godot/core/templates/rid_owner.h

488 lines
13 KiB
C++
Raw Normal View History

/*************************************************************************/
/* rid_owner.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RID_OWNER_H
#define RID_OWNER_H
#include "core/os/memory.h"
#include "core/os/spin_lock.h"
#include "core/string/print_string.h"
#include "core/templates/hash_set.h"
#include "core/templates/list.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid.h"
#include "core/templates/safe_refcount.h"
#include <stdio.h>
#include <typeinfo>
class RID_AllocBase {
static SafeNumeric<uint64_t> base_id;
protected:
static RID _make_from_id(uint64_t p_id) {
RID rid;
rid._id = p_id;
return rid;
}
static RID _gen_rid() {
return _make_from_id(_gen_id());
}
friend struct VariantUtilityFunctions;
static uint64_t _gen_id() {
return base_id.increment();
}
public:
virtual ~RID_AllocBase() {}
};
template <class T, bool THREAD_SAFE = false>
class RID_Alloc : public RID_AllocBase {
T **chunks = nullptr;
uint32_t **free_list_chunks = nullptr;
uint32_t **validator_chunks = nullptr;
uint32_t elements_in_chunk;
uint32_t max_alloc = 0;
uint32_t alloc_count = 0;
const char *description = nullptr;
mutable SpinLock spin_lock;
_FORCE_INLINE_ RID _allocate_rid() {
if (THREAD_SAFE) {
spin_lock.lock();
}
if (alloc_count == max_alloc) {
//allocate a new chunk
uint32_t chunk_count = alloc_count == 0 ? 0 : (max_alloc / elements_in_chunk);
//grow chunks
chunks = (T **)memrealloc(chunks, sizeof(T *) * (chunk_count + 1));
chunks[chunk_count] = (T *)memalloc(sizeof(T) * elements_in_chunk); //but don't initialize
//grow validators
validator_chunks = (uint32_t **)memrealloc(validator_chunks, sizeof(uint32_t *) * (chunk_count + 1));
validator_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk);
//grow free lists
free_list_chunks = (uint32_t **)memrealloc(free_list_chunks, sizeof(uint32_t *) * (chunk_count + 1));
free_list_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk);
//initialize
for (uint32_t i = 0; i < elements_in_chunk; i++) {
// Don't initialize chunk.
validator_chunks[chunk_count][i] = 0xFFFFFFFF;
free_list_chunks[chunk_count][i] = alloc_count + i;
}
max_alloc += elements_in_chunk;
}
uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk];
uint32_t free_chunk = free_index / elements_in_chunk;
uint32_t free_element = free_index % elements_in_chunk;
uint32_t validator = (uint32_t)(_gen_id() & 0x7FFFFFFF);
uint64_t id = validator;
id <<= 32;
id |= free_index;
validator_chunks[free_chunk][free_element] = validator;
validator_chunks[free_chunk][free_element] |= 0x80000000; //mark uninitialized bit
alloc_count++;
if (THREAD_SAFE) {
spin_lock.unlock();
}
return _make_from_id(id);
}
public:
RID make_rid() {
RID rid = _allocate_rid();
initialize_rid(rid);
return rid;
}
RID make_rid(const T &p_value) {
RID rid = _allocate_rid();
initialize_rid(rid, p_value);
return rid;
}
//allocate but don't initialize, use initialize_rid afterwards
RID allocate_rid() {
return _allocate_rid();
}
_FORCE_INLINE_ T *get_or_null(const RID &p_rid, bool p_initialize = false) {
if (p_rid == RID()) {
return nullptr;
}
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
2020-04-01 23:20:12 +00:00
return nullptr;
}
uint32_t idx_chunk = idx / elements_in_chunk;
uint32_t idx_element = idx % elements_in_chunk;
uint32_t validator = uint32_t(id >> 32);
if (unlikely(p_initialize)) {
if (unlikely(!(validator_chunks[idx_chunk][idx_element] & 0x80000000))) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL_V_MSG(nullptr, "Initializing already initialized RID");
}
if (unlikely((validator_chunks[idx_chunk][idx_element] & 0x7FFFFFFF) != validator)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL_V_MSG(nullptr, "Attempting to initialize the wrong RID");
return nullptr;
}
validator_chunks[idx_chunk][idx_element] &= 0x7FFFFFFF; //initialized
} else if (unlikely(validator_chunks[idx_chunk][idx_element] != validator)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
if ((validator_chunks[idx_chunk][idx_element] & 0x80000000) && validator_chunks[idx_chunk][idx_element] != 0xFFFFFFFF) {
ERR_FAIL_V_MSG(nullptr, "Attempting to use an uninitialized RID");
}
2020-04-01 23:20:12 +00:00
return nullptr;
}
T *ptr = &chunks[idx_chunk][idx_element];
if (THREAD_SAFE) {
spin_lock.unlock();
}
return ptr;
}
void initialize_rid(RID p_rid) {
T *mem = get_or_null(p_rid, true);
ERR_FAIL_COND(!mem);
memnew_placement(mem, T);
}
void initialize_rid(RID p_rid, const T &p_value) {
T *mem = get_or_null(p_rid, true);
ERR_FAIL_COND(!mem);
memnew_placement(mem, T(p_value));
}
_FORCE_INLINE_ bool owns(const RID &p_rid) const {
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
return false;
}
uint32_t idx_chunk = idx / elements_in_chunk;
uint32_t idx_element = idx % elements_in_chunk;
uint32_t validator = uint32_t(id >> 32);
bool owned = (validator_chunks[idx_chunk][idx_element] & 0x7FFFFFFF) == validator;
if (THREAD_SAFE) {
spin_lock.unlock();
}
return owned;
}
_FORCE_INLINE_ void free(const RID &p_rid) {
if (THREAD_SAFE) {
spin_lock.lock();
}
uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL();
}
uint32_t idx_chunk = idx / elements_in_chunk;
uint32_t idx_element = idx % elements_in_chunk;
uint32_t validator = uint32_t(id >> 32);
if (unlikely(validator_chunks[idx_chunk][idx_element] & 0x80000000)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL_MSG("Attempted to free an uninitialized or invalid RID");
} else if (unlikely(validator_chunks[idx_chunk][idx_element] != validator)) {
if (THREAD_SAFE) {
spin_lock.unlock();
}
ERR_FAIL();
}
chunks[idx_chunk][idx_element].~T();
validator_chunks[idx_chunk][idx_element] = 0xFFFFFFFF; // go invalid
alloc_count--;
free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk] = idx;
if (THREAD_SAFE) {
spin_lock.unlock();
}
}
_FORCE_INLINE_ uint32_t get_rid_count() const {
return alloc_count;
}
void get_owned_list(List<RID> *p_owned) const {
if (THREAD_SAFE) {
spin_lock.lock();
}
for (size_t i = 0; i < max_alloc; i++) {
uint64_t validator = validator_chunks[i / elements_in_chunk][i % elements_in_chunk];
if (validator != 0xFFFFFFFF) {
p_owned->push_back(_make_from_id((validator << 32) | i));
}
}
if (THREAD_SAFE) {
spin_lock.unlock();
}
}
//used for fast iteration in the elements or RIDs
void fill_owned_buffer(RID *p_rid_buffer) const {
if (THREAD_SAFE) {
spin_lock.lock();
}
uint32_t idx = 0;
for (size_t i = 0; i < max_alloc; i++) {
uint64_t validator = validator_chunks[i / elements_in_chunk][i % elements_in_chunk];
if (validator != 0xFFFFFFFF) {
p_rid_buffer[idx] = _make_from_id((validator << 32) | i);
idx++;
}
}
if (THREAD_SAFE) {
spin_lock.unlock();
}
}
void set_description(const char *p_descrption) {
description = p_descrption;
}
RID_Alloc(uint32_t p_target_chunk_byte_size = 65536) {
elements_in_chunk = sizeof(T) > p_target_chunk_byte_size ? 1 : (p_target_chunk_byte_size / sizeof(T));
}
~RID_Alloc() {
if (alloc_count) {
if (description) {
print_error("ERROR: " + itos(alloc_count) + " RID allocations of type '" + description + "' were leaked at exit.");
} else {
2020-02-29 18:40:24 +00:00
#ifdef NO_SAFE_CAST
print_error("ERROR: " + itos(alloc_count) + " RID allocations of type 'unknown' were leaked at exit.");
#else
print_error("ERROR: " + itos(alloc_count) + " RID allocations of type '" + typeid(T).name() + "' were leaked at exit.");
2020-02-29 18:40:24 +00:00
#endif
}
for (size_t i = 0; i < max_alloc; i++) {
uint64_t validator = validator_chunks[i / elements_in_chunk][i % elements_in_chunk];
if (validator & 0x80000000) {
continue; //uninitialized
}
if (validator != 0xFFFFFFFF) {
chunks[i / elements_in_chunk][i % elements_in_chunk].~T();
}
}
}
uint32_t chunk_count = max_alloc / elements_in_chunk;
for (uint32_t i = 0; i < chunk_count; i++) {
memfree(chunks[i]);
memfree(validator_chunks[i]);
memfree(free_list_chunks[i]);
}
if (chunks) {
memfree(chunks);
memfree(free_list_chunks);
memfree(validator_chunks);
}
}
};
template <class T, bool THREAD_SAFE = false>
class RID_PtrOwner {
RID_Alloc<T *, THREAD_SAFE> alloc;
public:
_FORCE_INLINE_ RID make_rid(T *p_ptr) {
return alloc.make_rid(p_ptr);
}
_FORCE_INLINE_ RID allocate_rid() {
return alloc.allocate_rid();
}
_FORCE_INLINE_ void initialize_rid(RID p_rid, T *p_ptr) {
alloc.initialize_rid(p_rid, p_ptr);
}
_FORCE_INLINE_ T *get_or_null(const RID &p_rid) {
T **ptr = alloc.get_or_null(p_rid);
if (unlikely(!ptr)) {
2020-04-01 23:20:12 +00:00
return nullptr;
}
return *ptr;
}
_FORCE_INLINE_ void replace(const RID &p_rid, T *p_new_ptr) {
T **ptr = alloc.get_or_null(p_rid);
ERR_FAIL_COND(!ptr);
*ptr = p_new_ptr;
}
_FORCE_INLINE_ bool owns(const RID &p_rid) const {
return alloc.owns(p_rid);
}
_FORCE_INLINE_ void free(const RID &p_rid) {
alloc.free(p_rid);
}
_FORCE_INLINE_ uint32_t get_rid_count() const {
return alloc.get_rid_count();
}
_FORCE_INLINE_ void get_owned_list(List<RID> *p_owned) const {
return alloc.get_owned_list(p_owned);
}
void fill_owned_buffer(RID *p_rid_buffer) const {
alloc.fill_owned_buffer(p_rid_buffer);
}
void set_description(const char *p_descrption) {
alloc.set_description(p_descrption);
}
RID_PtrOwner(uint32_t p_target_chunk_byte_size = 65536) :
alloc(p_target_chunk_byte_size) {}
};
template <class T, bool THREAD_SAFE = false>
class RID_Owner {
RID_Alloc<T, THREAD_SAFE> alloc;
public:
_FORCE_INLINE_ RID make_rid() {
return alloc.make_rid();
}
_FORCE_INLINE_ RID make_rid(const T &p_ptr) {
return alloc.make_rid(p_ptr);
}
_FORCE_INLINE_ RID allocate_rid() {
return alloc.allocate_rid();
}
_FORCE_INLINE_ void initialize_rid(RID p_rid) {
alloc.initialize_rid(p_rid);
}
_FORCE_INLINE_ void initialize_rid(RID p_rid, const T &p_ptr) {
alloc.initialize_rid(p_rid, p_ptr);
}
_FORCE_INLINE_ T *get_or_null(const RID &p_rid) {
return alloc.get_or_null(p_rid);
}
_FORCE_INLINE_ bool owns(const RID &p_rid) const {
return alloc.owns(p_rid);
}
_FORCE_INLINE_ void free(const RID &p_rid) {
alloc.free(p_rid);
}
_FORCE_INLINE_ uint32_t get_rid_count() const {
return alloc.get_rid_count();
}
_FORCE_INLINE_ void get_owned_list(List<RID> *p_owned) const {
return alloc.get_owned_list(p_owned);
}
void fill_owned_buffer(RID *p_rid_buffer) const {
alloc.fill_owned_buffer(p_rid_buffer);
}
void set_description(const char *p_descrption) {
alloc.set_description(p_descrption);
}
RID_Owner(uint32_t p_target_chunk_byte_size = 65536) :
alloc(p_target_chunk_byte_size) {}
};
#endif // RID_OWNER_H