
|
if (!separator.test_axis((capsule_A_ball_1 - capsule_B_ball_1).normalized())) {
|
|
return;
|
|
}
|
|
if (!separator.test_axis((capsule_A_ball_1 - capsule_B_ball_2).normalized())) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis((capsule_A_ball_2 - capsule_B_ball_1).normalized())) {
|
|
return;
|
|
}
|
|
if (!separator.test_axis((capsule_A_ball_2 - capsule_B_ball_2).normalized())) {
|
|
return;
|
|
}
|
|
|
|
// edges-balls
|
|
|
|
if (!separator.test_axis((capsule_A_ball_1 - capsule_B_ball_1).cross(capsule_A_axis).cross(capsule_A_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis((capsule_A_ball_1 - capsule_B_ball_2).cross(capsule_A_axis).cross(capsule_A_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis((capsule_B_ball_1 - capsule_A_ball_1).cross(capsule_B_axis).cross(capsule_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis((capsule_B_ball_1 - capsule_A_ball_2).cross(capsule_B_axis).cross(capsule_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
// edges
|
|
|
|
if (!separator.test_axis(capsule_A_axis.cross(capsule_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_capsule_cylinder(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CapsuleShape3DSW *capsule_A = static_cast<const CapsuleShape3DSW *>(p_a);
|
|
const CylinderShape3DSW *cylinder_B = static_cast<const CylinderShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CapsuleShape3DSW, CylinderShape3DSW, withMargin> separator(capsule_A, p_transform_a, cylinder_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder B end caps.
|
|
Vector3 cylinder_B_axis = p_transform_b.basis.get_axis(1).normalized();
|
|
if (!separator.test_axis(cylinder_B_axis)) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder edge against capsule balls.
|
|
|
|
Vector3 capsule_A_axis = p_transform_a.basis.get_axis(1);
|
|
|
|
Vector3 capsule_A_ball_1 = p_transform_a.origin + capsule_A_axis * (capsule_A->get_height() * 0.5);
|
|
Vector3 capsule_A_ball_2 = p_transform_a.origin - capsule_A_axis * (capsule_A->get_height() * 0.5);
|
|
|
|
if (!separator.test_axis((p_transform_b.origin - capsule_A_ball_1).cross(cylinder_B_axis).cross(cylinder_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis((p_transform_b.origin - capsule_A_ball_2).cross(cylinder_B_axis).cross(cylinder_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder edge against capsule edge.
|
|
|
|
Vector3 center_diff = p_transform_b.origin - p_transform_a.origin;
|
|
|
|
if (!separator.test_axis(capsule_A_axis.cross(center_diff).cross(capsule_A_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
if (!separator.test_axis(cylinder_B_axis.cross(center_diff).cross(cylinder_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
real_t proj = capsule_A_axis.cross(cylinder_B_axis).cross(cylinder_B_axis).dot(capsule_A_axis);
|
|
if (Math::is_zero_approx(proj)) {
|
|
// Parallel capsule and cylinder axes, handle with specific axes only.
|
|
// Note: GJKEPA with no margin can lead to degenerate cases in this situation.
|
|
separator.generate_contacts();
|
|
return;
|
|
}
|
|
|
|
CollisionSolver3DSW::CallbackResult callback = SeparatorAxisTest<CapsuleShape3DSW, CylinderShape3DSW, withMargin>::test_contact_points;
|
|
|
|
// Fallback to generic algorithm to find the best separating axis.
|
|
if (!fallback_collision_solver(p_a, p_transform_a, p_b, p_transform_b, callback, &separator, false, p_margin_a, p_margin_b)) {
|
|
return;
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_capsule_convex_polygon(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CapsuleShape3DSW *capsule_A = static_cast<const CapsuleShape3DSW *>(p_a);
|
|
const ConvexPolygonShape3DSW *convex_polygon_B = static_cast<const ConvexPolygonShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CapsuleShape3DSW, ConvexPolygonShape3DSW, withMargin> separator(capsule_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
const Geometry3D::MeshData &mesh = convex_polygon_B->get_mesh();
|
|
|
|
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
|
|
int face_count = mesh.faces.size();
|
|
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
|
|
int edge_count = mesh.edges.size();
|
|
const Vector3 *vertices = mesh.vertices.ptr();
|
|
|
|
// faces of B
|
|
for (int i = 0; i < face_count; i++) {
|
|
Vector3 axis = p_transform_b.xform(faces[i].plane).normal;
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// edges of B, capsule cylinder
|
|
|
|
for (int i = 0; i < edge_count; i++) {
|
|
// cylinder
|
|
Vector3 edge_axis = p_transform_b.basis.xform(vertices[edges[i].a]) - p_transform_b.basis.xform(vertices[edges[i].b]);
|
|
Vector3 axis = edge_axis.cross(p_transform_a.basis.get_axis(1)).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// capsule balls, edges of B
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
// edges of B, capsule cylinder
|
|
|
|
Vector3 capsule_axis = p_transform_a.basis.get_axis(1) * (capsule_A->get_height() * 0.5);
|
|
|
|
Vector3 sphere_pos = p_transform_a.origin + ((i == 0) ? capsule_axis : -capsule_axis);
|
|
|
|
for (int j = 0; j < edge_count; j++) {
|
|
Vector3 n1 = sphere_pos - p_transform_b.xform(vertices[edges[j].a]);
|
|
Vector3 n2 = p_transform_b.basis.xform(vertices[edges[j].a]) - p_transform_b.basis.xform(vertices[edges[j].b]);
|
|
|
|
Vector3 axis = n1.cross(n2).cross(n2).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_capsule_face(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CapsuleShape3DSW *capsule_A = static_cast<const CapsuleShape3DSW *>(p_a);
|
|
const FaceShape3DSW *face_B = static_cast<const FaceShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CapsuleShape3DSW, FaceShape3DSW, withMargin> separator(capsule_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
Vector3 vertex[3] = {
|
|
p_transform_b.xform(face_B->vertex[0]),
|
|
p_transform_b.xform(face_B->vertex[1]),
|
|
p_transform_b.xform(face_B->vertex[2]),
|
|
};
|
|
|
|
Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
|
|
|
|
if (!separator.test_axis(normal, !face_B->backface_collision)) {
|
|
return;
|
|
}
|
|
|
|
// edges of B, capsule cylinder
|
|
|
|
Vector3 capsule_axis = p_transform_a.basis.get_axis(1) * (capsule_A->get_height() * 0.5);
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
// edge-cylinder
|
|
Vector3 edge_axis = vertex[i] - vertex[(i + 1) % 3];
|
|
|
|
Vector3 axis = edge_axis.cross(capsule_axis).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
|
|
Vector3 dir_axis = (p_transform_a.origin - vertex[i]).cross(capsule_axis).cross(capsule_axis).normalized();
|
|
if (dir_axis.dot(normal) < 0.0) {
|
|
dir_axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(dir_axis)) {
|
|
return;
|
|
}
|
|
|
|
for (int j = 0; j < 2; j++) {
|
|
// point-spheres
|
|
Vector3 sphere_pos = p_transform_a.origin + ((j == 0) ? capsule_axis : -capsule_axis);
|
|
|
|
Vector3 n1 = sphere_pos - vertex[i];
|
|
if (n1.dot(normal) < 0.0) {
|
|
n1 *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(n1.normalized())) {
|
|
return;
|
|
}
|
|
|
|
Vector3 n2 = edge_axis;
|
|
|
|
axis = n1.cross(n2).cross(n2);
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis.normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_cylinder_cylinder(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CylinderShape3DSW *cylinder_A = static_cast<const CylinderShape3DSW *>(p_a);
|
|
const CylinderShape3DSW *cylinder_B = static_cast<const CylinderShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CylinderShape3DSW, CylinderShape3DSW, withMargin> separator(cylinder_A, p_transform_a, cylinder_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
Vector3 cylinder_A_axis = p_transform_a.basis.get_axis(1);
|
|
Vector3 cylinder_B_axis = p_transform_b.basis.get_axis(1);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder A end caps.
|
|
if (!separator.test_axis(cylinder_A_axis.normalized())) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder B end caps.
|
|
if (!separator.test_axis(cylinder_A_axis.normalized())) {
|
|
return;
|
|
}
|
|
|
|
Vector3 cylinder_diff = p_transform_b.origin - p_transform_a.origin;
|
|
|
|
// Cylinder A lateral surface.
|
|
if (!separator.test_axis(cylinder_A_axis.cross(cylinder_diff).cross(cylinder_A_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
// Cylinder B lateral surface.
|
|
if (!separator.test_axis(cylinder_B_axis.cross(cylinder_diff).cross(cylinder_B_axis).normalized())) {
|
|
return;
|
|
}
|
|
|
|
real_t proj = cylinder_A_axis.cross(cylinder_B_axis).cross(cylinder_B_axis).dot(cylinder_A_axis);
|
|
if (Math::is_zero_approx(proj)) {
|
|
// Parallel cylinders, handle with specific axes only.
|
|
// Note: GJKEPA with no margin can lead to degenerate cases in this situation.
|
|
separator.generate_contacts();
|
|
return;
|
|
}
|
|
|
|
CollisionSolver3DSW::CallbackResult callback = SeparatorAxisTest<CylinderShape3DSW, CylinderShape3DSW, withMargin>::test_contact_points;
|
|
|
|
// Fallback to generic algorithm to find the best separating axis.
|
|
if (!fallback_collision_solver(p_a, p_transform_a, p_b, p_transform_b, callback, &separator, false, p_margin_a, p_margin_b)) {
|
|
return;
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_cylinder_convex_polygon(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CylinderShape3DSW *cylinder_A = static_cast<const CylinderShape3DSW *>(p_a);
|
|
const ConvexPolygonShape3DSW *convex_polygon_B = static_cast<const ConvexPolygonShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CylinderShape3DSW, ConvexPolygonShape3DSW, withMargin> separator(cylinder_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
CollisionSolver3DSW::CallbackResult callback = SeparatorAxisTest<CylinderShape3DSW, ConvexPolygonShape3DSW, withMargin>::test_contact_points;
|
|
|
|
// Fallback to generic algorithm to find the best separating axis.
|
|
if (!fallback_collision_solver(p_a, p_transform_a, p_b, p_transform_b, callback, &separator, false, p_margin_a, p_margin_b)) {
|
|
return;
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_cylinder_face(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const CylinderShape3DSW *cylinder_A = static_cast<const CylinderShape3DSW *>(p_a);
|
|
const FaceShape3DSW *face_B = static_cast<const FaceShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<CylinderShape3DSW, FaceShape3DSW, withMargin> separator(cylinder_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
Vector3 vertex[3] = {
|
|
p_transform_b.xform(face_B->vertex[0]),
|
|
p_transform_b.xform(face_B->vertex[1]),
|
|
p_transform_b.xform(face_B->vertex[2]),
|
|
};
|
|
|
|
Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
|
|
|
|
// Face B normal.
|
|
if (!separator.test_axis(normal, !face_B->backface_collision)) {
|
|
return;
|
|
}
|
|
|
|
Vector3 cyl_axis = p_transform_a.basis.get_axis(1).normalized();
|
|
if (cyl_axis.dot(normal) < 0.0) {
|
|
cyl_axis *= -1.0;
|
|
}
|
|
|
|
// Cylinder end caps.
|
|
if (!separator.test_axis(cyl_axis)) {
|
|
return;
|
|
}
|
|
|
|
// Edges of B, cylinder lateral surface.
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 edge_axis = vertex[i] - vertex[(i + 1) % 3];
|
|
Vector3 axis = edge_axis.cross(cyl_axis);
|
|
if (Math::is_zero_approx(axis.length_squared())) {
|
|
continue;
|
|
}
|
|
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis.normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Points of B, cylinder lateral surface.
|
|
for (int i = 0; i < 3; i++) {
|
|
const Vector3 &point = vertex[i];
|
|
Vector3 axis = Plane(cyl_axis, 0).project(point).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Edges of B, cylinder end caps rim.
|
|
Vector3 cap_axis = cyl_axis * (cylinder_A->get_height() * 0.5);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
Vector3 cap_pos = p_transform_a.origin + ((i == 0) ? cap_axis : -cap_axis);
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
const Vector3 &edge_start = vertex[j];
|
|
const Vector3 &edge_end = vertex[(j + 1) % 3];
|
|
Vector3 edge_dir = edge_end - edge_start;
|
|
edge_dir.normalize();
|
|
|
|
real_t edge_dot = edge_dir.dot(cyl_axis);
|
|
if (Math::is_zero_approx(edge_dot)) {
|
|
// Edge is perpendicular to cylinder axis.
|
|
continue;
|
|
}
|
|
|
|
// Calculate intersection between edge and circle plane.
|
|
Vector3 edge_diff = cap_pos - edge_start;
|
|
real_t diff_dot = edge_diff.dot(cyl_axis);
|
|
Vector3 intersection = edge_start + edge_dir * diff_dot / edge_dot;
|
|
|
|
// Calculate tangent that touches intersection.
|
|
Vector3 tangent = (cap_pos - intersection).cross(cyl_axis);
|
|
|
|
// Axis is orthogonal both to tangent and edge direction.
|
|
Vector3 axis = tangent.cross(edge_dir);
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis.normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_convex_polygon_convex_polygon(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const ConvexPolygonShape3DSW *convex_polygon_A = static_cast<const ConvexPolygonShape3DSW *>(p_a);
|
|
const ConvexPolygonShape3DSW *convex_polygon_B = static_cast<const ConvexPolygonShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<ConvexPolygonShape3DSW, ConvexPolygonShape3DSW, withMargin> separator(convex_polygon_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
if (!separator.test_previous_axis()) {
|
|
return;
|
|
}
|
|
|
|
const Geometry3D::MeshData &mesh_A = convex_polygon_A->get_mesh();
|
|
|
|
const Geometry3D::MeshData::Face *faces_A = mesh_A.faces.ptr();
|
|
int face_count_A = mesh_A.faces.size();
|
|
const Geometry3D::MeshData::Edge *edges_A = mesh_A.edges.ptr();
|
|
int edge_count_A = mesh_A.edges.size();
|
|
const Vector3 *vertices_A = mesh_A.vertices.ptr();
|
|
int vertex_count_A = mesh_A.vertices.size();
|
|
|
|
const Geometry3D::MeshData &mesh_B = convex_polygon_B->get_mesh();
|
|
|
|
const Geometry3D::MeshData::Face *faces_B = mesh_B.faces.ptr();
|
|
int face_count_B = mesh_B.faces.size();
|
|
const Geometry3D::MeshData::Edge *edges_B = mesh_B.edges.ptr();
|
|
int edge_count_B = mesh_B.edges.size();
|
|
const Vector3 *vertices_B = mesh_B.vertices.ptr();
|
|
int vertex_count_B = mesh_B.vertices.size();
|
|
|
|
// faces of A
|
|
for (int i = 0; i < face_count_A; i++) {
|
|
Vector3 axis = p_transform_a.xform(faces_A[i].plane).normal;
|
|
//Vector3 axis = p_transform_a.basis.xform( faces_A[i].plane.normal ).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// faces of B
|
|
for (int i = 0; i < face_count_B; i++) {
|
|
Vector3 axis = p_transform_b.xform(faces_B[i].plane).normal;
|
|
//Vector3 axis = p_transform_b.basis.xform( faces_B[i].plane.normal ).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A<->B edges
|
|
for (int i = 0; i < edge_count_A; i++) {
|
|
Vector3 e1 = p_transform_a.basis.xform(vertices_A[edges_A[i].a]) - p_transform_a.basis.xform(vertices_A[edges_A[i].b]);
|
|
|
|
for (int j = 0; j < edge_count_B; j++) {
|
|
Vector3 e2 = p_transform_b.basis.xform(vertices_B[edges_B[j].a]) - p_transform_b.basis.xform(vertices_B[edges_B[j].b]);
|
|
|
|
Vector3 axis = e1.cross(e2).normalized();
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (withMargin) {
|
|
//vertex-vertex
|
|
for (int i = 0; i < vertex_count_A; i++) {
|
|
Vector3 va = p_transform_a.xform(vertices_A[i]);
|
|
|
|
for (int j = 0; j < vertex_count_B; j++) {
|
|
if (!separator.test_axis((va - p_transform_b.xform(vertices_B[j])).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
//edge-vertex (shell)
|
|
|
|
for (int i = 0; i < edge_count_A; i++) {
|
|
Vector3 e1 = p_transform_a.basis.xform(vertices_A[edges_A[i].a]);
|
|
Vector3 e2 = p_transform_a.basis.xform(vertices_A[edges_A[i].b]);
|
|
Vector3 n = (e2 - e1);
|
|
|
|
for (int j = 0; j < vertex_count_B; j++) {
|
|
Vector3 e3 = p_transform_b.xform(vertices_B[j]);
|
|
|
|
if (!separator.test_axis((e1 - e3).cross(n).cross(n).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < edge_count_B; i++) {
|
|
Vector3 e1 = p_transform_b.basis.xform(vertices_B[edges_B[i].a]);
|
|
Vector3 e2 = p_transform_b.basis.xform(vertices_B[edges_B[i].b]);
|
|
Vector3 n = (e2 - e1);
|
|
|
|
for (int j = 0; j < vertex_count_A; j++) {
|
|
Vector3 e3 = p_transform_a.xform(vertices_A[j]);
|
|
|
|
if (!separator.test_axis((e1 - e3).cross(n).cross(n).normalized())) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
template <bool withMargin>
|
|
static void _collision_convex_polygon_face(const Shape3DSW *p_a, const Transform3D &p_transform_a, const Shape3DSW *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
|
|
const ConvexPolygonShape3DSW *convex_polygon_A = static_cast<const ConvexPolygonShape3DSW *>(p_a);
|
|
const FaceShape3DSW *face_B = static_cast<const FaceShape3DSW *>(p_b);
|
|
|
|
SeparatorAxisTest<ConvexPolygonShape3DSW, FaceShape3DSW, withMargin> separator(convex_polygon_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
|
|
|
|
const Geometry3D::MeshData &mesh = convex_polygon_A->get_mesh();
|
|
|
|
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
|
|
int face_count = mesh.faces.size();
|
|
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
|
|
int edge_count = mesh.edges.size();
|
|
const Vector3 *vertices = mesh.vertices.ptr();
|
|
int vertex_count = mesh.vertices.size();
|
|
|
|
Vector3 vertex[3] = {
|
|
p_transform_b.xform(face_B->vertex[0]),
|
|
p_transform_b.xform(face_B->vertex[1]),
|
|
p_transform_b.xform(face_B->vertex[2]),
|
|
};
|
|
|
|
Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
|
|
|
|
if (!separator.test_axis(normal, !face_B->backface_collision)) {
|
|
return;
|
|
}
|
|
|
|
// faces of A
|
|
for (int i = 0; i < face_count; i++) {
|
|
//Vector3 axis = p_transform_a.xform( faces[i].plane ).normal;
|
|
Vector3 axis = p_transform_a.basis.xform(faces[i].plane.normal).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A<->B edges
|
|
for (int i = 0; i < edge_count; i++) {
|
|
Vector3 e1 = p_transform_a.xform(vertices[edges[i].a]) - p_transform_a.xform(vertices[edges[i].b]);
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 e2 = vertex[j] - vertex[(j + 1) % 3];
|
|
|
|
Vector3 axis = e1.cross(e2).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (withMargin) {
|
|
//vertex-vertex
|
|
for (int i = 0; i < vertex_count; i++) {
|
|
Vector3 va = p_transform_a.xform(vertices[i]);
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 axis = (va - vertex[j]).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
//edge-vertex (shell)
|
|
|
|
for (int i = 0; i < edge_count; i++) {
|
|
Vector3 e1 = p_transform_a.basis.xform(vertices[edges[i].a]);
|
|
Vector3 e2 = p_transform_a.basis.xform(vertices[edges[i].b]);
|
|
Vector3 n = (e2 - e1);
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 e3 = vertex[j];
|
|
|
|
Vector3 axis = (e1 - e3).cross(n).cross(n).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 e1 = vertex[i];
|
|
Vector3 e2 = vertex[(i + 1) % 3];
|
|
Vector3 n = (e2 - e1);
|
|
|
|
for (int j = 0; j < vertex_count; j++) {
|
|
Vector3 e3 = p_transform_a.xform(vertices[j]);
|
|
|
|
Vector3 axis = (e1 - e3).cross(n).cross(n).normalized();
|
|
if (axis.dot(normal) < 0.0) {
|
|
axis *= -1.0;
|
|
}
|
|
|
|
if (!separator.test_axis(axis)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
separator.generate_contacts();
|
|
}
|
|
|
|
bool sat_calculate_penetration(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, CollisionSolver3DSW::CallbackResult p_result_callback, void *p_userdata, bool p_swap, Vector3 *r_prev_axis, real_t p_margin_a, real_t p_margin_b) {
|
|
PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
|
|
|
|
ERR_FAIL_COND_V(type_A == PhysicsServer3D::SHAPE_PLANE, false);
|
|
ERR_FAIL_COND_V(type_A == PhysicsServer3D::SHAPE_RAY, false);
|
|
ERR_FAIL_COND_V(p_shape_A->is_concave(), false);
|
|
|
|
PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
|
|
|
|
ERR_FAIL_COND_V(type_B == PhysicsServer3D::SHAPE_PLANE, false);
|
|
ERR_FAIL_COND_V(type_B == PhysicsServer3D::SHAPE_RAY, false);
|
|
ERR_FAIL_COND_V(p_shape_B->is_concave(), false);
|
|
|
|
static const CollisionFunc collision_table[6][6] = {
|
|
{ _collision_sphere_sphere<false>,
|
|
_collision_sphere_box<false>,
|
|
_collision_sphere_capsule<false>,
|
|
_collision_sphere_cylinder<false>,
|
|
_collision_sphere_convex_polygon<false>,
|
|
_collision_sphere_face<false> },
|
|
{ nullptr,
|
|
_collision_box_box<false>,
|
|
_collision_box_capsule<false>,
|
|
_collision_box_cylinder<false>,
|
|
_collision_box_convex_polygon<false>,
|
|
_collision_box_face<false> },
|
|
{ nullptr,
|
|
nullptr,
|
|
_collision_capsule_capsule<false>,
|
|
_collision_capsule_cylinder<false>,
|
|
_collision_capsule_convex_polygon<false>,
|
|
_collision_capsule_face<false> },
|
|
{ nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
_collision_cylinder_cylinder<false>,
|
|
_collision_cylinder_convex_polygon<false>,
|
|
_collision_cylinder_face<false> },
|
|
{ nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
_collision_convex_polygon_convex_polygon<false>,
|
|
_collision_convex_polygon_face<false> },
|
|
{ nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr },
|
|
};
|
|
|
|
static const CollisionFunc collision_table_margin[6][6] = {
|
|
{ _collision_sphere_sphere<true>,
|
|
_collision_sphere_box<true>,
|
|
_collision_sphere_capsule<true>,
|
|
_collision_sphere_cylinder<true>,
|
|
_collision_sphere_convex_polygon<true>,
|
|
_collision_sphere_face<true> },
|
|
{ nullptr,
|
|
_collision_box_box<true>,
|
|
_collision_box_capsule<true>,
|
|
_collision_box_cylinder<true>,
|
|
_collision_box_convex_polygon<true>,
|
|
_collision_box_face<true> },
|
|
{ nullptr,
|
|
nullptr,
|
|
_collision_capsule_capsule<true>,
|
|
_collision_capsule_cylinder<true>,
|
|
_collision_capsule_convex_polygon<true>,
|
|
_collision_capsule_face<true> },
|
|
{ nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
_collision_cylinder_cylinder<true>,
|
|
_collision_cylinder_convex_polygon<true>,
|
|
_collision_cylinder_face<true> },
|
|
{ nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
_collision_convex_polygon_convex_polygon<true>,
|
|
_collision_convex_polygon_face<true> },
|
|
{ nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
nullptr },
|
|
};
|
|
|
|
_CollectorCallback callback;
|
|
callback.callback = p_result_callback;
|
|
callback.swap = p_swap;
|
|
callback.userdata = p_userdata;
|
|
callback.collided = false;
|
|
callback.prev_axis = r_prev_axis;
|
|
|
|
const Shape3DSW *A = p_shape_A;
|
|
const Shape3DSW *B = p_shape_B;
|
|
const Transform3D *transform_A = &p_transform_A;
|
|
const Transform3D *transform_B = &p_transform_B;
|
|
real_t margin_A = p_margin_a;
|
|
real_t margin_B = p_margin_b;
|
|
|
|
if (type_A > type_B) {
|
|
SWAP(A, B);
|
|
SWAP(transform_A, transform_B);
|
|
SWAP(type_A, type_B);
|
|
SWAP(margin_A, margin_B);
|
|
callback.swap = !callback.swap;
|
|
}
|
|
|
|
CollisionFunc collision_func;
|
|
if (margin_A != 0.0 || margin_B != 0.0) {
|
|
collision_func = collision_table_margin[type_A - 2][type_B - 2];
|
|
|
|
} else {
|
|
collision_func = collision_table[type_A - 2][type_B - 2];
|
|
}
|
|
ERR_FAIL_COND_V(!collision_func, false);
|
|
|
|
collision_func(A, *transform_A, B, *transform_B, &callback, margin_A, margin_B);
|
|
|
|
return callback.collided;
|
|
}
|