godot/drivers/gles3/storage/light_storage.h

906 lines
35 KiB
C++
Raw Normal View History

/**************************************************************************/
/* light_storage.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef LIGHT_STORAGE_GLES3_H
#define LIGHT_STORAGE_GLES3_H
#ifdef GLES3_ENABLED
#include "platform_gl.h"
#include "render_scene_buffers_gles3.h"
#include "core/templates/local_vector.h"
#include "core/templates/rid_owner.h"
#include "core/templates/self_list.h"
#include "drivers/gles3/storage/texture_storage.h"
#include "servers/rendering/renderer_compositor.h"
#include "servers/rendering/storage/light_storage.h"
#include "servers/rendering/storage/utilities.h"
namespace GLES3 {
/* LIGHT */
struct Light {
RS::LightType type;
float param[RS::LIGHT_PARAM_MAX];
Color color = Color(1, 1, 1, 1);
RID projector;
bool shadow = false;
bool negative = false;
bool reverse_cull = false;
RS::LightBakeMode bake_mode = RS::LIGHT_BAKE_DYNAMIC;
uint32_t max_sdfgi_cascade = 2;
uint32_t cull_mask = 0xFFFFFFFF;
bool distance_fade = false;
real_t distance_fade_begin = 40.0;
real_t distance_fade_shadow = 50.0;
real_t distance_fade_length = 10.0;
RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
bool directional_blend_splits = false;
RS::LightDirectionalSkyMode directional_sky_mode = RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY;
uint64_t version = 0;
Dependency dependency;
};
/* Light instance */
struct LightInstance {
struct ShadowTransform {
Projection camera;
Transform3D transform;
float farplane;
float split;
float bias_scale;
float shadow_texel_size;
float range_begin;
Rect2 atlas_rect;
Vector2 uv_scale;
};
ShadowTransform shadow_transform[6];
RS::LightType light_type = RS::LIGHT_DIRECTIONAL;
AABB aabb;
RID self;
RID light;
Transform3D transform;
uint64_t shadow_pass = 0;
uint64_t last_scene_pass = 0;
uint64_t last_scene_shadow_pass = 0;
uint64_t last_pass = 0;
uint32_t cull_mask = 0;
uint32_t light_directional_index = 0;
Rect2 directional_rect;
HashSet<RID> shadow_atlases; // Shadow atlases where this light is registered.
int32_t gl_id = -1;
int32_t shadow_id = -1;
LightInstance() {}
};
/* REFLECTION PROBE */
struct ReflectionProbe {
RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE;
int resolution = 256;
float intensity = 1.0;
RS::ReflectionProbeAmbientMode ambient_mode = RS::REFLECTION_PROBE_AMBIENT_ENVIRONMENT;
Color ambient_color;
float ambient_color_energy = 1.0;
float max_distance = 0;
Vector3 size = Vector3(20, 20, 20);
Vector3 origin_offset;
bool interior = false;
bool box_projection = false;
bool enable_shadows = false;
uint32_t cull_mask = (1 << 20) - 1;
uint32_t reflection_mask = (1 << 20) - 1;
float mesh_lod_threshold = 0.01;
float baked_exposure = 1.0;
Dependency dependency;
};
/* REFLECTION ATLAS */
struct ReflectionAtlas {
int count = 0;
int size = 0;
int mipmap_count = 1; // number of mips, including original
int mipmap_size[8];
GLuint depth = 0;
struct Reflection {
RID owner;
GLuint color = 0;
GLuint radiance = 0;
GLuint fbos[7];
};
Vector<Reflection> reflections;
Ref<RenderSceneBuffersGLES3> render_buffers; // Further render buffers used.
};
/* REFLECTION PROBE INSTANCE */
struct ReflectionProbeInstance {
RID probe;
int atlas_index = -1;
RID atlas;
bool dirty = true;
bool rendering = false;
int processing_layer = 0;
uint64_t last_pass = 0;
uint32_t cull_mask = 0;
Transform3D transform;
};
/* LIGHTMAP */
struct Lightmap {
RID light_texture;
bool uses_spherical_harmonics = false;
bool interior = false;
AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
float baked_exposure = 1.0;
int32_t array_index = -1; //unassigned
PackedVector3Array points;
PackedColorArray point_sh;
PackedInt32Array tetrahedra;
PackedInt32Array bsp_tree;
struct BSP {
static const int32_t EMPTY_LEAF = INT32_MIN;
float plane[4];
int32_t over = EMPTY_LEAF, under = EMPTY_LEAF;
};
Dependency dependency;
};
struct LightmapInstance {
RID lightmap;
Transform3D transform;
};
class LightStorage : public RendererLightStorage {
public:
enum ShadowAtlastQuadrant {
QUADRANT_SHIFT = 27,
OMNI_LIGHT_FLAG = 1 << 26,
SHADOW_INDEX_MASK = OMNI_LIGHT_FLAG - 1,
SHADOW_INVALID = 0xFFFFFFFF
};
private:
static LightStorage *singleton;
/* LIGHT */
mutable RID_Owner<Light, true> light_owner;
/* Light instance */
mutable RID_Owner<LightInstance> light_instance_owner;
/* REFLECTION PROBE */
mutable RID_Owner<ReflectionProbe, true> reflection_probe_owner;
/* REFLECTION ATLAS */
mutable RID_Owner<ReflectionAtlas> reflection_atlas_owner;
/* REFLECTION PROBE INSTANCE */
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
/* LIGHTMAP */
Vector<RID> lightmap_textures;
float lightmap_probe_capture_update_speed = 4;
mutable RID_Owner<Lightmap, true> lightmap_owner;
/* LIGHTMAP INSTANCE */
mutable RID_Owner<LightmapInstance> lightmap_instance_owner;
/* SHADOW ATLAS */
// Note: The ShadowAtlas in the OpenGL is virtual. Each light gets assigned its
// own texture which is the same size as it would be if it were in a real atlas.
// This allows us to maintain the same behavior as the other renderers.
struct ShadowAtlas {
struct Quadrant {
uint32_t subdivision = 0;
struct Shadow {
RID owner;
bool owner_is_omni = false;
uint64_t version = 0;
uint64_t alloc_tick = 0;
Shadow() {}
};
Vector<Shadow> shadows;
LocalVector<GLuint> textures;
LocalVector<GLuint> fbos;
Quadrant() {}
} quadrants[4];
// Ordered from smallest (worst) shadow size to largest (best).
int size_order[4] = { 0, 1, 2, 3 };
uint32_t smallest_subdiv = 0;
int size = 0;
bool use_16_bits = true;
GLuint debug_texture = 0;
GLuint debug_fbo = 0;
HashMap<RID, uint32_t> shadow_owners;
};
uint64_t shadow_atlas_realloc_tolerance_msec = 500;
RID_Owner<ShadowAtlas> shadow_atlas_owner;
void _shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx);
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, bool p_omni, int &r_quadrant, int &r_shadow);
/* DIRECTIONAL SHADOW */
struct DirectionalShadow {
GLuint depth = 0;
GLuint fbo = 0;
int light_count = 0;
int size = 0;
bool use_16_bits = true;
int current_light = 0;
} directional_shadow;
public:
static LightStorage *get_singleton();
LightStorage();
virtual ~LightStorage();
/* Light API */
Light *get_light(RID p_rid) { return light_owner.get_or_null(p_rid); };
bool owns_light(RID p_rid) { return light_owner.owns(p_rid); };
void _light_initialize(RID p_rid, RS::LightType p_type);
virtual RID directional_light_allocate() override;
virtual void directional_light_initialize(RID p_rid) override;
virtual RID omni_light_allocate() override;
virtual void omni_light_initialize(RID p_rid) override;
virtual RID spot_light_allocate() override;
virtual void spot_light_initialize(RID p_rid) override;
virtual void light_free(RID p_rid) override;
virtual void light_set_color(RID p_light, const Color &p_color) override;
virtual void light_set_param(RID p_light, RS::LightParam p_param, float p_value) override;
virtual void light_set_shadow(RID p_light, bool p_enabled) override;
virtual void light_set_projector(RID p_light, RID p_texture) override;
virtual void light_set_negative(RID p_light, bool p_enable) override;
virtual void light_set_cull_mask(RID p_light, uint32_t p_mask) override;
virtual void light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) override;
virtual void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) override;
virtual void light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) override;
virtual void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) override {}
virtual void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) override;
virtual void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) override;
virtual void light_directional_set_blend_splits(RID p_light, bool p_enable) override;
virtual bool light_directional_get_blend_splits(RID p_light) const override;
virtual void light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) override;
virtual RS::LightDirectionalSkyMode light_directional_get_sky_mode(RID p_light) const override;
virtual RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) override;
virtual RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) override;
virtual RS::LightType light_get_type(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return light->type;
}
virtual AABB light_get_aabb(RID p_light) const override;
virtual float light_get_param(RID p_light, RS::LightParam p_param) override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, 0);
return light->param[p_param];
}
_FORCE_INLINE_ RID light_get_projector(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RID());
return light->projector;
}
virtual Color light_get_color(RID p_light) override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, Color());
return light->color;
}
_FORCE_INLINE_ bool light_is_distance_fade_enabled(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade;
}
_FORCE_INLINE_ float light_get_distance_fade_begin(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade_begin;
}
_FORCE_INLINE_ float light_get_distance_fade_shadow(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade_shadow;
}
_FORCE_INLINE_ float light_get_distance_fade_length(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade_length;
}
virtual bool light_has_shadow(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return light->shadow;
}
virtual bool light_has_projector(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return TextureStorage::get_singleton()->owns_texture(light->projector);
}
_FORCE_INLINE_ bool light_is_negative(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return light->negative;
}
_FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, 0.0);
return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
}
virtual bool light_get_reverse_cull_face_mode(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, false);
return light->reverse_cull;
}
virtual RS::LightBakeMode light_get_bake_mode(RID p_light) override;
virtual uint32_t light_get_max_sdfgi_cascade(RID p_light) override { return 0; }
virtual uint64_t light_get_version(RID p_light) const override;
virtual uint32_t light_get_cull_mask(RID p_light) const override;
/* LIGHT INSTANCE API */
LightInstance *get_light_instance(RID p_rid) { return light_instance_owner.get_or_null(p_rid); };
bool owns_light_instance(RID p_rid) { return light_instance_owner.owns(p_rid); };
virtual RID light_instance_create(RID p_light) override;
virtual void light_instance_free(RID p_light_instance) override;
virtual void light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) override;
virtual void light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) override;
virtual void light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override;
virtual void light_instance_mark_visible(RID p_light_instance) override;
virtual bool light_instance_is_shadow_visible_at_position(RID p_light_instance, const Vector3 &p_position) const override {
const LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_NULL_V(light_instance, false);
const Light *light = light_owner.get_or_null(light_instance->light);
ERR_FAIL_NULL_V(light, false);
if (!light->shadow) {
return false;
}
if (!light->distance_fade) {
return true;
}
real_t distance = p_position.distance_to(light_instance->transform.origin);
if (distance > light->distance_fade_shadow + light->distance_fade_length) {
return false;
}
return true;
}
_FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->light;
}
_FORCE_INLINE_ Transform3D light_instance_get_base_transform(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->transform;
}
_FORCE_INLINE_ AABB light_instance_get_base_aabb(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->aabb;
}
_FORCE_INLINE_ void light_instance_set_cull_mask(RID p_light_instance, uint32_t p_cull_mask) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->cull_mask = p_cull_mask;
}
_FORCE_INLINE_ uint32_t light_instance_get_cull_mask(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->cull_mask;
}
_FORCE_INLINE_ GLuint light_instance_get_shadow_texture(RID p_light_instance, RID p_shadow_atlas) {
#ifdef DEBUG_ENABLED
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
#endif
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
ERR_FAIL_NULL_V(shadow_atlas, 0);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
#endif
uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & SHADOW_INDEX_MASK;
ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), 0);
return shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow);
}
_FORCE_INLINE_ bool light_instance_has_shadow_atlas(RID p_light_instance, RID p_shadow_atlas) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_atlases.has(p_shadow_atlas);
}
_FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) {
#ifdef DEBUG_ENABLED
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
#endif
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
ERR_FAIL_NULL_V(shadow_atlas, 0);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
#endif
uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3;
uint32_t quadrant_size = shadow_atlas->size >> 1;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
return float(1.0) / shadow_size;
}
_FORCE_INLINE_ Projection light_instance_get_shadow_camera(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].camera;
}
_FORCE_INLINE_ Transform3D light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].transform;
}
_FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].bias_scale;
}
_FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].farplane;
}
_FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].range_begin;
}
_FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].uv_scale;
}
_FORCE_INLINE_ void light_instance_set_directional_shadow_atlas_rect(RID p_light_instance, int p_index, const Rect2 p_atlas_rect) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->shadow_transform[p_index].atlas_rect = p_atlas_rect;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].atlas_rect;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].split;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].shadow_texel_size;
}
_FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->last_pass = p_pass;
}
_FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->last_pass;
}
_FORCE_INLINE_ void light_instance_set_shadow_pass(RID p_light_instance, uint64_t p_pass) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->last_scene_shadow_pass = p_pass;
}
_FORCE_INLINE_ uint64_t light_instance_get_shadow_pass(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->last_scene_shadow_pass;
}
_FORCE_INLINE_ void light_instance_set_directional_rect(RID p_light_instance, const Rect2 &p_directional_rect) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->directional_rect = p_directional_rect;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_rect(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->directional_rect;
}
_FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->light_type;
}
_FORCE_INLINE_ int32_t light_instance_get_gl_id(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->gl_id;
}
_FORCE_INLINE_ int32_t light_instance_get_shadow_id(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_id;
}
/* PROBE API */
ReflectionProbe *get_reflection_probe(RID p_rid) { return reflection_probe_owner.get_or_null(p_rid); };
bool owns_reflection_probe(RID p_rid) { return reflection_probe_owner.owns(p_rid); };
virtual RID reflection_probe_allocate() override;
virtual void reflection_probe_initialize(RID p_rid) override;
virtual void reflection_probe_free(RID p_rid) override;
virtual void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) override;
virtual void reflection_probe_set_intensity(RID p_probe, float p_intensity) override;
virtual void reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) override;
virtual void reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) override;
virtual void reflection_probe_set_ambient_energy(RID p_probe, float p_energy) override;
virtual void reflection_probe_set_max_distance(RID p_probe, float p_distance) override;
virtual void reflection_probe_set_size(RID p_probe, const Vector3 &p_size) override;
virtual void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) override;
virtual void reflection_probe_set_as_interior(RID p_probe, bool p_enable) override;
virtual void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) override;
virtual void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) override;
virtual void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) override;
virtual void reflection_probe_set_reflection_mask(RID p_probe, uint32_t p_layers) override;
virtual void reflection_probe_set_resolution(RID p_probe, int p_resolution) override;
virtual void reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) override;
virtual float reflection_probe_get_mesh_lod_threshold(RID p_probe) const override;
virtual AABB reflection_probe_get_aabb(RID p_probe) const override;
virtual RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const override;
virtual uint32_t reflection_probe_get_cull_mask(RID p_probe) const override;
virtual uint32_t reflection_probe_get_reflection_mask(RID p_probe) const override;
virtual Vector3 reflection_probe_get_size(RID p_probe) const override;
virtual Vector3 reflection_probe_get_origin_offset(RID p_probe) const override;
virtual float reflection_probe_get_origin_max_distance(RID p_probe) const override;
virtual bool reflection_probe_renders_shadows(RID p_probe) const override;
Dependency *reflection_probe_get_dependency(RID p_probe) const;
/* REFLECTION ATLAS */
bool owns_reflection_atlas(RID p_rid) { return reflection_atlas_owner.owns(p_rid); }
virtual RID reflection_atlas_create() override;
virtual void reflection_atlas_free(RID p_ref_atlas) override;
virtual int reflection_atlas_get_size(RID p_ref_atlas) const override;
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) override;
/* REFLECTION PROBE INSTANCE */
bool owns_reflection_probe_instance(RID p_rid) { return reflection_probe_instance_owner.owns(p_rid); }
virtual RID reflection_probe_instance_create(RID p_probe) override;
virtual void reflection_probe_instance_free(RID p_instance) override;
virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) override;
virtual bool reflection_probe_has_atlas_index(RID p_instance) override;
virtual void reflection_probe_release_atlas_index(RID p_instance) override;
virtual bool reflection_probe_instance_needs_redraw(RID p_instance) override;
virtual bool reflection_probe_instance_has_reflection(RID p_instance) override;
virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) override;
2022-12-15 11:20:06 +00:00
virtual Ref<RenderSceneBuffers> reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) override;
virtual bool reflection_probe_instance_postprocess_step(RID p_instance) override;
_FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL_V(rpi, RID());
return rpi->probe;
}
_FORCE_INLINE_ RID reflection_probe_instance_get_atlas(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL_V(rpi, RID());
return rpi->atlas;
}
Transform3D reflection_probe_instance_get_transform(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL_V(rpi, Transform3D());
return rpi->transform;
}
GLuint reflection_probe_instance_get_texture(RID p_instance);
GLuint reflection_probe_instance_get_framebuffer(RID p_instance, int p_index);
/* LIGHTMAP CAPTURE */
Lightmap *get_lightmap(RID p_rid) { return lightmap_owner.get_or_null(p_rid); };
bool owns_lightmap(RID p_rid) { return lightmap_owner.owns(p_rid); };
virtual RID lightmap_allocate() override;
virtual void lightmap_initialize(RID p_rid) override;
virtual void lightmap_free(RID p_rid) override;
virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) override;
virtual void lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) override;
virtual void lightmap_set_probe_interior(RID p_lightmap, bool p_interior) override;
virtual void lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) override;
virtual void lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) override;
virtual PackedVector3Array lightmap_get_probe_capture_points(RID p_lightmap) const override;
virtual PackedColorArray lightmap_get_probe_capture_sh(RID p_lightmap) const override;
virtual PackedInt32Array lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const override;
virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const override;
virtual AABB lightmap_get_aabb(RID p_lightmap) const override;
virtual void lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) override;
virtual bool lightmap_is_interior(RID p_lightmap) const override;
virtual void lightmap_set_probe_capture_update_speed(float p_speed) override;
virtual float lightmap_get_probe_capture_update_speed() const override;
/* LIGHTMAP INSTANCE */
LightmapInstance *get_lightmap_instance(RID p_rid) { return lightmap_instance_owner.get_or_null(p_rid); };
bool owns_lightmap_instance(RID p_rid) { return lightmap_instance_owner.owns(p_rid); };
virtual RID lightmap_instance_create(RID p_lightmap) override;
virtual void lightmap_instance_free(RID p_lightmap) override;
virtual void lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) override;
/* SHADOW ATLAS API */
bool owns_shadow_atlas(RID p_rid) { return shadow_atlas_owner.owns(p_rid); };
virtual RID shadow_atlas_create() override;
virtual void shadow_atlas_free(RID p_atlas) override;
virtual void shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits = true) override;
virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override;
virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) override;
_FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_instance) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, false);
return atlas->shadow_owners.has(p_light_instance);
}
_FORCE_INLINE_ uint32_t shadow_atlas_get_light_instance_key(RID p_atlas, RID p_light_instance) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, -1);
return atlas->shadow_owners[p_light_instance];
}
_FORCE_INLINE_ int shadow_atlas_get_size(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
return atlas->size;
}
_FORCE_INLINE_ GLuint shadow_atlas_get_debug_fb(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
if (atlas->debug_fbo != 0) {
return atlas->debug_fbo;
}
glGenFramebuffers(1, &atlas->debug_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, atlas->debug_fbo);
if (atlas->debug_texture == 0) {
atlas->debug_texture = shadow_atlas_get_debug_texture(p_atlas);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, atlas->debug_texture);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, atlas->debug_texture, 0);
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
return atlas->debug_fbo;
}
_FORCE_INLINE_ GLuint shadow_atlas_get_debug_texture(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
if (atlas->debug_texture != 0) {
return atlas->debug_texture;
}
glGenTextures(1, &atlas->debug_texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, atlas->debug_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, atlas->size, atlas->size, 0, GL_RED, GL_UNSIGNED_INT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE);
glBindTexture(GL_TEXTURE_2D, 0);
return atlas->debug_texture;
}
_FORCE_INLINE_ int shadow_atlas_get_quadrant_shadows_length(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return atlas->quadrants[p_quadrant].shadows.size();
}
_FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_shadows_allocated(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return atlas->quadrants[p_quadrant].textures.size();
}
_FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_subdivision(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return atlas->quadrants[p_quadrant].subdivision;
}
_FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_texture(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].textures.size(), 0);
return atlas->quadrants[p_quadrant].textures[p_shadow];
}
_FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_fb(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].fbos.size(), 0);
return atlas->quadrants[p_quadrant].fbos[p_shadow];
}
_FORCE_INLINE_ int shadow_atlas_get_quadrant_shadow_size(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return (atlas->size >> 1) / atlas->quadrants[p_quadrant].subdivision;
}
_FORCE_INLINE_ bool shadow_atlas_get_quadrant_shadow_is_omni(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, false);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, false);
ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, (uint32_t)atlas->quadrants[p_quadrant].shadows.size(), false);
return atlas->quadrants[p_quadrant].shadows[p_shadow].owner_is_omni;
}
virtual void shadow_atlas_update(RID p_atlas) override;
virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = true) override;
virtual int get_directional_light_shadow_size(RID p_light_intance) override;
virtual void set_directional_shadow_count(int p_count) override;
Rect2i get_directional_shadow_rect();
void update_directional_shadow_atlas();
_FORCE_INLINE_ GLuint directional_shadow_get_texture() {
return directional_shadow.depth;
}
_FORCE_INLINE_ int directional_shadow_get_size() {
return directional_shadow.size;
}
_FORCE_INLINE_ GLuint direction_shadow_get_fb() {
return directional_shadow.fbo;
}
_FORCE_INLINE_ void directional_shadow_increase_current_light() {
directional_shadow.current_light++;
}
};
} // namespace GLES3
#endif // GLES3_ENABLED
#endif // LIGHT_STORAGE_GLES3_H