Previously, all of the code generation routines would just needlessly
write the same files over and over, even when not needed.
This became a problem with the advent of the experimental ninja backend
for SCons, which can be trivially enabled with a few lines of code and
relies on timestamp changes, making it thus impractical.
Implements https://github.com/godotengine/godot-proposals/issues/3371.
New `target` presets
====================
The `tools` option is removed and `target` changes to use three new presets,
which match the builds users are familiar with. These targets control the
default optimization level and enable editor-specific and debugging code:
- `editor`: Replaces `tools=yes target=release_debug`.
* Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2`
- `template_debug`: Replaces `tools=no target=release_debug`.
* Defines: `DEBUG_ENABLED`, `-O2`/`/O2`
- `template_release`: Replaces `tools=no target=release`.
* Defines: `-O3`/`/O2`
New `dev_build` option
======================
The previous `target=debug` is now replaced by a separate `dev_build=yes`
option, which can be used in combination with either of the three targets,
and changes the following:
- `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`),
enables generating debug symbols, does not define `NDEBUG` so `assert()`
works in thirdparty libraries, adds a `.dev` suffix to the binary name.
Note: Unlike previously, `dev_build` defaults to off so that users who
compile Godot from source get an optimized and small build by default.
Engine contributors should now set `dev_build=yes` in their build scripts or
IDE configuration manually.
Changed binary names
====================
The name of generated binaries and object files are changed too, to follow
this format:
`godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]`
For example:
- `godot.linuxbsd.editor.dev.arm64`
- `godot.windows.template_release.double.x86_64.mono.exe`
Be sure to update your links/scripts/IDE config accordingly.
More flexible `optimize` and `debug_symbols` options
====================================================
The optimization level and whether to generate debug symbols can be further
specified with the `optimize` and `debug_symbols` options. So the default
values listed above for the various `target` and `dev_build` combinations
are indicative and can be replaced when compiling, e.g.:
`scons p=linuxbsd target=template_debug dev_build=yes optimize=debug`
will make a "debug" export template with dev-only code enabled, `-Og`
optimization level for GCC/Clang, and debug symbols. Perfect for debugging
complex crashes at runtime in an exported project.
- RPC configurations are now dictionaries.
- Script.get_rpc_methods renamed to Script.get_rpc_config.
- Node.rpc[_id] and Callable.rpc now return an Error.
- Refactor MultiplayerAPI to allow extension.
- New MultiplayerAPI.rpc method with Array argument (for scripts).
- Move the default MultiplayerAPI implementation to a module.
Whenever we change the name (or remove) generated cpp files with the `.gen.cpp`
extension, users run into build issues when switching between branches (i.e.
switching before and after the name change/removal). This is because we glob
`*.cpp` so if a now-obsolete file from a previous build is present, we'll
include it too, potentially leading to bugs or compilation failure (due to
missing headers or invalid code).
So globbing patterns in `add_source_files` will now skip files ending with
`.gen.cpp`, which should instead be passed explicitly where they're used.
Move multiplayer classes to "core/multiplayer" subdir.
Move the RPCConfig and enums (TransferMode, RPCMode) to a separate
file (multiplayer.h), and bind them to the global namespace.
Move the RPC handling code to its own class (RPCManager).
Renames "get_rpc_sender_id" to "get_remote_sender_id".
* Deprecates GDNative in favor of a simpler, lower level interface.
* New extension system allows registering core engine classes.
* Simple header interface in gdnative_interace.h
* Shader compilation is now cached. Subsequent loads take less than a millisecond.
* Improved game, editor and project manager startup time.
* Editor uses .godot/shader_cache to store shaders.
* Game uses user://shader_cache
* Project manager uses $config_dir/shader_cache
* Options to tweak shader caching in project settings.
* Editor path configuration moved from EditorSettings to new class, EditorPaths, so it can be available early on (before shaders are compiled).
* Reworked ShaderCompilerRD to ensure deterministic shader code creation (else shader may change and cache will be invalidated).
* Added shader compression with SMOLV: https://github.com/aras-p/smol-v
Since we clone the environments to build thirdparty code, we don't get an
explicit dependency on the build objects produced by that environment.
So when we update thirdparty code, Godot code using it is not necessarily
rebuilt (I think it is for changed headers, but not for changed .c/.cpp files),
which can lead to an invalid compilation output (linking old Godot .o files
with a newer, potentially ABI breaking version of thirdparty code).
This was only seen as really problematic with bullet updates (leading to
crashes when rebuilding Godot after a bullet update without cleaning .o files),
but it's safer to fix it everywhere, even if it's a LOT of hacky boilerplate.
A new `env.Run` method is added which allows to control the verbosity
of builders output automatically depending on whether the "verbose"
option is set. It also allows to optionally run any SCons commands in a
subprocess using the existing `run_in_subprocess` method, unifying
the interface. `Action` objects wrap all builder functions to include a
short build message associated with any action.
Notably, this removes quite verbose output generated by `make_doc_header`
and `make_editor_icons_action` builders.
As of Godot 3.0, HQ2X is no longer used to upscale the editor theme
and icons on hiDPI displays, which limited its effective uses.
HQ2X was also used to upscale the project theme when the "Use Hidpi"
project setting was enabled, but results were often less than ideal.
The new StyleBoxFlat and SVG support also make HQ2X less important
to have as a core feature.
This decreases binary sizes slightly (-150 KB on most platforms,
-212 KB on WebAssembly release).
This partially addresses #12419.
Configured for a max line length of 120 characters.
psf/black is very opinionated and purposely doesn't leave much room for
configuration. The output is mostly OK so that should be fine for us,
but some things worth noting:
- Manually wrapped strings will be reflowed, so by using a line length
of 120 for the sake of preserving readability for our long command
calls, it also means that some manually wrapped strings are back on
the same line and should be manually merged again.
- Code generators using string concatenation extensively look awful,
since black puts each operand on a single line. We need to refactor
these generators to use more pythonic string formatting, for which
many options are available (`%`, `format` or f-strings).
- CI checks and a pre-commit hook will be added to ensure that future
buildsystem changes are well-formatted.
EngineDebugger is the new interface to access the debugger.
It tries to be as agnostic as possible on the data that various
subsystems can expose.
It allows 2 types of interactions:
- Profilers:
A subsystem can register a profiler, assigning it a unique name.
That name can be used to activate the profiler or add data to it.
The registered profiler can be composed of up to 3 functions:
- Toggle: called when the profiler is activated/deactivated.
- Add: called whenever data is added to the debugger
(via `EngineDebugger::profiler_add_frame_data`)
- Tick: called every frame (during idle), receives frame times.
- Captures: (Only relevant in remote debugger for now)
A subsystem can register a capture, assigning it a unique name.
When receiving a message, the remote debugger will check if it starts
with `[prefix]:` and call the associated capture with name `prefix`.
Port MultiplayerAPI, Servers, Scripts, Visual, Performance to the new
profiler system.
Port SceneDebugger and RemoteDebugger to the new capture system.
The LocalDebugger also uses the new profiler system for scripts
profiling.
It's the recommended way to set those, and is more portable
(automatically prepends -D for GCC/Clang and /D for MSVC).
We still use CPPFLAGS for some pre-processor flags which are not
defines.
Godot core needs MD5/SHA256/AES/Base64 which used to be provided by
separate libraries.
Since we bundle mbedtls in most cases, and we can easily only include
the needed sources if we so desire, let's use it.
To simplify library changes in the future, and better isolate header
dependencies all functions have been wrapped around inside a class in
`core/math/crypto_base.h`.
If the mbedtls module is disabled, we only bundle the needed source
files independently of the `builtin_mbedtls` option.
If the module is enabled, the `builtin_mbedtls` option works as usual.
Also remove some unused headers from StreamPeerMbedTLS which were
causing build issues.
Reverts "Build polygon clipper only in tools builds" (see #17319)
which allows to build Clipper with tools disabled (release) and because
of that, Clipper has to be patched to optionally disable exceptions in
order to be built on some platforms.
Patched Clipper 6.4.2 to be compiled with exceptions enabled/disabled.
and ensure that Clipper-specific exception macros are defined: don't use
exceptions by default unless exception handling is detected.
Compilation with exceptions will be determined by various
C++ exceptions defines:
* ` __cpp_exceptions` is part of C++ feature testing macros (since C++98);
* `__EXCEPTIONS` is used by some GNU compilers;
* `_CPPUNWIND` is used by MSVC.
The user can override specific exceptions behavior via corresponding
`*_USER` macros (i.e. compiling for embedded systems).
Include paths are processed from left to right, so we use Prepend to
ensure that paths to bundled thirdparty files will have precedence over
system paths (e.g. `/usr/include` should have lowest priority).
Many contributors (me included) did not fully understand what CCFLAGS,
CXXFLAGS and CPPFLAGS refer to exactly, and were thus not using them
in the way they are intended to be.
As per the SCons manual: https://www.scons.org/doc/HTML/scons-user/apa.html
- CCFLAGS: General options that are passed to the C and C++ compilers.
- CFLAGS: General options that are passed to the C compiler (C only;
not C++).
- CXXFLAGS: General options that are passed to the C++ compiler. By
default, this includes the value of $CCFLAGS, so that setting
$CCFLAGS affects both C and C++ compilation.
- CPPFLAGS: User-specified C preprocessor options. These will be
included in any command that uses the C preprocessor, including not
just compilation of C and C++ source files [...], but also [...]
Fortran [...] and [...] assembly language source file[s].
TL;DR: Compiler options go to CCFLAGS, unless they must be restricted
to either C (CFLAGS) or C++ (CXXFLAGS). Preprocessor defines go to
CPPFLAGS.
Note, it will only used by the Editor, not when running the game.
This allows package maintainer to compile Godot to use system installed
certificates when accessing the AssetLib.