39 KiB
Requests
Together, a route
attribute and function signature specify what must be true
about a request in order for the route's handler to be called. You've already
seen an example of this in action:
# #[macro_use] extern crate rocket;
# fn main() {}
#[get("/world")]
fn handler() { /* .. */ }
This route indicates that it only matches against GET
requests to the /world
route. Rocket ensures that this is the case before handler
is called. Of
course, you can do much more than specify the method and path of a request.
Among other things, you can ask Rocket to automatically validate:
- The type of a dynamic path segment.
- The type of several dynamic path segments.
- The type of incoming body data.
- The types of query strings, forms, and form values.
- The expected incoming or outgoing format of a request.
- Any arbitrary, user-defined security or validation policies.
The route attribute and function signature work in tandem to describe these validations. Rocket's code generation takes care of actually validating the properties. This section describes how to ask Rocket to validate against all of these properties and more.
Methods
A Rocket route attribute can be any one of get
, put
, post
, delete
,
head
, patch
, or options
, each corresponding to the HTTP method to match
against. For example, the following attribute will match against POST
requests
to the root path:
# #[macro_use] extern crate rocket;
# fn main() {}
#[post("/")]
# fn handler() {}
The grammar for these attributes is defined formally in the route
API docs.
HEAD Requests
Rocket handles HEAD
requests automatically when there exists a GET
route
that would otherwise match. It does this by stripping the body from the
response, if there is one. You can also specialize the handling of a HEAD
request by declaring a route for it; Rocket won't interfere with HEAD
requests
your application explicitly handles.
Reinterpreting
Because HTML forms can only be directly submitted as GET
or POST
requests,
Rocket reinterprets request methods under certain conditions. If a POST
request contains a body of Content-Type: application/x-www-form-urlencoded
and
the form's first field has the name _method
and a valid HTTP method name
as its value (such as "PUT"
), that field's value is used as the method for the
incoming request. This allows Rocket applications to submit non-POST
forms.
The todo example makes use of this
feature to submit PUT
and DELETE
requests from a web form.
Dynamic Paths
You can declare path segments as dynamic by using angle brackets around variable names in a route's path. For example, if we want to say Hello! to anything, not just the world, we can declare a route like so:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::http::RawStr;
#[get("/hello/<name>")]
fn hello(name: &RawStr) -> String {
format!("Hello, {}!", name)
}
If we were to mount the path at the root (.mount("/", routes![hello])
), then
any request to a path with two non-empty segments, where the first segment is
hello
, will be dispatched to the hello
route. For example, if we were to
visit /hello/John
, the application would respond with Hello, John!
.
Any number of dynamic path segments are allowed. A path segment can be of any
type, including your own, as long as the type implements the FromParam
trait. We call these types parameter guards. Rocket implements FromParam
for
many of the standard library types, as well as a few special Rocket types. For
the full list of provided implementations, see the FromParam
API docs.
Here's a more complete route to illustrate varied usage:
# #[macro_use] extern crate rocket;
# fn main() {}
#[get("/hello/<name>/<age>/<cool>")]
fn hello(name: String, age: u8, cool: bool) -> String {
if cool {
format!("You're a cool {} year old, {}!", age, name)
} else {
format!("{}, we need to talk about your coolness.", name)
}
}
! note: Rocket types raw strings separately from decoded strings.
You may have noticed an unfamiliar RawStr
type in the code example above.
This is a special type, provided by Rocket, that represents an unsanitized,
unvalidated, and undecoded raw string from an HTTP message. It exists to
separate validated string inputs, represented by types such as String
,
&str
, and Cow<str>
, from unvalidated inputs, represented by &RawStr
. It
also provides helpful methods to convert the unvalidated string into a
validated one.
Because &RawStr
implements FromParam
, it can be used as the type of a
dynamic segment, as in the example above, where the value refers to a
potentially undecoded string. By contrast, a String
is guaranteed to be
decoded. Which you should use depends on whether you want direct but
potentially unsafe access to the string (&RawStr
), or safe access to the
string at the cost of an allocation (String
).
Multiple Segments
You can also match against multiple segments by using <param..>
in a route
path. The type of such parameters, known as segments guards, must implement
FromSegments
. A segments guard must be the final component of a path: any
text after a segments guard will result in a compile-time error.
As an example, the following route matches against all paths that begin with
/page/
:
# #[macro_use] extern crate rocket;
# fn main() {}
use std::path::PathBuf;
#[get("/page/<path..>")]
fn get_page(path: PathBuf) { /* ... */ }
The path after /page/
will be available in the path
parameter. The
FromSegments
implementation for PathBuf
ensures that path
cannot lead to
path traversal attacks. With
this, a safe and secure static file server can be implemented in 4 lines:
# #[macro_use] extern crate rocket;
# fn main() {}
# use std::path::{Path, PathBuf};
use rocket::response::NamedFile;
#[get("/<file..>")]
async fn files(file: PathBuf) -> Option<NamedFile> {
NamedFile::open(Path::new("static/").join(file)).await.ok()
}
! tip: Rocket makes it even easier to serve static files!
If you need to serve static files from your Rocket application, consider using
the StaticFiles
custom handler from rocket_contrib
, which makes it as
simple as:
rocket.mount("/public", StaticFiles::from("/static"))
Forwarding
Let's take a closer look at the route attribute and signature pair from a previous example:
# #[macro_use] extern crate rocket;
# fn main() {}
#[get("/hello/<name>/<age>/<cool>")]
fn hello(name: String, age: u8, cool: bool) { /* ... */ }
What if cool
isn't a bool
? Or, what if age
isn't a u8
? When a parameter
type mismatch occurs, Rocket forwards the request to the next matching route,
if there is any. This continues until a route doesn't forward the request or
there are no remaining routes to try. When there are no remaining routes, a
customizable 404 error is returned.
Routes are attempted in increasing rank order. Rocket chooses a default
ranking from -6 to -1, detailed in the next section, but a route's rank can also
be manually set with the rank
attribute. To illustrate, consider the following
routes:
# #[macro_use] extern crate rocket;
# use rocket::http::RawStr;
#[get("/user/<id>")]
fn user(id: usize) { /* ... */ }
#[get("/user/<id>", rank = 2)]
fn user_int(id: isize) { /* ... */ }
#[get("/user/<id>", rank = 3)]
fn user_str(id: &RawStr) { /* ... */ }
#[launch]
fn rocket() -> rocket::Rocket {
rocket::ignite().mount("/", routes![user, user_int, user_str])
}
Notice the rank
parameters in user_int
and user_str
. If we run this
application with the routes mounted at the root path, as is done in rocket()
above, requests to /user/<id>
(such as /user/123
, /user/Bob
, and so on)
will be routed as follows:
-
The
user
route matches first. If the string at the<id>
position is an unsigned integer, then theuser
handler is called. If it is not, then the request is forwarded to the next matching route:user_int
. -
The
user_int
route matches next. If<id>
is a signed integer,user_int
is called. Otherwise, the request is forwarded. -
The
user_str
route matches last. Since<id>
is a always string, the route always matches. Theuser_str
handler is called.
! note: A route's rank appears in [brackets] during launch.
You'll also find a route's rank logged in brackets during application launch:
GET /user/<id> [3] (user_str)
.
Forwards can be caught by using a Result
or Option
type. For example, if
the type of id
in the user
function was Result<usize, &RawStr>
, then user
would never forward. An Ok
variant would indicate that <id>
was a valid
usize
, while an Err
would indicate that <id>
was not a usize
. The
Err
's value would contain the string that failed to parse as a usize
.
! tip: It's not just forwards that can be caught!
In general, when any guard fails for any reason, including parameter guards,
you can use an Option
or Result
type in its place to catch the failure.
By the way, if you were to omit the rank
parameter in the user_str
or
user_int
routes, Rocket would emit an error and abort launch, indicating that
the routes collide, or can match against similar incoming requests. The rank
parameter resolves this collision.
Default Ranking
If a rank is not explicitly specified, Rocket assigns a default ranking. By default, routes with static paths and query strings have lower ranks (higher precedence) while routes with dynamic paths and without query strings have higher ranks (lower precedence). The table below describes the default ranking of a route given its properties.
static path | query | rank | example |
---|---|---|---|
yes | partly static | -6 | /hello?world=true |
yes | fully dynamic | -5 | /hello/?<world> |
yes | none | -4 | /hello |
no | partly static | -3 | /<hi>?world=true |
no | fully dynamic | -2 | /<hi>?<world> |
no | none | -1 | /<hi> |
Query Strings
Query segments can be declared static or dynamic in much the same way as path segments:
# #[macro_use] extern crate rocket;
# fn main() {}
# use rocket::http::RawStr;
#[get("/hello?wave&<name>")]
fn hello(name: &RawStr) -> String {
format!("Hello, {}!", name.as_str())
}
The hello
route above matches any GET
request to /hello
that has at least
one query key of name
and a query segment of wave
in any order, ignoring any
extra query segments. The value of the name
query parameter is used as the
value of the name
function argument. For instance, a request to
/hello?wave&name=John
would return Hello, John!
. Other requests that would
result in the same response include:
/hello?name=John&wave
(reordered)/hello?name=John&wave&id=123
(extra segments)/hello?id=123&name=John&wave
(reordered, extra segments)/hello?name=Bob&name=John&wave
(last value taken)
Any number of dynamic query segments are allowed. A query segment can be of any
type, including your own, as long as the type implements the FromFormValue
trait.
Optional Parameters
Query parameters are allowed to be missing. As long as a request's query string contains all of the static components of a route's query string, the request will be routed to that route. This allows for optional parameters, validating even when a parameter is missing.
To achieve this, use Option<T>
as the parameter type. Whenever the query
parameter is missing in a request, None
will be provided as the value. A
route using Option<T>
looks as follows:
# #[macro_use] extern crate rocket;
# fn main() {}
#[get("/hello?wave&<name>")]
fn hello(name: Option<String>) -> String {
name.map(|name| format!("Hi, {}!", name))
.unwrap_or_else(|| "Hello!".into())
}
Any GET
request with a path of /hello
and a wave
query segment will be
routed to this route. If a name=value
query segment is present, the route
returns the string "Hi, value!"
. If no name
query segment is present, the
route returns "Hello!"
.
Just like a parameter of type Option<T>
will have the value None
if the
parameter is missing from a query, a parameter of type bool
will have the
value false
if it is missing. The default value for a missing parameter can be
customized for your own types that implement FromFormValue
by implementing
FromFormValue::default()
.
Multiple Segments
As with paths, you can also match against multiple segments in a query by using
<param..>
. The type of such parameters, known as query guards, must
implement the FromQuery
trait. Query guards must be the final component of a
query: any text after a query parameter will result in a compile-time error.
A query guard validates all otherwise unmatched (by static or dynamic query
parameters) query segments. While you can implement FromQuery
yourself, most
use cases will be handled by using the Form
or LenientForm
query guard.
The Forms section explains using these types in detail. In short,
these types allow you to use a structure with named fields to automatically
validate query/form parameters:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::request::Form;
#[derive(FromForm)]
struct User {
name: String,
account: usize,
}
#[get("/item?<id>&<user..>")]
fn item(id: usize, user: Form<User>) { /* ... */ }
For a request to /item?id=100&name=sandal&account=400
, the item
route above
sets id
to 100
and user
to User { name: "sandal", account: 400 }
. To
catch forms that fail to validate, use a type of Option
or Result
:
# #[macro_use] extern crate rocket;
# fn main() {}
# use rocket::request::Form;
# #[derive(FromForm)] struct User { name: String, account: usize, }
#[get("/item?<id>&<user..>")]
fn item(id: usize, user: Option<Form<User>>) { /* ... */ }
For more query handling examples, see the query_params
example.
Request Guards
Request guards are one of Rocket's most powerful instruments. As the name might
imply, a request guard protects a handler from being called erroneously based on
information contained in an incoming request. More specifically, a request guard
is a type that represents an arbitrary validation policy. The validation policy
is implemented through the FromRequest
trait. Every type that implements
FromRequest
is a request guard.
Request guards appear as inputs to handlers. An arbitrary number of request
guards can appear as arguments in a route handler. Rocket will automatically
invoke the FromRequest
implementation for request guards before calling the
handler. Rocket only dispatches requests to a handler when all of its guards
pass.
For instance, the following dummy handler makes use of three request guards,
A
, B
, and C
. An input can be identified as a request guard if it is not
named in the route attribute.
# #[macro_use] extern crate rocket;
# fn main() {}
# type A = rocket::http::Method;
# type B = A;
# type C = A;
#[get("/<param>")]
fn index(param: isize, a: A, b: B, c: C) { /* ... */ }
Request guards always fire in left-to-right declaration order. In the example
above, the order will be A
followed by B
followed by C
. Failure is
short-circuiting; if one guard fails, the remaining are not attempted. To learn
more about request guards and implementing them, see the FromRequest
documentation.
Custom Guards
You can implement FromRequest
for your own types. For instance, to protect a
sensitive
route from running unless an ApiKey
is present in the request
headers, you might create an ApiKey
type that implements FromRequest
and
then use it as a request guard:
# #[macro_use] extern crate rocket;
# fn main() {}
# type ApiKey = rocket::http::Method;
#[get("/sensitive")]
fn sensitive(key: ApiKey) { /* .. */ }
You might also implement FromRequest
for an AdminUser
type that
authenticates an administrator using incoming cookies. Then, any handler with an
AdminUser
or ApiKey
type in its argument list is assured to only be invoked
if the appropriate conditions are met. Request guards centralize policies,
resulting in a simpler, safer, and more secure applications.
Guard Transparency
When a request guard type can only be created through its FromRequest
implementation, and the type is not Copy
, the existence of a request guard
value provides a type-level proof that the current request has been validated
against an arbitrary policy. This provides powerful means of protecting your
application against access-control violations by requiring data accessing
methods to witness a proof of authorization via a request guard. We call the
notion of using a request guard as a witness guard transparency.
As a concrete example, the following application has a function,
health_records
, that returns all of the health records in a database. Because
health records are sensitive information, they should only be accessible by
super users. The SuperUser
request guard authenticates and authorizes a super
user, and its FromRequest
implementation is the only means by which a
SuperUser
can be constructed. By declaring the health_records
function as
follows, access control violations against health records are guaranteed to be
prevented at compile-time:
# type Records = ();
# type SuperUser = ();
fn health_records(user: &SuperUser) -> Records { /* ... */ }
The reasoning is as follows:
- The
health_records
function requires an&SuperUser
type. - The only constructor for a
SuperUser
type isFromRequest
. - Only Rocket can provide an active
&Request
to construct viaFromRequest
. - Thus, there must be a
Request
authorizing aSuperUser
to callhealth_records
.
! note
At the expense of a lifetime parameter in the guard type, guarantees can be
made even stronger by tying the lifetime of the Request
passed to
FromRequest
to the request guard, ensuring that the guard value always
corresponds to an active request.
We recommend leveraging request guard transparency for all data accesses.
Forwarding Guards
Request guards and forwarding are a powerful combination for enforcing policies. To illustrate, we consider how a simple authorization system might be implemented using these mechanisms.
We start with two request guards:
-
User
: A regular, authenticated user.The
FromRequest
implementation forUser
checks that a cookie identifies a user and returns aUser
value if so. If no user can be authenticated, the guard forwards. -
AdminUser
: A user authenticated as an administrator.The
FromRequest
implementation forAdminUser
checks that a cookie identifies an administrative user and returns anAdminUser
value if so. If no user can be authenticated, the guard forwards.
We now use these two guards in combination with forwarding to implement the
following three routes, each leading to an administrative control panel at
/admin
:
# #[macro_use] extern crate rocket;
# fn main() {}
# type Template = ();
# type AdminUser = rocket::http::Method;
# type User = rocket::http::Method;
use rocket::response::Redirect;
#[get("/login")]
fn login() -> Template { /* .. */ }
#[get("/admin")]
fn admin_panel(admin: AdminUser) -> &'static str {
"Hello, administrator. This is the admin panel!"
}
#[get("/admin", rank = 2)]
fn admin_panel_user(user: User) -> &'static str {
"Sorry, you must be an administrator to access this page."
}
#[get("/admin", rank = 3)]
fn admin_panel_redirect() -> Redirect {
Redirect::to(uri!(login))
}
The three routes above encode authentication and authorization. The
admin_panel
route only succeeds if an administrator is logged in. Only then is
the admin panel displayed. If the user is not an admin, the AdminUser
guard
will forward. Since the admin_panel_user
route is ranked next highest, it is
attempted next. This route succeeds if there is any user signed in, and an
authorization failure message is displayed. Finally, if a user isn't signed in,
the admin_panel_redirect
route is attempted. Since this route has no guards,
it always succeeds. The user is redirected to a log in page.
Cookies
A reference to a CookieJar
is an important, built-in request guard: it
allows you to get, set, and remove cookies. Because &CookieJar
is a request
guard, an argument of its type can simply be added to a handler:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::http::CookieJar;
#[get("/")]
fn index(cookies: &CookieJar<'_>) -> Option<String> {
cookies.get("message").map(|crumb| format!("Message: {}", crumb.value()))
}
This results in the incoming request's cookies being accessible from the
handler. The example above retrieves a cookie named message
. Cookies can also
be set and removed using the CookieJar
guard. The cookies example on GitHub
illustrates further use of the CookieJar
type to get and set cookies, while
the CookieJar
documentation contains complete usage information.
Private Cookies
Cookies added via the CookieJar::add()
method are set in the clear. In
other words, the value set is visible to the client. For sensitive data, Rocket
provides private cookies. Private cookies are similar to regular cookies
except that they are encrypted using authenticated encryption, a form of
encryption which simultaneously provides confidentiality, integrity, and
authenticity. Thus, private cookies cannot be inspected, tampered with, or
manufactured by clients. If you prefer, you can think of private cookies as
being signed and encrypted.
Support for private cookies must be manually enabled via the secrets
crate
feature:
## in Cargo.toml
rocket = { version = "0.5.0-dev", features = ["secrets"] }
The API for retrieving, adding, and removing private cookies is identical except
methods are suffixed with _private
. These methods are: get_private
,
get_private_pending
, add_private
, and remove_private
. An example of
their usage is below:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::http::{Cookie, CookieJar};
use rocket::response::{Flash, Redirect};
/// Retrieve the user's ID, if any.
#[get("/user_id")]
fn user_id(cookies: &CookieJar<'_>) -> Option<String> {
cookies.get_private("user_id")
.map(|crumb| format!("User ID: {}", crumb.value()))
}
/// Remove the `user_id` cookie.
#[post("/logout")]
fn logout(cookies: &CookieJar<'_>) -> Flash<Redirect> {
cookies.remove_private(Cookie::named("user_id"));
Flash::success(Redirect::to("/"), "Successfully logged out.")
}
Secret Key
To encrypt private cookies, Rocket uses the 256-bit key specified in the
secret_key
configuration parameter. When compiled in debug mode, a fresh key
is generated automatically. In release mode, Rocket requires you to set a secret
key if the secrets
feature is enabled. Failure to do so results in a hard
error at launch time. The value of the parameter may either be a 256-bit base64
or hex string or a 32-byte slice.
Generating a string suitable for use as a secret_key
configuration value is
usually done through tools like openssl
. Using openssl
, a 256-bit base64 key
can be generated with the command openssl rand -base64 32
.
For more information on configuration, see the Configuration section of the guide.
Format
A route can specify the data format it is willing to accept or respond with by
using the format
route parameter. The value of the parameter is a string
identifying an HTTP media type or a shorthand variant. For instance, for JSON
data, the string application/json
or simply json
can be used.
When a route indicates a payload-supporting method (PUT
, POST
, DELETE
, and
PATCH
), the format
route parameter instructs Rocket to check against the
Content-Type
header of the incoming request. Only requests where the
Content-Type
header matches the format
parameter will match to the route.
As an example, consider the following route:
# #[macro_use] extern crate rocket;
# fn main() {}
# type User = rocket::data::Data;
#[post("/user", format = "application/json", data = "<user>")]
fn new_user(user: User) { /* ... */ }
The format
parameter in the post
attribute declares that only incoming
requests with Content-Type: application/json
will match new_user
. (The
data
parameter is described in the next section.) Shorthand is also supported
for the most common format
arguments. Instead of using the full Content-Type,
format = "application/json"
, you can also write shorthands like format = "json"
. For a full list of available shorthands, see the
ContentType::parse_flexible()
documentation.
When a route indicates a non-payload-supporting method (GET
, HEAD
,
OPTIONS
) the format
route parameter instructs Rocket to check against the
Accept
header of the incoming request. Only requests where the preferred media
type in the Accept
header matches the format
parameter will match to the
route.
As an example, consider the following route:
# #[macro_use] extern crate rocket;
# fn main() {}
# type User = ();
#[get("/user/<id>", format = "json")]
fn user(id: usize) -> User { /* .. */ }
The format
parameter in the get
attribute declares that only incoming
requests with application/json
as the preferred media type in the Accept
header will match user
. If instead the route had been declared as post
,
Rocket would match the format
against the Content-Type
header of the
incoming response.
Body Data
Body data processing, like much of Rocket, is type directed. To indicate that a
handler expects body data, annotate it with data = "<param>"
, where param
is
an argument in the handler. The argument's type must implement the FromData
trait. It looks like this, where T
is assumed to implement FromData
:
# #[macro_use] extern crate rocket;
# type T = rocket::data::Data;
#[post("/", data = "<input>")]
fn new(input: T) { /* .. */ }
Any type that implements FromData
is also known as a data guard.
Forms
Forms are one of the most common types of data handled in web applications, and
Rocket makes handling them easy. Say your application is processing a form
submission for a new todo Task
. The form contains two fields: complete
, a
checkbox, and description
, a text field. You can easily handle the form
request in Rocket as follows:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::request::Form;
#[derive(FromForm)]
struct Task {
complete: bool,
description: String,
}
#[post("/todo", data = "<task>")]
fn new(task: Form<Task>) { /* .. */ }
The Form
type implements the FromData
trait as long as its generic
parameter implements the FromForm
trait. In the example, we've derived the
FromForm
trait automatically for the Task
structure. FromForm
can be
derived for any structure whose fields implement FromFormValue
. If a POST /todo
request arrives, the form data will automatically be parsed into the
Task
structure. If the data that arrives isn't of the correct Content-Type,
the request is forwarded. If the data doesn't parse or is simply invalid, a
customizable 400 - Bad Request
or 422 - Unprocessable Entity
error is
returned. As before, a forward or failure can be caught by using the Option
and Result
types:
# #[macro_use] extern crate rocket;
# fn main() {}
# use rocket::request::Form;
# #[derive(FromForm)] struct Task { complete: bool, description: String, }
#[post("/todo", data = "<task>")]
fn new(task: Option<Form<Task>>) { /* .. */ }
Lenient Parsing
Rocket's FromForm
parsing is strict by default. In other words, a Form<T>
will parse successfully from an incoming form only if the form contains the
exact set of fields in T
. Said another way, a Form<T>
will error on missing
and/or extra fields. For instance, if an incoming form contains the fields "a",
"b", and "c" while T
only contains "a" and "c", the form will not parse as
Form<T>
.
Rocket allows you to opt-out of this behavior via the LenientForm
data type.
A LenientForm<T>
will parse successfully from an incoming form as long as the
form contains a superset of the fields in T
. Said another way, a
LenientForm<T>
automatically discards extra fields without error. For
instance, if an incoming form contains the fields "a", "b", and "c" while T
only contains "a" and "c", the form will parse as LenientForm<T>
.
You can use a LenientForm
anywhere you'd use a Form
. Its generic parameter
is also required to implement FromForm
. For instance, we can simply replace
Form
with LenientForm
above to get lenient parsing:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::request::LenientForm;
#[derive(FromForm)]
struct Task {
/* .. */
# complete: bool,
# description: String,
}
#[post("/todo", data = "<task>")]
fn new(task: LenientForm<Task>) { /* .. */ }
Field Renaming
By default, Rocket matches the name of an incoming form field to the name of a
structure field. While this behavior is typical, it may also be desired to use
different names for form fields and struct fields while still parsing as
expected. You can ask Rocket to look for a different form field for a given
structure field by using the #[form(field = "name")]
field annotation.
As an example, say that you're writing an application that receives data from an
external service. The external service POST
s a form with a field named type
.
Since type
is a reserved keyword in Rust, it cannot be used as the name of a
field. To get around this, you can use field renaming as follows:
# #[macro_use] extern crate rocket;
# fn main() {}
#[derive(FromForm)]
struct External {
#[form(field = "type")]
api_type: String
}
Rocket will then match the form field named type
to the structure field named
api_type
automatically.
Field Validation
Fields of forms can be easily validated via implementations of the
FromFormValue
trait. For example, if you'd like to verify that some user is
over some age in a form, then you might define a new AdultAge
type, use it as
a field in a form structure, and implement FromFormValue
so that it only
validates integers over that age:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::http::RawStr;
use rocket::request::FromFormValue;
struct AdultAge(usize);
impl<'v> FromFormValue<'v> for AdultAge {
type Error = &'v RawStr;
fn from_form_value(form_value: &'v RawStr) -> Result<AdultAge, &'v RawStr> {
match form_value.parse::<usize>() {
Ok(age) if age >= 21 => Ok(AdultAge(age)),
_ => Err(form_value),
}
}
}
#[derive(FromForm)]
struct Person {
age: AdultAge
}
If a form is submitted with a bad age, Rocket won't call a handler requiring a
valid form for that structure. You can use Option
or Result
types for fields
to catch parse failures:
# #[macro_use] extern crate rocket;
# fn main() {}
# type AdultAge = usize;
#[derive(FromForm)]
struct Person {
age: Option<AdultAge>
}
The FromFormValue
trait can also be derived for enums with nullary fields:
# #[macro_use] extern crate rocket;
# fn main() {}
#[derive(FromFormValue)]
enum MyValue {
First,
Second,
Third,
}
The derive generates an implementation of the FromFormValue
trait for the
decorated enum. The implementation returns successfully when the form value
matches, case insensitively, the stringified version of a variant's name,
returning an instance of said variant.
The form validation and form kitchen sink examples provide further illustrations.
JSON
Handling JSON data is no harder: simply use the
Json
type from
rocket_contrib
:
# #[macro_use] extern crate rocket;
# extern crate rocket_contrib;
# fn main() {}
use serde::Deserialize;
use rocket_contrib::json::Json;
#[derive(Deserialize)]
struct Task {
description: String,
complete: bool
}
#[post("/todo", data = "<task>")]
fn new(task: Json<Task>) { /* .. */ }
The only condition is that the generic type in Json
implements the
Deserialize
trait from Serde. See the
JSON example on GitHub for a complete example.
Streaming
Sometimes you just want to handle incoming data directly. For example, you might
want to stream the incoming data out to a file. Rocket makes this as simple as
possible via the Data
type:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::data::{Data, ToByteUnit};
use rocket::response::Debug;
#[post("/upload", format = "plain", data = "<data>")]
async fn upload(data: Data) -> Result<String, Debug<std::io::Error>> {
let bytes_written = data.open(128.kibibytes())
.stream_to_file("/tmp/upload.txt")
.await?;
Ok(bytes_written.to_string())
}
The route above accepts any POST
request to the /upload
path with
Content-Type: text/plain
At most 128KiB (128 << 10
bytes) of the incoming
data are streamed out to tmp/upload.txt
, and the number of bytes written is
returned as a plain text response if the upload succeeds. If the upload fails,
an error response is returned. The handler above is complete. It really is that
simple! See the GitHub example code for the full crate.
! note: Rocket requires setting limits when reading incoming data.
To aid in preventing DoS attacks, Rocket requires you to specify, as a
ByteUnit
, the amount of data you're
willing to accept from the client when open
ing a data stream. The
ToByteUnit
trait makes specifying
such a value as idiomatic as 128.kibibytes()
.
Async Routes
Rocket makes it easy to use async/await
in routes.
# #[macro_use] extern crate rocket;
use rocket::tokio::time::{delay_for, Duration};
#[get("/delay/<seconds>")]
async fn delay(seconds: u64) -> String {
delay_for(Duration::from_secs(seconds)).await;
format!("Waited for {} seconds", seconds)
}
First, notice that the route function is an async fn
. This enables
the use of await
inside the handler. delay_for
is an asynchronous
function, so we must await
it.
Error Catchers
Application processing is fallible. Errors arise from the following sources:
- A failing guard.
- A failing responder.
- A routing failure.
If any of these occur, Rocket returns an error to the client. To generate the error, Rocket invokes the catcher corresponding to the error's status code. Catchers are similar to routes except in that:
- Catchers are only invoked on error conditions.
- Catchers are declared with the
catch
attribute. - Catchers are registered with
register()
instead ofmount()
. - Any modifications to cookies are cleared before a catcher is invoked.
- Error catchers cannot invoke guards.
- Error catchers should not fail to produce a response.
To declare a catcher for a given status code, use the catch
attribute, which
takes a single integer corresponding to the HTTP status code to catch. For
instance, to declare a catcher for 404 Not Found
errors, you'd write:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::Request;
#[catch(404)]
fn not_found(req: &Request) { /* .. */ }
Catchers may take zero, one, or two arguments. If the catcher takes one
argument, it must be of type &Request
. It it takes two, they must be of type
Status
and &Request
, in that order. As with routes, the return type must
implement Responder
. A concrete implementation may look like:
# #[macro_use] extern crate rocket;
# fn main() {}
# use rocket::Request;
#[catch(404)]
fn not_found(req: &Request) -> String {
format!("Sorry, '{}' is not a valid path.", req.uri())
}
Also as with routes, Rocket needs to know about a catcher before it is used to
handle errors. The process, known as "registering" a catcher, is similar to
mounting a route: call the register()
method with a list of catchers via the
catchers!
macro. The invocation to add the 404 catcher declared above
looks like:
# #[macro_use] extern crate rocket;
# use rocket::Request;
# #[catch(404)] fn not_found(req: &Request) { /* .. */ }
fn main() {
rocket::ignite().register(catchers![not_found]);
}
Default Catchers
If no catcher for a given status code has been registered, Rocket calls the
default catcher. Rocket provides a default catcher for all applications
automatically, so providing one is usually unnecessary. Rocket's built-in
default catcher can handle all errors. It produces HTML or JSON, depending on
the value of the Accept
header. As such, a default catcher, or catchers in
general, only need to be registered if an error needs to be handled in a custom
fashion.
Declaring a default catcher is done with #[catch(default)]
:
# #[macro_use] extern crate rocket;
# fn main() {}
use rocket::Request;
use rocket::http::Status;
#[catch(default)]
fn default_catcher(status: Status, request: &Request) { /* .. */ }
It must similarly be registered with register()
.
The error catcher example illustrates their use in full,
while the Catcher
API documentation provides further details.