This provides more flexibility between performance and quality
adjustments, especially when using SDFGI for small-scale levels
(which can be useful for procedurally generated scenes).
Applying overlay materials into multi-surface meshes currently
requires adding a next pass material to all the surfaces, which
might be cumbersome when the material is to be applied to a range
of different geometries. This also makes it not trivial to use
AnimationPlayer to control the material in case of visual effects.
The material_override property is not an option as it works
replacing the active material for the surfaces, not adding a new pass.
This commit adds the material_overlay property to GeometryInstance3D
(and therefore MeshInstance3D), having the same reach as
material_override (that is, all surfaces) but adding a new material
pass on top of the active materials, instead of replacing them.
This can be used to distinguish between integrated, dedicated, virtual
and software-emulated GPUs. This in turn can be used to automatically
adjust graphics settings, or warn users about features that may run
slowly on their hardware.
The built-in ALPHA in spatial shaders comes pre-set with a per-instance
transparency value. Multiply by it if you want to keep it.
The transparency value of any given GeometryInstance3D is affected by:
- Its new "transparency" property.
- Its own visiblity range when the new "visibility_range_fade_mode"
property is set to "Self".
- Its parent visibility range when the parent's fade mode is
set to "Dependencies".
The "Self" mode will fade-out the instance when reaching the visibility
range limits, while the "Dependencies" mode will fade-in its
dependencies.
Per-instance transparency is only implemented in the forward clustered
renderer, support for mobile should be added in the future.
Co-authored-by: reduz <reduzio@gmail.com>
This can be used to improve 3D shadow rendering quality at little
performance cost. Unlike the existing Hard setting which is limited
to variable shadow blur only, it works with both fixed blur and
variable blur.
This allows for finer control over 3D rendering resolution.
Supersampling can also be performed by setting a 3D rendering
resolution above 1.0, which is useful for offline rendering or
for very high-end GPUs.
This property was intended to provide a way to have SSAO or VoxelGI
ambient occlusion with a color other than black. However, it was
dropped during the Vulkan renderer development due to the performance
overhead it caused when the feature wasn't used.
* Fixed LODs for shadow meshes.
* Added a merging step before simplification. This helps with tesselated
meshes that were previously left untouched. The angle difference at
wich edges ar considered "hard" can be tweaked as an import setting.
* LODs will now start with the highest decimation possible and keep
doubling (approximately) the number of triangles from there. This
makes sure that very low triangle counts are included when possible.
* Given more weight to normal preservation.
* Modified MeshOptimizer to report distance-based error instead of
including attributes in the reported metrics.
* Added attribute transference between the original mesh and the
various LODs. Right now only normals are taken into account,
but it could be expanded to other attributes in the future.
In the `master` branch, 16× MSAA caused the entire system to freeze
on NVIDIA GPUs. This is likely caused by graphics drivers not actually
implementing 16× MSAA, but combining 8× MSAA with 2× SSAA instead.
On top of that, modern shader complexity makes 16× MSAA very difficult
to use while keeping a good framerate. 8× MSAA is hard enough to use
as it is.
* Shadow quality settings now specialization constant.
* Decal and light projector filters can be set.
* Changing those settings forces re-creation of the pipelines.
These changes should help improve performance related to shadow mapping, and allows improving performance by sacrificing decal and light projector quality.
* Keep track of when projector, softshadow or directional sofshadow were enabled.
* Enable them via specializaton constant where it makes sense.
* Re-implements soft shadows.
* Re-implements light projectors.
* Fixed and redone the process to obtain render information from a viewport
* Some stats, such as material changes are too difficult to guess on Vulkan, were removed.
* Separated visible and shadow stats, which causes confusion.
* Texture, buffer and general video memory can be queried now.
* Fixed the performance metrics too.
The Optimized shadow depth range was removed in late 2020 in favor
of the Stable shadow depth range, but it still had a (broken) property
that allowed to enable it.
* Removed entirely from RenderingServer.
* Replaced by ImmediateMesh resource.
* ImmediateMesh replaces ImmediateGeometry, but could use more optimization in the future.
* Sprite3D and AnimatedSprite3D work again, ported from Godot 3.x (though a lot of work was needed to adapt them to Godot 4).
* RootMotionView works again.
* Polygon3D editor works again.
* Editor 2D viewport now uses embedded subwindows (windows no longer pop up)
* Restored the ability to disable 3D on the 2D viewport (makes 3D not display on 2D when there is a camera on the scene)
* Added a function to ignore subsequent commands if they don't fall within the slice.
* This will be used by the new TileMap to properly provide animated tiles.
* This is the 3D counterpart to #49632
* Implemented a bit different as 3D works using instancing
After merged, both 2D and 3D classes will most likely be renamed in a separate PR to DisplayNotifier2D/3D.
* Works from RenderinServer
* Accurately tells when on or off-scren, its no longer approximate.
* VisibilityEnabler also simplified to use the process mode instead.
This commit adds the following properties to GeometryInstance3D: `visibility_range_begin`,
`visibility_range_begin_margin`, `visibility_range_end`, `visibility_range_end_margin`.
Together they define a range in which the GeometryInstance3D will be visible from the camera,
taking hysteresis into account for state changes. A begin or end value of 0 will be ignored,
so the visibility range can be open-ended in both directions.
This commit also adds the `visibility_parent` property to 'Node3D'.
Which defines the visibility parents of the node and its subtree (until
another parent is defined).
Visual instances with a visibility parent will only be visible when the parent, and all of its
ancestors recursively, are hidden because they are closer to the camera than their respective
`visibility_range_begin` thresholds.
Combining visibility ranges and visibility parents users can set-up a quick HLOD system
that shows high detail meshes when close (i.e buildings, trees) and merged low detail meshes
for far away groups (i.e. cities, woods).
* GIProbe is now VoxelGI
* BakedLightmap is now LightmapGI
As godot adds more ways to provide GI (as an example, SDFGI in 4.0), the different techniques (which have different pros/cons) need to be properly named to avoid confusion.
-Mesh2D now works
-MultiMesh2D now works
-Polygon2D now works
-Added hooks for processing 2D particles
-Skeleton2D now works
2D particles still not working, but stuff needed for it is now implemented.
-Enable the trails and set the length in seconds
-Provide a mesh with a skeleton and a skin
-Or, alternatively use one of the built-in TubeTrailMesh/RibbonTrailMesh
-Works deterministically
-Fixed particle collisions (were broken)
-Not working in 2D yet (that will happen next)