2021-01-20 12:25:06 +00:00
|
|
|
use bencher::{benchmark_group, benchmark_main, Bencher};
|
|
|
|
use rand::rngs::{StdRng, ThreadRng};
|
|
|
|
use rand::{Rng, SeedableRng};
|
|
|
|
|
|
|
|
use instant_distance::Builder;
|
|
|
|
|
|
|
|
benchmark_main!(benches);
|
|
|
|
benchmark_group!(benches, build_heuristic);
|
|
|
|
|
|
|
|
fn build_heuristic(bench: &mut Bencher) {
|
|
|
|
let seed = ThreadRng::default().gen::<u64>();
|
|
|
|
let mut rng = StdRng::seed_from_u64(seed);
|
2021-01-20 17:25:29 +00:00
|
|
|
let points = (0..1024)
|
2021-01-20 12:25:06 +00:00
|
|
|
.into_iter()
|
|
|
|
.map(|_| Point(rng.gen(), rng.gen()))
|
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
|
|
|
bench.iter(|| Builder::default().seed(seed).build(&points))
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
fn randomized(builder: Builder) -> (u64, usize) {
|
|
|
|
let query = Point(rng.gen(), rng.gen());
|
|
|
|
let mut nearest = Vec::with_capacity(256);
|
|
|
|
for (i, p) in points.iter().enumerate() {
|
|
|
|
nearest.push((OrderedFloat::from(query.distance(p)), i));
|
|
|
|
if nearest.len() >= 200 {
|
|
|
|
nearest.sort_unstable();
|
|
|
|
nearest.truncate(100);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut search = Search::default();
|
|
|
|
let mut results = vec![PointId::default(); 100];
|
|
|
|
let found = hnsw.search(&query, &mut results, &mut search);
|
|
|
|
assert_eq!(found, 100);
|
|
|
|
|
|
|
|
nearest.sort_unstable();
|
|
|
|
nearest.truncate(100);
|
|
|
|
let forced = nearest
|
|
|
|
.iter()
|
|
|
|
.map(|(_, i)| pids[*i])
|
|
|
|
.collect::<HashSet<_>>();
|
|
|
|
let found = results.into_iter().take(found).collect::<HashSet<_>>();
|
|
|
|
(seed, forced.intersection(&found).count())
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
|
|
struct Point(f32, f32);
|
|
|
|
|
|
|
|
impl instant_distance::Point for Point {
|
|
|
|
fn distance(&self, other: &Self) -> f32 {
|
|
|
|
// Euclidean distance metric
|
|
|
|
((self.0 - other.0).powi(2) + (self.1 - other.1).powi(2)).sqrt()
|
|
|
|
}
|
|
|
|
}
|