- Implements new `KeyValuePairs` and `KeyValuePairAt` internal calls
to get the `key` and the `value` in one call.
- Caches the `DictionaryEntry` to reuse properties without repeating
internal calls.
Use `System.Array.Empty<T>` to get an empty array instead of allocating
a new one every time. Since arrays are immutable there is no need to
allocate them every time.
- Move the "sync" property for RPCs to RPCConfig.
- Unify GDScript annotations into a single one:
- `@rpc(master)` # default
- `@rpc(puppet)`
- `@rpc(any)` # former `@remote`
- Implement three additional `@rpc` options:
- The second parameter is the "sync" option (which also calls the
function locally when RPCing). One of "sync", "nosync".
- The third parameter is the transfer mode (reliable, unreliable,
ordered).
- The third parameter is the channel (unused for now).
* Added a new macro SNAME() that constructs and caches a local stringname.
* Subsequent usages use the cached version.
* Since these use a global static variable, a second refcounter of static usages need to be kept for cleanup time.
* Replaced all theme usages by this new macro.
* Replace all signal emission usages by this new macro.
* Replace all call_deferred usages by this new macro.
This is part of ongoing work to optimize GUI and the editor.
While there are still various bugs to solve and features to implement, the C#
support as of Godot 3.4 is fairly mature and already used by a number of users
in production. Now that we default to dotnet CLI as build tool, it also seems
to be more reliable than MSBuild.
The documentation can (and does for the most part) point out some caveats that
users should be aware of, but this info dialog has outlived its intended
purpose.
* This PR adds the ability to disable classes when building.
* For now it's only possible to do this via command like:
`scons disable_classes=RayCast2D,Area3D`
* Eventually, a proper UI will be implemented to create a build config file to do this at large scale, as well as detect what is used in the project.
* The harcoded 8 slots are no more and impose limits in the new extension system.
* New system is limitless, although it will impose small performance hit with a mutex.
* Use a token to request the instance binding.
**Warning**: Mono will most likely break as a result of this, will need to be modified to use the new system.
- Fix C++ compile errors about pending variable renames after the `Reference` to `RefCount` change.
- Fix C# compile errors due to the recent rename of `EnablePlugin()` and `Build()`, which are now underscore-prefixed in bindings.
- Additional rename: `godot_icall_Reference_Dtor` to `godot_icall_RefCounted_Dtor`.
The order of numbers is not changed except for Transform2D. All logic is done inside of their structures (and not in Variant).
For the number of decimals printed, they now use String::num_real which works best with real_t, except for Color which is fixed at 4 decimals (this is a reliable number of float digits when converting from 16-bpc so it seems like a good choice)
In this PR:
- Removed rset
- rpc_config can now optionally configure transfer mode
(reliable/unreliable/ordered) and channel (channels are not actually
implemented yet.)
- Refactor how the RPC id is computed to minimize the logic in Node and
scripts that now only needs a single `get_rpc_methods` function.
* Shader compilation is now cached. Subsequent loads take less than a millisecond.
* Improved game, editor and project manager startup time.
* Editor uses .godot/shader_cache to store shaders.
* Game uses user://shader_cache
* Project manager uses $config_dir/shader_cache
* Options to tweak shader caching in project settings.
* Editor path configuration moved from EditorSettings to new class, EditorPaths, so it can be available early on (before shaders are compiled).
* Reworked ShaderCompilerRD to ensure deterministic shader code creation (else shader may change and cache will be invalidated).
* Added shader compression with SMOLV: https://github.com/aras-p/smol-v
This changes the types of a big number of variables.
General rules:
- Using `uint64_t` in general. We also considered `int64_t` but eventually
settled on keeping it unsigned, which is also closer to what one would expect
with `size_t`/`off_t`.
- We only keep `int64_t` for `seek_end` (takes a negative offset from the end)
and for the `Variant` bindings, since `Variant::INT` is `int64_t`. This means
we only need to guard against passing negative values in `core_bind.cpp`.
- Using `uint32_t` integers for concepts not needing such a huge range, like
pages, blocks, etc.
In addition:
- Improve usage of integer types in some related places; namely, `DirAccess`,
core binds.
Note:
- On Windows, `_ftelli64` reports invalid values when using 32-bit MinGW with
version < 8.0. This was an upstream bug fixed in 8.0. It breaks support for
big files on 32-bit Windows builds made with that toolchain. We might add a
workaround.
Fixes#44363.
Fixesgodotengine/godot-proposals#400.
Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
The current code style guidelines forbid the use of `auto`.
Some uses of `auto` are still present, such as in UWP code (which
can't be currently tested) and macros (where removing `auto` isn't
easy).
The following two bugs were fixed:
- For classes without namespace we were still generating `namespace {`
without a namespace identifier, causing a syntax error.
- For classes with nested namespaces we were generating only the innermost
part of the namespace was being generated, e.g.: for `Foo.Bar` we were
generating `namespace Bar {` instead of `namespace Foo.Bar {`.
This wasn't causing any build error, but because of the wrong namespace
Godot wasn't able to find the class associated with the script.
This source generator adds a newly introduced attribute,
`ScriptPath` to all classes that:
- Are top-level classes (not inner/nested).
- Have the `partial` modifier.
- Inherit `Godot.Object`.
- The class name matches the file name.
A build error is thrown if the generator finds a class that meets these
conditions but is not declared `partial`, unless the class is annotated
with the `DisableGodotGenerators` attribute.
We also generate an `AssemblyHasScripts` assembly attribute which Godot
uses to get all the script classes in the assembly, eliminating the need
for Godot to search them. We can also avoid searching in assemblies that
don't have this attribute. This will be good for performance in the
future once we support multiple assemblies with Godot script classes.
This is an example of what the generated code looks like:
```
using Godot;
namespace Foo {
[ScriptPathAttribute("res://Player.cs")]
// Multiple partial declarations are allowed
[ScriptPathAttribute("res://Foo/Player.cs")]
partial class Player {}
}
[assembly:AssemblyHasScripts(new System.Type[] { typeof(Foo.Player) })]
```
The new attributes replace script metadata which we were generating by
determining the namespace of script classes with a very simple parser.
This fixes several issues with the old approach related to parser
errors and conditional compilation.
It also makes the task part of the MSBuild project build, rather than
a separate step executed by the Godot editor.