The basic point is as in 2.1 (appending the PCK into the executable), but this implementation also patches a dedicated section in the ELF/PE executable so that it matches the appended data perfectly.
The usage of integer types is simplified in existing code; namely, using plain `int` for small quantities.
It's the recommended way to set those, and is more portable
(automatically prepends -D for GCC/Clang and /D for MSVC).
We still use CPPFLAGS for some pre-processor flags which are not
defines.
The rationale for keeping those shared by default is that they're typical
dependencies found on any Linux system, and it saves compilation time and
binary size to link their dynamically.
But since official builds default to all-builtin, and Debian/Ubuntu still
don't have libpng16 (which we now require) readily available on all their
supported releases, it's simpler to bundle all the things.
This does not change the fact that those dependencies *can* be unbundled
on Linux, it's only the default option changing.
Wrapped libpng usage in a pair of functions under PNGDriverCommon,
which convert between Godot Image and png data.
Switched to libpng 1.6 simplified API for ease of maintenance.
Implemented ImageLoaderPNG and ResourceSaverPNG in terms of
PNGDriverCommon functions.
Travis, switched to builtin libpng (thus builtin freetype and zlib also)
so we can build on Xenial.
This is a new singleton where camera sources such as webcams or cameras on a mobile phone can register themselves with the Server.
Other parts of Godot can interact with this to obtain images from the camera as textures.
This work includes additions to the Visual Server to use this functionality to present the camera image in the background. This is specifically targetted at AR applications.
This updates our local copy to commit 5ec8339b6fc491e3f09a34a4516e82787f053fcc.
We need a recent master commit for some new features that we use in Godot
(see #25543 and #28909).
To avoid warnings generated by Bullet headers included in our own module,
we include those headers with -isystem on GCC and Clang.
Fixes#29503.
In x11, windows and osx crash handlers, check project settings exists
before looking up the crash handler message setting.
Avoids crashing the crash handler when handling a crash outside project
settings lifetime. Instead omitting the configurable message and
continuing with trace dump.
Include paths are processed from left to right, so we use Prepend to
ensure that paths to bundled thirdparty files will have precedence over
system paths (e.g. `/usr/include` should have lowest priority).
This is the same as #23542 (Fix binaries incorrectly detected as shared
libraries on some linux distros) but for Clang. It should be fine with
Clang 4 or higher.
This adds ThinLTO support when using Clang and the LLD Linker, it's
turned off by
default.
For now only support for Linux added as ThinLTO support on other
platforms may still be buggy.
Many contributors (me included) did not fully understand what CCFLAGS,
CXXFLAGS and CPPFLAGS refer to exactly, and were thus not using them
in the way they are intended to be.
As per the SCons manual: https://www.scons.org/doc/HTML/scons-user/apa.html
- CCFLAGS: General options that are passed to the C and C++ compilers.
- CFLAGS: General options that are passed to the C compiler (C only;
not C++).
- CXXFLAGS: General options that are passed to the C++ compiler. By
default, this includes the value of $CCFLAGS, so that setting
$CCFLAGS affects both C and C++ compilation.
- CPPFLAGS: User-specified C preprocessor options. These will be
included in any command that uses the C preprocessor, including not
just compilation of C and C++ source files [...], but also [...]
Fortran [...] and [...] assembly language source file[s].
TL;DR: Compiler options go to CCFLAGS, unless they must be restricted
to either C (CFLAGS) or C++ (CXXFLAGS). Preprocessor defines go to
CPPFLAGS.