Follow-up to #75932.
Since these icons are only used by the export plugin, it makes sense to
move them and generate the headers there.
The whole `detect.is_active()` logic seems to be a leftover from before
times, as far back as 1.0-stable it already wasn't used for anything.
So I'm removing it and moving the export icon generation to
`platform_methods`, where it makes more sense.
Implements https://github.com/godotengine/godot-proposals/issues/3371.
New `target` presets
====================
The `tools` option is removed and `target` changes to use three new presets,
which match the builds users are familiar with. These targets control the
default optimization level and enable editor-specific and debugging code:
- `editor`: Replaces `tools=yes target=release_debug`.
* Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2`
- `template_debug`: Replaces `tools=no target=release_debug`.
* Defines: `DEBUG_ENABLED`, `-O2`/`/O2`
- `template_release`: Replaces `tools=no target=release`.
* Defines: `-O3`/`/O2`
New `dev_build` option
======================
The previous `target=debug` is now replaced by a separate `dev_build=yes`
option, which can be used in combination with either of the three targets,
and changes the following:
- `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`),
enables generating debug symbols, does not define `NDEBUG` so `assert()`
works in thirdparty libraries, adds a `.dev` suffix to the binary name.
Note: Unlike previously, `dev_build` defaults to off so that users who
compile Godot from source get an optimized and small build by default.
Engine contributors should now set `dev_build=yes` in their build scripts or
IDE configuration manually.
Changed binary names
====================
The name of generated binaries and object files are changed too, to follow
this format:
`godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]`
For example:
- `godot.linuxbsd.editor.dev.arm64`
- `godot.windows.template_release.double.x86_64.mono.exe`
Be sure to update your links/scripts/IDE config accordingly.
More flexible `optimize` and `debug_symbols` options
====================================================
The optimization level and whether to generate debug symbols can be further
specified with the `optimize` and `debug_symbols` options. So the default
values listed above for the various `target` and `dev_build` combinations
are indicative and can be replaced when compiling, e.g.:
`scons p=linuxbsd target=template_debug dev_build=yes optimize=debug`
will make a "debug" export template with dev-only code enabled, `-Og`
optimization level for GCC/Clang, and debug symbols. Perfect for debugging
complex crashes at runtime in an exported project.
- `_DEBUG` is MSVC specific so it didn't make much sense to define for
Android and iOS builds.
- iOS was the only platform to define `DEBUG`. We don't use it anywhere
outside thirdparty code, which we usually don't intend to debug, so it
seems better to be consistent with other platforms.
- Consistently define `NDEBUG` to disable assert behavior in both `release`
and `release_debug` targets. This used to be set for `release` for all
platforms, and `release_debug` for Android and iOS only.
- Due to the above, I removed the only use we made of `assert()` in Godot
code, which was only implemented for Unix anyway, should have been
`DEV_ENABLED`, and is in PoolAllocator which we don't actually use.
- The denoise and recast modules keep defining `NDEBUG` even for the `debug`
target as we don't want OIDN and Embree asserting all over the place.
- `-fomit-frame-pointer` is included automatically by both GCC and
Clang in `-O1` and above.
- `-ftree-vectorize` is included automatically by GCC in `-O2` and
beyond, and seems always enabled by Clang.
Closes#66296. See that issue for a detailed investigation.
Adds support for LTO on macOS and Android. We don't have much experience
with LTO on these platforms so for now we keep it disabled by default
even when `production=yes` is set.
Similarly for iOS where we ship object files for the user to link in
Xcode so LTO makes builds extremely slow to link.
`production=yes` defaults to full LTO.
ThinLTO is much faster for LLVM-based compilers but seems to produce
bigger binaries (at least for the Web platform).