godot/core/math/vector2.cpp

200 lines
6.4 KiB
C++
Raw Normal View History

/**************************************************************************/
/* vector2.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "vector2.h"
#include "core/math/vector2i.h"
#include "core/string/ustring.h"
real_t Vector2::angle() const {
return Math::atan2(y, x);
}
Vector2 Vector2::from_angle(real_t p_angle) {
2021-04-27 13:53:04 +00:00
return Vector2(Math::cos(p_angle), Math::sin(p_angle));
}
real_t Vector2::length() const {
return Math::sqrt(x * x + y * y);
}
real_t Vector2::length_squared() const {
return x * x + y * y;
}
void Vector2::normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = Math::sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
bool Vector2::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
return Math::atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
return (p_vector2 - *this).angle();
}
real_t Vector2::dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::sign() const {
return Vector2(SIGN(x), SIGN(y));
}
Vector2 Vector2::floor() const {
return Vector2(Math::floor(x), Math::floor(y));
}
Vector2 Vector2::ceil() const {
return Vector2(Math::ceil(x), Math::ceil(y));
}
Vector2 Vector2::round() const {
return Vector2(Math::round(x), Math::round(y));
}
Vector2 Vector2::rotated(real_t p_by) const {
2020-04-20 22:24:17 +00:00
real_t sine = Math::sin(p_by);
real_t cosi = Math::cos(p_by);
return Vector2(
x * cosi - y * sine,
x * sine + y * cosi);
}
Vector2 Vector2::posmod(real_t p_mod) const {
return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
}
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
}
2020-12-07 08:16:31 +00:00
Vector2 Vector2::project(const Vector2 &p_to) const {
return p_to * (dot(p_to) / p_to.length_squared());
}
2021-02-01 05:10:52 +00:00
Vector2 Vector2::clamp(const Vector2 &p_min, const Vector2 &p_max) const {
return Vector2(
CLAMP(x, p_min.x, p_max.x),
CLAMP(y, p_min.y, p_max.y));
}
2020-12-21 18:02:57 +00:00
Vector2 Vector2::snapped(const Vector2 &p_step) const {
return Vector2(
2020-12-21 18:02:57 +00:00
Math::snapped(x, p_step.x),
Math::snapped(y, p_step.y));
}
Vector2 Vector2::limit_length(real_t p_len) const {
const real_t l = length();
Vector2 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::move_toward(const Vector2 &p_to, real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector2 Vector2::slide(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 " + p_normal.operator String() + "must be normalized.");
#endif
return *this - p_normal * dot(p_normal);
}
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
return -reflect(p_normal);
}
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 " + p_normal.operator String() + "must be normalized.");
#endif
return 2.0f * p_normal * dot(p_normal) - *this;
}
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
}
bool Vector2::is_zero_approx() const {
return Math::is_zero_approx(x) && Math::is_zero_approx(y);
}
bool Vector2::is_finite() const {
return Math::is_finite(x) && Math::is_finite(y);
}
Vector2::operator String() const {
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")";
}
Vector2::operator Vector2i() const {
return Vector2i(x, y);
}