godot/doc/classes/Transform3D.xml

263 lines
12 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform3D" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
3D transformation (3×4 matrix).
</brief_description>
<description>
3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<constructors>
<constructor name="Transform3D">
<return type="Transform3D" />
<description>
2020-05-03 08:27:36 +00:00
Constructs a default-initialized [Transform3D] set to [constant IDENTITY].
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="from" type="Transform3D" />
<description>
2020-05-03 08:27:36 +00:00
Constructs a [Transform3D] as a copy of the given [Transform3D].
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="basis" type="Basis" />
<param index="1" name="origin" type="Vector3" />
<description>
2020-05-03 08:27:36 +00:00
Constructs a Transform3D from a [Basis] and [Vector3].
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="from" type="Projection" />
<description>
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="x_axis" type="Vector3" />
<param index="1" name="y_axis" type="Vector3" />
<param index="2" name="z_axis" type="Vector3" />
<param index="3" name="origin" type="Vector3" />
<description>
2020-05-03 08:27:36 +00:00
Constructs a Transform3D from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
</description>
</constructor>
</constructors>
<methods>
<method name="affine_inverse" qualifiers="const">
<return type="Transform3D" />
<description>
2017-10-14 10:45:26 +00:00
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="interpolate_with" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="xform" type="Transform3D" />
<param index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [param weight] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Transform3D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="xform" type="Transform3D" />
2019-11-08 07:33:48 +00:00
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
<method name="looking_at" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="target" type="Vector3" />
<param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
<description>
Returns a copy of the transform rotated such that the forward axis (-Z) points towards the [param target] position.
The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting transform is orthonormalized. The existing rotation, scale, and skew information from the original transform is discarded. The [param target] and [param up] vectors cannot be zero, cannot be parallel to each other, and are defined in global/parent space.
</description>
</method>
<method name="orthonormalized" qualifiers="const">
<return type="Transform3D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
Returns a copy of the transform rotated around the given [param axis] by the given [param angle] (in radians).
The [param axis] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="rotated_local" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
Returns a copy of the transform rotated around the given [param axis] by the given [param angle] (in radians).
The [param axis] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="scale" type="Vector3" />
<description>
Returns a copy of the transform scaled by the given [param scale] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="scaled_local" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="scale" type="Vector3" />
<description>
Returns a copy of the transform scaled by the given [param scale] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="spherical_interpolate_with" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="xform" type="Transform3D" />
<param index="1" name="weight" type="float" />
<description>
Returns a transform spherically interpolated between this transform and another by a given [param weight] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="translated" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="offset" type="Vector3" />
<description>
Returns a copy of the transform translated by the given [param offset].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="offset" type="Vector3" />
<description>
Returns a copy of the transform translated by the given [param offset].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="" default="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)">
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="origin" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)">
2020-05-03 08:27:36 +00:00
[Transform3D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_X" value="Transform3D(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)">
2020-05-03 08:27:36 +00:00
[Transform3D] with mirroring applied perpendicular to the YZ plane.
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_Y" value="Transform3D(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0)">
2020-05-03 08:27:36 +00:00
[Transform3D] with mirroring applied perpendicular to the XZ plane.
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_Z" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0)">
2020-05-03 08:27:36 +00:00
[Transform3D] with mirroring applied perpendicular to the XY plane.
2018-08-20 22:35:30 +00:00
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Transform3D" />
<description>
Returns [code]true[/code] if the transforms are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="AABB" />
<param index="0" name="right" type="AABB" />
<description>
Transforms (multiplies) the [AABB] by the given [Transform3D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="PackedVector3Array" />
<param index="0" name="right" type="PackedVector3Array" />
<description>
Transforms (multiplies) each element of the [Vector3] array by the given [Transform3D] matrix.
</description>
</operator>
2022-07-30 22:32:03 +00:00
<operator name="operator *">
<return type="Plane" />
<param index="0" name="right" type="Plane" />
2022-07-30 22:32:03 +00:00
<description>
Transforms (multiplies) the [Plane] by the given [Transform3D] transformation matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform3D" />
<param index="0" name="right" type="Transform3D" />
<description>
Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent).
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
Transforms (multiplies) the [Vector3] by the given [Transform3D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform3D" />
<param index="0" name="right" type="float" />
<description>
This operator multiplies all components of the [Transform3D], including the origin vector, which scales it uniformly.
</description>
</operator>
<operator name="operator *">
<return type="Transform3D" />
<param index="0" name="right" type="int" />
<description>
This operator multiplies all components of the [Transform3D], including the origin vector, which scales it uniformly.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Transform3D" />
<description>
Returns [code]true[/code] if the transforms are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
</operators>
</class>