godot/scene/3d/physics_body_3d.cpp

2728 lines
106 KiB
C++

/*************************************************************************/
/* physics_body_3d.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "physics_body_3d.h"
#include "core/config/engine.h"
#include "core/core_string_names.h"
#include "core/object/class_db.h"
#include "core/templates/list.h"
#include "core/templates/rid.h"
#include "scene/3d/collision_shape_3d.h"
#include "scene/scene_string_names.h"
#include "servers/navigation_server_3d.h"
#ifdef TOOLS_ENABLED
#include "editor/plugins/node_3d_editor_plugin.h"
#endif
void PhysicsBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("move_and_collide", "rel_vec", "test_only", "safe_margin"), &PhysicsBody3D::_move, DEFVAL(false), DEFVAL(0.001));
ClassDB::bind_method(D_METHOD("test_move", "from", "rel_vec", "collision", "safe_margin"), &PhysicsBody3D::test_move, DEFVAL(Variant()), DEFVAL(0.001));
ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &PhysicsBody3D::set_axis_lock);
ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &PhysicsBody3D::get_axis_lock);
ClassDB::bind_method(D_METHOD("get_collision_exceptions"), &PhysicsBody3D::get_collision_exceptions);
ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody3D::add_collision_exception_with);
ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody3D::remove_collision_exception_with);
ADD_GROUP("Axis Lock", "axis_lock_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_x"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_y"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_z"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_Z);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_x"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_y"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_z"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_Z);
}
PhysicsBody3D::PhysicsBody3D(PhysicsServer3D::BodyMode p_mode) :
CollisionObject3D(PhysicsServer3D::get_singleton()->body_create(), false) {
set_body_mode(p_mode);
}
PhysicsBody3D::~PhysicsBody3D() {
if (motion_cache.is_valid()) {
motion_cache->owner = nullptr;
}
}
TypedArray<PhysicsBody3D> PhysicsBody3D::get_collision_exceptions() {
List<RID> exceptions;
PhysicsServer3D::get_singleton()->body_get_collision_exceptions(get_rid(), &exceptions);
Array ret;
for (const RID &body : exceptions) {
ObjectID instance_id = PhysicsServer3D::get_singleton()->body_get_object_instance_id(body);
Object *obj = ObjectDB::get_instance(instance_id);
PhysicsBody3D *physics_body = Object::cast_to<PhysicsBody3D>(obj);
ret.append(physics_body);
}
return ret;
}
void PhysicsBody3D::add_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
CollisionObject3D *collision_object = Object::cast_to<CollisionObject3D>(p_node);
ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject3Ds.");
PhysicsServer3D::get_singleton()->body_add_collision_exception(get_rid(), collision_object->get_rid());
}
void PhysicsBody3D::remove_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
CollisionObject3D *collision_object = Object::cast_to<CollisionObject3D>(p_node);
ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject3Ds.");
PhysicsServer3D::get_singleton()->body_remove_collision_exception(get_rid(), collision_object->get_rid());
}
Ref<KinematicCollision3D> PhysicsBody3D::_move(const Vector3 &p_motion, bool p_test_only, real_t p_margin) {
PhysicsServer3D::MotionResult result;
if (move_and_collide(p_motion, result, p_margin, p_test_only)) {
if (motion_cache.is_null()) {
motion_cache.instantiate();
motion_cache->owner = this;
}
motion_cache->result = result;
return motion_cache;
}
return Ref<KinematicCollision3D>();
}
bool PhysicsBody3D::move_and_collide(const Vector3 &p_motion, PhysicsServer3D::MotionResult &r_result, real_t p_margin, bool p_test_only, bool p_cancel_sliding, const Set<RID> &p_exclude) {
Transform3D gt = get_global_transform();
bool colliding = PhysicsServer3D::get_singleton()->body_test_motion(get_rid(), gt, p_motion, p_margin, &r_result, p_exclude);
// Restore direction of motion to be along original motion,
// in order to avoid sliding due to recovery,
// but only if collision depth is low enough to avoid tunneling.
if (p_cancel_sliding) {
real_t motion_length = p_motion.length();
real_t precision = 0.001;
if (colliding) {
// Can't just use margin as a threshold because collision depth is calculated on unsafe motion,
// so even in normal resting cases the depth can be a bit more than the margin.
precision += motion_length * (r_result.collision_unsafe_fraction - r_result.collision_safe_fraction);
if (r_result.collision_depth > (real_t)p_margin + precision) {
p_cancel_sliding = false;
}
}
if (p_cancel_sliding) {
// When motion is null, recovery is the resulting motion.
Vector3 motion_normal;
if (motion_length > CMP_EPSILON) {
motion_normal = p_motion / motion_length;
}
// Check depth of recovery.
real_t projected_length = r_result.motion.dot(motion_normal);
Vector3 recovery = r_result.motion - motion_normal * projected_length;
real_t recovery_length = recovery.length();
// Fixes cases where canceling slide causes the motion to go too deep into the ground,
// because we're only taking rest information into account and not general recovery.
if (recovery_length < (real_t)p_margin + precision) {
// Apply adjustment to motion.
r_result.motion = motion_normal * projected_length;
r_result.remainder = p_motion - r_result.motion;
}
}
}
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
r_result.motion[i] = 0;
}
}
if (!p_test_only) {
gt.origin += r_result.motion;
set_global_transform(gt);
}
return colliding;
}
bool PhysicsBody3D::test_move(const Transform3D &p_from, const Vector3 &p_motion, const Ref<KinematicCollision3D> &r_collision, real_t p_margin) {
ERR_FAIL_COND_V(!is_inside_tree(), false);
PhysicsServer3D::MotionResult *r = nullptr;
if (r_collision.is_valid()) {
// Needs const_cast because method bindings don't support non-const Ref.
r = const_cast<PhysicsServer3D::MotionResult *>(&r_collision->result);
}
return PhysicsServer3D::get_singleton()->body_test_motion(get_rid(), p_from, p_motion, p_margin, r);
}
void PhysicsBody3D::set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool p_lock) {
if (p_lock) {
locked_axis |= p_axis;
} else {
locked_axis &= (~p_axis);
}
PhysicsServer3D::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock);
}
bool PhysicsBody3D::get_axis_lock(PhysicsServer3D::BodyAxis p_axis) const {
return (locked_axis & p_axis);
}
Vector3 PhysicsBody3D::get_linear_velocity() const {
return Vector3();
}
Vector3 PhysicsBody3D::get_angular_velocity() const {
return Vector3();
}
real_t PhysicsBody3D::get_inverse_mass() const {
return 0;
}
void StaticBody3D::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics))) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics));
}
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics));
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> StaticBody3D::get_physics_material_override() const {
return physics_material_override;
}
void StaticBody3D::set_kinematic_motion_enabled(bool p_enabled) {
if (p_enabled == kinematic_motion) {
return;
}
kinematic_motion = p_enabled;
if (kinematic_motion) {
set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC);
} else {
set_body_mode(PhysicsServer3D::BODY_MODE_STATIC);
}
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
update_configuration_warnings();
return;
}
#endif
_update_kinematic_motion();
}
bool StaticBody3D::is_kinematic_motion_enabled() const {
return kinematic_motion;
}
void StaticBody3D::set_constant_linear_velocity(const Vector3 &p_vel) {
constant_linear_velocity = p_vel;
if (kinematic_motion) {
_update_kinematic_motion();
} else {
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity);
}
}
void StaticBody3D::set_sync_to_physics(bool p_enable) {
if (sync_to_physics == p_enable) {
return;
}
sync_to_physics = p_enable;
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
update_configuration_warnings();
return;
}
#endif
if (kinematic_motion) {
_update_kinematic_motion();
}
}
bool StaticBody3D::is_sync_to_physics_enabled() const {
return sync_to_physics;
}
void StaticBody3D::_direct_state_changed(Object *p_state) {
PhysicsDirectBodyState3D *state = Object::cast_to<PhysicsDirectBodyState3D>(p_state);
ERR_FAIL_NULL_MSG(state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState3D object as argument");
linear_velocity = state->get_linear_velocity();
angular_velocity = state->get_angular_velocity();
if (!sync_to_physics) {
return;
}
last_valid_transform = state->get_transform();
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
_on_transform_changed();
}
TypedArray<String> StaticBody3D::get_configuration_warnings() const {
TypedArray<String> warnings = PhysicsBody3D::get_configuration_warnings();
if (sync_to_physics && !kinematic_motion) {
warnings.push_back(TTR("Sync to physics works only when kinematic motion is enabled."));
}
return warnings;
}
void StaticBody3D::set_constant_angular_velocity(const Vector3 &p_vel) {
constant_angular_velocity = p_vel;
if (kinematic_motion) {
_update_kinematic_motion();
} else {
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity);
}
}
Vector3 StaticBody3D::get_constant_linear_velocity() const {
return constant_linear_velocity;
}
Vector3 StaticBody3D::get_constant_angular_velocity() const {
return constant_angular_velocity;
}
Vector3 StaticBody3D::get_linear_velocity() const {
return linear_velocity;
}
Vector3 StaticBody3D::get_angular_velocity() const {
return angular_velocity;
}
void StaticBody3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
last_valid_transform = get_global_transform();
} break;
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
// Used by sync to physics, send the new transform to the physics...
Transform3D new_transform = get_global_transform();
real_t delta_time = get_physics_process_delta_time();
new_transform.origin += constant_linear_velocity * delta_time;
real_t ang_vel = constant_angular_velocity.length();
if (!Math::is_zero_approx(ang_vel)) {
Vector3 ang_vel_axis = constant_angular_velocity / ang_vel;
Basis rot(ang_vel_axis, ang_vel * delta_time);
new_transform.basis = rot * new_transform.basis;
new_transform.orthonormalize();
}
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_TRANSFORM, new_transform);
// ... but then revert changes.
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
_on_transform_changed();
} break;
case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
#endif
ERR_FAIL_COND(!kinematic_motion);
Transform3D new_transform = get_global_transform();
real_t delta_time = get_physics_process_delta_time();
new_transform.origin += constant_linear_velocity * delta_time;
real_t ang_vel = constant_angular_velocity.length();
if (!Math::is_zero_approx(ang_vel)) {
Vector3 ang_vel_axis = constant_angular_velocity / ang_vel;
Basis rot(ang_vel_axis, ang_vel * delta_time);
new_transform.basis = rot * new_transform.basis;
new_transform.orthonormalize();
}
if (sync_to_physics) {
// Propagate transform change to node.
set_global_transform(new_transform);
} else {
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_TRANSFORM, new_transform);
// Propagate transform change to node.
set_ignore_transform_notification(true);
set_global_transform(new_transform);
set_ignore_transform_notification(false);
_on_transform_changed();
}
} break;
}
}
void StaticBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody3D::set_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody3D::set_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody3D::get_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody3D::get_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("set_kinematic_motion_enabled", "enabled"), &StaticBody3D::set_kinematic_motion_enabled);
ClassDB::bind_method(D_METHOD("is_kinematic_motion_enabled"), &StaticBody3D::is_kinematic_motion_enabled);
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody3D::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody3D::get_physics_material_override);
ClassDB::bind_method(D_METHOD("set_sync_to_physics", "enable"), &StaticBody3D::set_sync_to_physics);
ClassDB::bind_method(D_METHOD("is_sync_to_physics_enabled"), &StaticBody3D::is_sync_to_physics_enabled);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_linear_velocity"), "set_constant_linear_velocity", "get_constant_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_angular_velocity"), "set_constant_angular_velocity", "get_constant_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "kinematic_motion"), "set_kinematic_motion_enabled", "is_kinematic_motion_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sync_to_physics"), "set_sync_to_physics", "is_sync_to_physics_enabled");
}
StaticBody3D::StaticBody3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_STATIC) {
}
void StaticBody3D::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, 0);
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, 1);
} else {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce());
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, physics_material_override->computed_friction());
}
}
void StaticBody3D::_update_kinematic_motion() {
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
#endif
if (kinematic_motion && sync_to_physics) {
set_only_update_transform_changes(true);
set_notify_local_transform(true);
} else {
set_only_update_transform_changes(false);
set_notify_local_transform(false);
}
bool needs_physics_process = false;
if (kinematic_motion) {
PhysicsServer3D::get_singleton()->body_set_force_integration_callback(get_rid(), callable_mp(this, &StaticBody3D::_direct_state_changed));
if (!constant_angular_velocity.is_equal_approx(Vector3()) || !constant_linear_velocity.is_equal_approx(Vector3())) {
needs_physics_process = true;
}
} else {
PhysicsServer3D::get_singleton()->body_set_force_integration_callback(get_rid(), Callable());
}
set_physics_process_internal(needs_physics_process);
}
void RigidBody3D::_body_enter_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(E->get().in_tree);
E->get().in_tree = true;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody3D::_body_exit_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(!E->get().in_tree);
E->get().in_tree = false;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody3D::_body_inout(int p_status, const RID &p_body, ObjectID p_instance, int p_body_shape, int p_local_shape) {
bool body_in = p_status == 1;
ObjectID objid = p_instance;
Object *obj = ObjectDB::get_instance(objid);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(objid);
ERR_FAIL_COND(!body_in && !E);
if (body_in) {
if (!E) {
E = contact_monitor->body_map.insert(objid, BodyState());
E->get().rid = p_body;
//E->get().rc=0;
E->get().in_tree = node && node->is_inside_tree();
if (node) {
node->connect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree), make_binds(objid));
node->connect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree), make_binds(objid));
if (E->get().in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
}
}
}
//E->get().rc++;
if (node) {
E->get().shapes.insert(ShapePair(p_body_shape, p_local_shape));
}
if (E->get().in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_body, node, p_body_shape, p_local_shape);
}
} else {
//E->get().rc--;
if (node) {
E->get().shapes.erase(ShapePair(p_body_shape, p_local_shape));
}
bool in_tree = E->get().in_tree;
if (E->get().shapes.is_empty()) {
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree));
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree));
if (in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
}
}
contact_monitor->body_map.erase(E);
}
if (node && in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_body, obj, p_body_shape, p_local_shape);
}
}
}
struct _RigidBodyInOut {
RID rid;
ObjectID id;
int shape = 0;
int local_shape = 0;
};
void RigidBody3D::_direct_state_changed(Object *p_state) {
#ifdef DEBUG_ENABLED
state = Object::cast_to<PhysicsDirectBodyState3D>(p_state);
ERR_FAIL_NULL_MSG(state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState3D object as argument");
#else
state = (PhysicsDirectBodyState3D *)p_state; //trust it
#endif
set_ignore_transform_notification(true);
set_global_transform(state->get_transform());
linear_velocity = state->get_linear_velocity();
angular_velocity = state->get_angular_velocity();
inverse_inertia_tensor = state->get_inverse_inertia_tensor();
if (sleeping != state->is_sleeping()) {
sleeping = state->is_sleeping();
emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed);
}
if (get_script_instance()) {
get_script_instance()->call("_integrate_forces", state);
}
set_ignore_transform_notification(false);
_on_transform_changed();
if (contact_monitor) {
contact_monitor->locked = true;
//untag all
int rc = 0;
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
E->get().shapes[i].tagged = false;
rc++;
}
}
_RigidBodyInOut *toadd = (_RigidBodyInOut *)alloca(state->get_contact_count() * sizeof(_RigidBodyInOut));
int toadd_count = 0; //state->get_contact_count();
RigidBody3D_RemoveAction *toremove = (RigidBody3D_RemoveAction *)alloca(rc * sizeof(RigidBody3D_RemoveAction));
int toremove_count = 0;
//put the ones to add
for (int i = 0; i < state->get_contact_count(); i++) {
RID rid = state->get_contact_collider(i);
ObjectID obj = state->get_contact_collider_id(i);
int local_shape = state->get_contact_local_shape(i);
int shape = state->get_contact_collider_shape(i);
//bool found=false;
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(obj);
if (!E) {
toadd[toadd_count].rid = rid;
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
ShapePair sp(shape, local_shape);
int idx = E->get().shapes.find(sp);
if (idx == -1) {
toadd[toadd_count].rid = rid;
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
E->get().shapes[idx].tagged = true;
}
//put the ones to remove
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
if (!E->get().shapes[i].tagged) {
toremove[toremove_count].rid = E->get().rid;
toremove[toremove_count].body_id = E->key();
toremove[toremove_count].pair = E->get().shapes[i];
toremove_count++;
}
}
}
//process removals
for (int i = 0; i < toremove_count; i++) {
_body_inout(0, toremove[i].rid, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape);
}
//process additions
for (int i = 0; i < toadd_count; i++) {
_body_inout(1, toremove[i].rid, toadd[i].id, toadd[i].shape, toadd[i].local_shape);
}
contact_monitor->locked = false;
}
state = nullptr;
}
void RigidBody3D::_notification(int p_what) {
#ifdef TOOLS_ENABLED
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
if (Engine::get_singleton()->is_editor_hint()) {
set_notify_local_transform(true); //used for warnings and only in editor
}
} break;
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
if (Engine::get_singleton()->is_editor_hint()) {
update_configuration_warnings();
}
} break;
}
#endif
}
void RigidBody3D::set_mode(Mode p_mode) {
mode = p_mode;
switch (p_mode) {
case MODE_DYNAMIC: {
set_body_mode(PhysicsServer3D::BODY_MODE_DYNAMIC);
} break;
case MODE_STATIC: {
set_body_mode(PhysicsServer3D::BODY_MODE_STATIC);
} break;
case MODE_DYNAMIC_LOCKED: {
set_body_mode(PhysicsServer3D::BODY_MODE_DYNAMIC_LOCKED);
} break;
case MODE_KINEMATIC: {
set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC);
} break;
}
update_configuration_warnings();
}
RigidBody3D::Mode RigidBody3D::get_mode() const {
return mode;
}
void RigidBody3D::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_MASS, mass);
}
real_t RigidBody3D::get_mass() const {
return mass;
}
void RigidBody3D::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics))) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics));
}
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics));
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> RigidBody3D::get_physics_material_override() const {
return physics_material_override;
}
void RigidBody3D::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t RigidBody3D::get_gravity_scale() const {
return gravity_scale;
}
void RigidBody3D::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < -1);
linear_damp = p_linear_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t RigidBody3D::get_linear_damp() const {
return linear_damp;
}
void RigidBody3D::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < -1);
angular_damp = p_angular_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t RigidBody3D::get_angular_damp() const {
return angular_damp;
}
void RigidBody3D::set_axis_velocity(const Vector3 &p_axis) {
Vector3 v = state ? state->get_linear_velocity() : linear_velocity;
Vector3 axis = p_axis.normalized();
v -= axis * axis.dot(v);
v += p_axis;
if (state) {
set_linear_velocity(v);
} else {
PhysicsServer3D::get_singleton()->body_set_axis_velocity(get_rid(), p_axis);
linear_velocity = v;
}
}
void RigidBody3D::set_linear_velocity(const Vector3 &p_velocity) {
linear_velocity = p_velocity;
if (state) {
state->set_linear_velocity(linear_velocity);
} else {
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
}
Vector3 RigidBody3D::get_linear_velocity() const {
return linear_velocity;
}
void RigidBody3D::set_angular_velocity(const Vector3 &p_velocity) {
angular_velocity = p_velocity;
if (state) {
state->set_angular_velocity(angular_velocity);
} else {
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, angular_velocity);
}
}
Vector3 RigidBody3D::get_angular_velocity() const {
return angular_velocity;
}
Basis RigidBody3D::get_inverse_inertia_tensor() const {
return inverse_inertia_tensor;
}
void RigidBody3D::set_use_custom_integrator(bool p_enable) {
if (custom_integrator == p_enable) {
return;
}
custom_integrator = p_enable;
PhysicsServer3D::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable);
}
bool RigidBody3D::is_using_custom_integrator() {
return custom_integrator;
}
void RigidBody3D::set_sleeping(bool p_sleeping) {
sleeping = p_sleeping;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_SLEEPING, sleeping);
}
void RigidBody3D::set_can_sleep(bool p_active) {
can_sleep = p_active;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_CAN_SLEEP, p_active);
}
bool RigidBody3D::is_able_to_sleep() const {
return can_sleep;
}
bool RigidBody3D::is_sleeping() const {
return sleeping;
}
void RigidBody3D::set_max_contacts_reported(int p_amount) {
max_contacts_reported = p_amount;
PhysicsServer3D::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount);
}
int RigidBody3D::get_max_contacts_reported() const {
return max_contacts_reported;
}
void RigidBody3D::add_central_force(const Vector3 &p_force) {
PhysicsServer3D::get_singleton()->body_add_central_force(get_rid(), p_force);
}
void RigidBody3D::add_force(const Vector3 &p_force, const Vector3 &p_position) {
PhysicsServer3D *singleton = PhysicsServer3D::get_singleton();
singleton->body_add_force(get_rid(), p_force, p_position);
}
void RigidBody3D::add_torque(const Vector3 &p_torque) {
PhysicsServer3D::get_singleton()->body_add_torque(get_rid(), p_torque);
}
void RigidBody3D::apply_central_impulse(const Vector3 &p_impulse) {
PhysicsServer3D::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse);
}
void RigidBody3D::apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position) {
PhysicsServer3D *singleton = PhysicsServer3D::get_singleton();
singleton->body_apply_impulse(get_rid(), p_impulse, p_position);
}
void RigidBody3D::apply_torque_impulse(const Vector3 &p_impulse) {
PhysicsServer3D::get_singleton()->body_apply_torque_impulse(get_rid(), p_impulse);
}
void RigidBody3D::set_use_continuous_collision_detection(bool p_enable) {
ccd = p_enable;
PhysicsServer3D::get_singleton()->body_set_enable_continuous_collision_detection(get_rid(), p_enable);
}
bool RigidBody3D::is_using_continuous_collision_detection() const {
return ccd;
}
void RigidBody3D::set_contact_monitor(bool p_enabled) {
if (p_enabled == is_contact_monitor_enabled()) {
return;
}
if (!p_enabled) {
ERR_FAIL_COND_MSG(contact_monitor->locked, "Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\", false) instead.");
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
//clean up mess
Object *obj = ObjectDB::get_instance(E->key());
Node *node = Object::cast_to<Node>(obj);
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree));
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree));
}
}
memdelete(contact_monitor);
contact_monitor = nullptr;
} else {
contact_monitor = memnew(ContactMonitor);
contact_monitor->locked = false;
}
}
bool RigidBody3D::is_contact_monitor_enabled() const {
return contact_monitor != nullptr;
}
Array RigidBody3D::get_colliding_bodies() const {
ERR_FAIL_COND_V(!contact_monitor, Array());
Array ret;
ret.resize(contact_monitor->body_map.size());
int idx = 0;
for (const Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
Object *obj = ObjectDB::get_instance(E->key());
if (!obj) {
ret.resize(ret.size() - 1); //ops
} else {
ret[idx++] = obj;
}
}
return ret;
}
TypedArray<String> RigidBody3D::get_configuration_warnings() const {
Transform3D t = get_transform();
TypedArray<String> warnings = Node::get_configuration_warnings();
if ((get_mode() == MODE_DYNAMIC || get_mode() == MODE_DYNAMIC_LOCKED) && (ABS(t.basis.get_axis(0).length() - 1.0) > 0.05 || ABS(t.basis.get_axis(1).length() - 1.0) > 0.05 || ABS(t.basis.get_axis(2).length() - 1.0) > 0.05)) {
warnings.push_back(TTR("Size changes to RigidBody3D (in dynamic modes) will be overridden by the physics engine when running.\nChange the size in children collision shapes instead."));
}
return warnings;
}
void RigidBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &RigidBody3D::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &RigidBody3D::get_mode);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody3D::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody3D::get_mass);
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody3D::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody3D::get_physics_material_override);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody3D::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody3D::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody3D::set_angular_velocity);
ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody3D::get_angular_velocity);
ClassDB::bind_method(D_METHOD("get_inverse_inertia_tensor"), &RigidBody3D::get_inverse_inertia_tensor);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody3D::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody3D::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody3D::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody3D::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody3D::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody3D::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody3D::set_max_contacts_reported);
ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody3D::get_max_contacts_reported);
ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody3D::set_use_custom_integrator);
ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody3D::is_using_custom_integrator);
ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody3D::set_contact_monitor);
ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody3D::is_contact_monitor_enabled);
ClassDB::bind_method(D_METHOD("set_use_continuous_collision_detection", "enable"), &RigidBody3D::set_use_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("is_using_continuous_collision_detection"), &RigidBody3D::is_using_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody3D::set_axis_velocity);
ClassDB::bind_method(D_METHOD("add_central_force", "force"), &RigidBody3D::add_central_force);
ClassDB::bind_method(D_METHOD("add_force", "force", "position"), &RigidBody3D::add_force, Vector3());
ClassDB::bind_method(D_METHOD("add_torque", "torque"), &RigidBody3D::add_torque);
ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody3D::apply_central_impulse);
ClassDB::bind_method(D_METHOD("apply_impulse", "impulse", "position"), &RigidBody3D::apply_impulse, Vector3());
ClassDB::bind_method(D_METHOD("apply_torque_impulse", "impulse"), &RigidBody3D::apply_torque_impulse);
ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody3D::set_sleeping);
ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody3D::is_sleeping);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody3D::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody3D::is_able_to_sleep);
ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody3D::get_colliding_bodies);
BIND_VMETHOD(MethodInfo("_integrate_forces", PropertyInfo(Variant::OBJECT, "state", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsDirectBodyState3D")));
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Dynamic,Static,DynamicLocked,Kinematic"), "set_mode", "get_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mass", PROPERTY_HINT_RANGE, "0.01,65535,0.01,exp"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "continuous_cd"), "set_use_continuous_collision_detection", "is_using_continuous_collision_detection");
ADD_PROPERTY(PropertyInfo(Variant::INT, "contacts_reported", PROPERTY_HINT_RANGE, "0,64,1,or_greater"), "set_max_contacts_reported", "get_max_contacts_reported");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
ADD_GROUP("Linear", "linear_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "linear_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp");
ADD_GROUP("Angular", "angular_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity"), "set_angular_velocity", "get_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "angular_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp");
ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape"), PropertyInfo(Variant::INT, "local_shape")));
ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape"), PropertyInfo(Variant::INT, "local_shape")));
ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node")));
ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node")));
ADD_SIGNAL(MethodInfo("sleeping_state_changed"));
BIND_ENUM_CONSTANT(MODE_DYNAMIC);
BIND_ENUM_CONSTANT(MODE_STATIC);
BIND_ENUM_CONSTANT(MODE_DYNAMIC_LOCKED);
BIND_ENUM_CONSTANT(MODE_KINEMATIC);
}
RigidBody3D::RigidBody3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_DYNAMIC) {
PhysicsServer3D::get_singleton()->body_set_force_integration_callback(get_rid(), callable_mp(this, &RigidBody3D::_direct_state_changed));
}
RigidBody3D::~RigidBody3D() {
if (contact_monitor) {
memdelete(contact_monitor);
}
}
void RigidBody3D::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, 0);
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, 1);
} else {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce());
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, physics_material_override->computed_friction());
}
}
///////////////////////////////////////
//so, if you pass 45 as limit, avoid numerical precision errors when angle is 45.
#define FLOOR_ANGLE_THRESHOLD 0.01
void CharacterBody3D::move_and_slide() {
Vector3 body_velocity_normal = linear_velocity.normalized();
bool was_on_floor = on_floor;
// Hack in order to work with calling from _process as well as from _physics_process; calling from thread is risky
float delta = Engine::get_singleton()->is_in_physics_frame() ? get_physics_process_delta_time() : get_process_delta_time();
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
linear_velocity[i] = 0.0;
}
}
Vector3 current_floor_velocity = floor_velocity;
if ((on_floor || on_wall) && on_floor_body.is_valid()) {
//this approach makes sure there is less delay between the actual body velocity and the one we saved
PhysicsDirectBodyState3D *bs = PhysicsServer3D::get_singleton()->body_get_direct_state(on_floor_body);
if (bs) {
Transform3D gt = get_global_transform();
Vector3 local_position = gt.origin - bs->get_transform().origin;
current_floor_velocity = bs->get_velocity_at_local_position(local_position);
}
}
motion_results.clear();
on_floor = false;
on_ceiling = false;
on_wall = false;
floor_normal = Vector3();
floor_velocity = Vector3();
if (current_floor_velocity != Vector3() && on_floor_body.is_valid()) {
PhysicsServer3D::MotionResult floor_result;
Set<RID> exclude;
exclude.insert(on_floor_body);
if (move_and_collide(current_floor_velocity * delta, floor_result, margin, false, false, exclude)) {
motion_results.push_back(floor_result);
_set_collision_direction(floor_result);
}
}
on_floor_body = RID();
Vector3 motion = linear_velocity * delta;
// No sliding on first attempt to keep floor motion stable when possible,
// when stop on slope is enabled.
bool sliding_enabled = !stop_on_slope;
for (int iteration = 0; iteration < max_slides; ++iteration) {
PhysicsServer3D::MotionResult result;
bool found_collision = false;
bool collided = move_and_collide(motion, result, margin, false, !sliding_enabled);
if (!collided) {
motion = Vector3(); //clear because no collision happened and motion completed
} else {
found_collision = true;
motion_results.push_back(result);
_set_collision_direction(result);
if (on_floor && stop_on_slope) {
if ((body_velocity_normal + up_direction).length() < 0.01) {
Transform3D gt = get_global_transform();
if (result.motion.length() > margin) {
gt.origin -= result.motion.slide(up_direction);
} else {
gt.origin -= result.motion;
}
set_global_transform(gt);
linear_velocity = Vector3();
return;
}
}
if (sliding_enabled || !on_floor) {
motion = result.remainder.slide(result.collision_normal);
linear_velocity = linear_velocity.slide(result.collision_normal);
for (int j = 0; j < 3; j++) {
if (locked_axis & (1 << j)) {
linear_velocity[j] = 0.0;
}
}
} else {
motion = result.remainder;
}
}
sliding_enabled = true;
if (!found_collision || motion == Vector3()) {
break;
}
}
if (!on_floor && !on_wall) {
// Add last platform velocity when just left a moving platform.
linear_velocity += current_floor_velocity;
}
if (!was_on_floor || snap == Vector3()) {
return;
}
// Apply snap.
Transform3D gt = get_global_transform();
PhysicsServer3D::MotionResult result;
if (move_and_collide(snap, result, margin, true, false)) {
bool apply = true;
if (up_direction != Vector3()) {
if (Math::acos(result.collision_normal.dot(up_direction)) <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
on_floor = true;
floor_normal = result.collision_normal;
on_floor_body = result.collider;
floor_velocity = result.collider_velocity;
if (stop_on_slope) {
// move and collide may stray the object a bit because of pre un-stucking,
// so only ensure that motion happens on floor direction in this case.
if (result.motion.length() > margin) {
result.motion = result.motion.project(up_direction);
} else {
result.motion = Vector3();
}
}
} else {
apply = false; //snapped with floor direction, but did not snap to a floor, do not snap.
}
}
if (apply) {
gt.origin += result.motion;
set_global_transform(gt);
}
}
}
void CharacterBody3D::_set_collision_direction(const PhysicsServer3D::MotionResult &p_result) {
if (up_direction == Vector3()) {
//all is a wall
on_wall = true;
} else {
if (Math::acos(p_result.collision_normal.dot(up_direction)) <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //floor
on_floor = true;
floor_normal = p_result.collision_normal;
on_floor_body = p_result.collider;
floor_velocity = p_result.collider_velocity;
} else if (Math::acos(p_result.collision_normal.dot(-up_direction)) <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //ceiling
on_ceiling = true;
} else {
on_wall = true;
on_floor_body = p_result.collider;
floor_velocity = p_result.collider_velocity;
}
}
}
void CharacterBody3D::set_safe_margin(real_t p_margin) {
margin = p_margin;
}
real_t CharacterBody3D::get_safe_margin() const {
return margin;
}
Vector3 CharacterBody3D::get_linear_velocity() const {
return linear_velocity;
}
void CharacterBody3D::set_linear_velocity(const Vector3 &p_velocity) {
linear_velocity = p_velocity;
}
bool CharacterBody3D::is_on_floor() const {
return on_floor;
}
bool CharacterBody3D::is_on_wall() const {
return on_wall;
}
bool CharacterBody3D::is_on_ceiling() const {
return on_ceiling;
}
Vector3 CharacterBody3D::get_floor_normal() const {
return floor_normal;
}
Vector3 CharacterBody3D::get_floor_velocity() const {
return floor_velocity;
}
int CharacterBody3D::get_slide_count() const {
return motion_results.size();
}
PhysicsServer3D::MotionResult CharacterBody3D::get_slide_collision(int p_bounce) const {
ERR_FAIL_INDEX_V(p_bounce, motion_results.size(), PhysicsServer3D::MotionResult());
return motion_results[p_bounce];
}
Ref<KinematicCollision3D> CharacterBody3D::_get_slide_collision(int p_bounce) {
ERR_FAIL_INDEX_V(p_bounce, motion_results.size(), Ref<KinematicCollision3D>());
if (p_bounce >= slide_colliders.size()) {
slide_colliders.resize(p_bounce + 1);
}
if (slide_colliders[p_bounce].is_null()) {
slide_colliders.write[p_bounce].instantiate();
slide_colliders.write[p_bounce]->owner = this;
}
slide_colliders.write[p_bounce]->result = motion_results[p_bounce];
return slide_colliders[p_bounce];
}
bool CharacterBody3D::is_stop_on_slope_enabled() const {
return stop_on_slope;
}
void CharacterBody3D::set_stop_on_slope_enabled(bool p_enabled) {
stop_on_slope = p_enabled;
}
int CharacterBody3D::get_max_slides() const {
return max_slides;
}
void CharacterBody3D::set_max_slides(int p_max_slides) {
ERR_FAIL_COND(p_max_slides < 1);
max_slides = p_max_slides;
}
real_t CharacterBody3D::get_floor_max_angle() const {
return floor_max_angle;
}
void CharacterBody3D::set_floor_max_angle(real_t p_radians) {
floor_max_angle = p_radians;
}
const Vector3 &CharacterBody3D::get_snap() const {
return snap;
}
void CharacterBody3D::set_snap(const Vector3 &p_snap) {
snap = p_snap;
}
const Vector3 &CharacterBody3D::get_up_direction() const {
return up_direction;
}
void CharacterBody3D::set_up_direction(const Vector3 &p_up_direction) {
up_direction = p_up_direction.normalized();
}
void CharacterBody3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
// Reset move_and_slide() data.
on_floor = false;
on_floor_body = RID();
on_ceiling = false;
on_wall = false;
motion_results.clear();
floor_velocity = Vector3();
} break;
}
}
void CharacterBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("move_and_slide"), &CharacterBody3D::move_and_slide);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &CharacterBody3D::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &CharacterBody3D::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_safe_margin", "pixels"), &CharacterBody3D::set_safe_margin);
ClassDB::bind_method(D_METHOD("get_safe_margin"), &CharacterBody3D::get_safe_margin);
ClassDB::bind_method(D_METHOD("is_stop_on_slope_enabled"), &CharacterBody3D::is_stop_on_slope_enabled);
ClassDB::bind_method(D_METHOD("set_stop_on_slope_enabled", "enabled"), &CharacterBody3D::set_stop_on_slope_enabled);
ClassDB::bind_method(D_METHOD("get_max_slides"), &CharacterBody3D::get_max_slides);
ClassDB::bind_method(D_METHOD("set_max_slides", "max_slides"), &CharacterBody3D::set_max_slides);
ClassDB::bind_method(D_METHOD("get_floor_max_angle"), &CharacterBody3D::get_floor_max_angle);
ClassDB::bind_method(D_METHOD("set_floor_max_angle", "radians"), &CharacterBody3D::set_floor_max_angle);
ClassDB::bind_method(D_METHOD("get_snap"), &CharacterBody3D::get_snap);
ClassDB::bind_method(D_METHOD("set_snap", "snap"), &CharacterBody3D::set_snap);
ClassDB::bind_method(D_METHOD("get_up_direction"), &CharacterBody3D::get_up_direction);
ClassDB::bind_method(D_METHOD("set_up_direction", "up_direction"), &CharacterBody3D::set_up_direction);
ClassDB::bind_method(D_METHOD("is_on_floor"), &CharacterBody3D::is_on_floor);
ClassDB::bind_method(D_METHOD("is_on_ceiling"), &CharacterBody3D::is_on_ceiling);
ClassDB::bind_method(D_METHOD("is_on_wall"), &CharacterBody3D::is_on_wall);
ClassDB::bind_method(D_METHOD("get_floor_normal"), &CharacterBody3D::get_floor_normal);
ClassDB::bind_method(D_METHOD("get_floor_velocity"), &CharacterBody3D::get_floor_velocity);
ClassDB::bind_method(D_METHOD("get_slide_count"), &CharacterBody3D::get_slide_count);
ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &CharacterBody3D::_get_slide_collision);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "stop_on_slope"), "set_stop_on_slope_enabled", "is_stop_on_slope_enabled");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_slides", PROPERTY_HINT_RANGE, "1,8,1,or_greater"), "set_max_slides", "get_max_slides");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "floor_max_angle", PROPERTY_HINT_RANGE, "0,180,0.1,radians"), "set_floor_max_angle", "get_floor_max_angle");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "snap"), "set_snap", "get_snap");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "up_direction"), "set_up_direction", "get_up_direction");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "collision/safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001"), "set_safe_margin", "get_safe_margin");
}
CharacterBody3D::CharacterBody3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_KINEMATIC) {
}
CharacterBody3D::~CharacterBody3D() {
for (int i = 0; i < slide_colliders.size(); i++) {
if (slide_colliders[i].is_valid()) {
slide_colliders.write[i]->owner = nullptr;
}
}
}
///////////////////////////////////////
Vector3 KinematicCollision3D::get_position() const {
return result.collision_point;
}
Vector3 KinematicCollision3D::get_normal() const {
return result.collision_normal;
}
Vector3 KinematicCollision3D::get_travel() const {
return result.motion;
}
Vector3 KinematicCollision3D::get_remainder() const {
return result.remainder;
}
Object *KinematicCollision3D::get_local_shape() const {
if (!owner) {
return nullptr;
}
uint32_t ownerid = owner->shape_find_owner(result.collision_local_shape);
return owner->shape_owner_get_owner(ownerid);
}
Object *KinematicCollision3D::get_collider() const {
if (result.collider_id.is_valid()) {
return ObjectDB::get_instance(result.collider_id);
}
return nullptr;
}
ObjectID KinematicCollision3D::get_collider_id() const {
return result.collider_id;
}
RID KinematicCollision3D::get_collider_rid() const {
return result.collider;
}
Object *KinematicCollision3D::get_collider_shape() const {
Object *collider = get_collider();
if (collider) {
CollisionObject3D *obj2d = Object::cast_to<CollisionObject3D>(collider);
if (obj2d) {
uint32_t ownerid = obj2d->shape_find_owner(result.collider_shape);
return obj2d->shape_owner_get_owner(ownerid);
}
}
return nullptr;
}
int KinematicCollision3D::get_collider_shape_index() const {
return result.collider_shape;
}
Vector3 KinematicCollision3D::get_collider_velocity() const {
return result.collider_velocity;
}
Variant KinematicCollision3D::get_collider_metadata() const {
return Variant();
}
void KinematicCollision3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_position"), &KinematicCollision3D::get_position);
ClassDB::bind_method(D_METHOD("get_normal"), &KinematicCollision3D::get_normal);
ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision3D::get_travel);
ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision3D::get_remainder);
ClassDB::bind_method(D_METHOD("get_local_shape"), &KinematicCollision3D::get_local_shape);
ClassDB::bind_method(D_METHOD("get_collider"), &KinematicCollision3D::get_collider);
ClassDB::bind_method(D_METHOD("get_collider_id"), &KinematicCollision3D::get_collider_id);
ClassDB::bind_method(D_METHOD("get_collider_rid"), &KinematicCollision3D::get_collider_rid);
ClassDB::bind_method(D_METHOD("get_collider_shape"), &KinematicCollision3D::get_collider_shape);
ClassDB::bind_method(D_METHOD("get_collider_shape_index"), &KinematicCollision3D::get_collider_shape_index);
ClassDB::bind_method(D_METHOD("get_collider_velocity"), &KinematicCollision3D::get_collider_velocity);
ClassDB::bind_method(D_METHOD("get_collider_metadata"), &KinematicCollision3D::get_collider_metadata);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "position"), "", "get_position");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "normal"), "", "get_normal");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "travel"), "", "get_travel");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "remainder"), "", "get_remainder");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "local_shape"), "", "get_local_shape");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider"), "", "get_collider");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_id"), "", "get_collider_id");
ADD_PROPERTY(PropertyInfo(Variant::RID, "collider_rid"), "", "get_collider_rid");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider_shape"), "", "get_collider_shape");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_shape_index"), "", "get_collider_shape_index");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "collider_velocity"), "", "get_collider_velocity");
ADD_PROPERTY(PropertyInfo(Variant::NIL, "collider_metadata", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NIL_IS_VARIANT), "", "get_collider_metadata");
}
///////////////////////////////////////
bool PhysicalBone3D::JointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
return false;
}
bool PhysicalBone3D::JointData::_get(const StringName &p_name, Variant &r_ret) const {
return false;
}
void PhysicalBone3D::JointData::_get_property_list(List<PropertyInfo> *p_list) const {
}
void PhysicalBone3D::apply_central_impulse(const Vector3 &p_impulse) {
PhysicsServer3D::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse);
}
void PhysicalBone3D::apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position) {
PhysicsServer3D::get_singleton()->body_apply_impulse(get_rid(), p_impulse, p_position);
}
void PhysicalBone3D::reset_physics_simulation_state() {
if (simulate_physics) {
_start_physics_simulation();
} else {
_stop_physics_simulation();
}
}
void PhysicalBone3D::reset_to_rest_position() {
if (parent_skeleton) {
if (-1 == bone_id) {
set_global_transform(parent_skeleton->get_global_transform() * body_offset);
} else {
set_global_transform(parent_skeleton->get_global_transform() * parent_skeleton->get_bone_global_pose(bone_id) * body_offset);
}
}
}
bool PhysicalBone3D::PinJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/bias" == p_name) {
bias = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_BIAS, bias);
}
} else if ("joint_constraints/damping" == p_name) {
damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_DAMPING, damping);
}
} else if ("joint_constraints/impulse_clamp" == p_name) {
impulse_clamp = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP, impulse_clamp);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::PinJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/bias" == p_name) {
r_ret = bias;
} else if ("joint_constraints/damping" == p_name) {
r_ret = damping;
} else if ("joint_constraints/impulse_clamp" == p_name) {
r_ret = impulse_clamp;
} else {
return false;
}
return true;
}
void PhysicalBone3D::PinJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/bias", PROPERTY_HINT_RANGE, "0.01,0.99,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/damping", PROPERTY_HINT_RANGE, "0.01,8.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/impulse_clamp", PROPERTY_HINT_RANGE, "0.0,64.0,0.01"));
}
bool PhysicalBone3D::ConeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/swing_span" == p_name) {
swing_span = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN, swing_span);
}
} else if ("joint_constraints/twist_span" == p_name) {
twist_span = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN, twist_span);
}
} else if ("joint_constraints/bias" == p_name) {
bias = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_BIAS, bias);
}
} else if ("joint_constraints/softness" == p_name) {
softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS, softness);
}
} else if ("joint_constraints/relaxation" == p_name) {
relaxation = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION, relaxation);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::ConeJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/swing_span" == p_name) {
r_ret = Math::rad2deg(swing_span);
} else if ("joint_constraints/twist_span" == p_name) {
r_ret = Math::rad2deg(twist_span);
} else if ("joint_constraints/bias" == p_name) {
r_ret = bias;
} else if ("joint_constraints/softness" == p_name) {
r_ret = softness;
} else if ("joint_constraints/relaxation" == p_name) {
r_ret = relaxation;
} else {
return false;
}
return true;
}
void PhysicalBone3D::ConeJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/swing_span", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/twist_span", PROPERTY_HINT_RANGE, "-40000,40000,0.1,or_lesser,or_greater"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/bias", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/relaxation", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
}
bool PhysicalBone3D::HingeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/angular_limit_enabled" == p_name) {
angular_limit_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_flag(j, PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT, angular_limit_enabled);
}
} else if ("joint_constraints/angular_limit_upper" == p_name) {
angular_limit_upper = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER, angular_limit_upper);
}
} else if ("joint_constraints/angular_limit_lower" == p_name) {
angular_limit_lower = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER, angular_limit_lower);
}
} else if ("joint_constraints/angular_limit_bias" == p_name) {
angular_limit_bias = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS, angular_limit_bias);
}
} else if ("joint_constraints/angular_limit_softness" == p_name) {
angular_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS, angular_limit_softness);
}
} else if ("joint_constraints/angular_limit_relaxation" == p_name) {
angular_limit_relaxation = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION, angular_limit_relaxation);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::HingeJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/angular_limit_enabled" == p_name) {
r_ret = angular_limit_enabled;
} else if ("joint_constraints/angular_limit_upper" == p_name) {
r_ret = Math::rad2deg(angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
r_ret = Math::rad2deg(angular_limit_lower);
} else if ("joint_constraints/angular_limit_bias" == p_name) {
r_ret = angular_limit_bias;
} else if ("joint_constraints/angular_limit_softness" == p_name) {
r_ret = angular_limit_softness;
} else if ("joint_constraints/angular_limit_relaxation" == p_name) {
r_ret = angular_limit_relaxation;
} else {
return false;
}
return true;
}
void PhysicalBone3D::HingeJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/angular_limit_enabled"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_bias", PROPERTY_HINT_RANGE, "0.01,0.99,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_relaxation", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
}
bool PhysicalBone3D::SliderJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/linear_limit_upper" == p_name) {
linear_limit_upper = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER, linear_limit_upper);
}
} else if ("joint_constraints/linear_limit_lower" == p_name) {
linear_limit_lower = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER, linear_limit_lower);
}
} else if ("joint_constraints/linear_limit_softness" == p_name) {
linear_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, linear_limit_softness);
}
} else if ("joint_constraints/linear_limit_restitution" == p_name) {
linear_limit_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, linear_limit_restitution);
}
} else if ("joint_constraints/linear_limit_damping" == p_name) {
linear_limit_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, linear_limit_restitution);
}
} else if ("joint_constraints/angular_limit_upper" == p_name) {
angular_limit_upper = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, angular_limit_upper);
}
} else if ("joint_constraints/angular_limit_lower" == p_name) {
angular_limit_lower = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, angular_limit_lower);
}
} else if ("joint_constraints/angular_limit_softness" == p_name) {
angular_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness);
}
} else if ("joint_constraints/angular_limit_restitution" == p_name) {
angular_limit_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness);
}
} else if ("joint_constraints/angular_limit_damping" == p_name) {
angular_limit_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, angular_limit_damping);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::SliderJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/linear_limit_upper" == p_name) {
r_ret = linear_limit_upper;
} else if ("joint_constraints/linear_limit_lower" == p_name) {
r_ret = linear_limit_lower;
} else if ("joint_constraints/linear_limit_softness" == p_name) {
r_ret = linear_limit_softness;
} else if ("joint_constraints/linear_limit_restitution" == p_name) {
r_ret = linear_limit_restitution;
} else if ("joint_constraints/linear_limit_damping" == p_name) {
r_ret = linear_limit_damping;
} else if ("joint_constraints/angular_limit_upper" == p_name) {
r_ret = Math::rad2deg(angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
r_ret = Math::rad2deg(angular_limit_lower);
} else if ("joint_constraints/angular_limit_softness" == p_name) {
r_ret = angular_limit_softness;
} else if ("joint_constraints/angular_limit_restitution" == p_name) {
r_ret = angular_limit_restitution;
} else if ("joint_constraints/angular_limit_damping" == p_name) {
r_ret = angular_limit_damping;
} else {
return false;
}
return true;
}
void PhysicalBone3D::SliderJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/linear_limit_upper"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/linear_limit_lower"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/linear_limit_softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/linear_limit_restitution", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/linear_limit_damping", PROPERTY_HINT_RANGE, "0,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_restitution", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/angular_limit_damping", PROPERTY_HINT_RANGE, "0,16.0,0.01"));
}
bool PhysicalBone3D::SixDOFJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
String path = p_name;
if (!path.begins_with("joint_constraints/")) {
return false;
}
Vector3::Axis axis;
{
const String axis_s = path.get_slicec('/', 1);
if ("x" == axis_s) {
axis = Vector3::AXIS_X;
} else if ("y" == axis_s) {
axis = Vector3::AXIS_Y;
} else if ("z" == axis_s) {
axis = Vector3::AXIS_Z;
} else {
return false;
}
}
String var_name = path.get_slicec('/', 2);
if ("linear_limit_enabled" == var_name) {
axis_data[axis].linear_limit_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, axis_data[axis].linear_limit_enabled);
}
} else if ("linear_limit_upper" == var_name) {
axis_data[axis].linear_limit_upper = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT, axis_data[axis].linear_limit_upper);
}
} else if ("linear_limit_lower" == var_name) {
axis_data[axis].linear_limit_lower = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT, axis_data[axis].linear_limit_lower);
}
} else if ("linear_limit_softness" == var_name) {
axis_data[axis].linear_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, axis_data[axis].linear_limit_softness);
}
} else if ("linear_spring_enabled" == var_name) {
axis_data[axis].linear_spring_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, axis_data[axis].linear_spring_enabled);
}
} else if ("linear_spring_stiffness" == var_name) {
axis_data[axis].linear_spring_stiffness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, axis_data[axis].linear_spring_stiffness);
}
} else if ("linear_spring_damping" == var_name) {
axis_data[axis].linear_spring_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING, axis_data[axis].linear_spring_damping);
}
} else if ("linear_equilibrium_point" == var_name) {
axis_data[axis].linear_equilibrium_point = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].linear_equilibrium_point);
}
} else if ("linear_restitution" == var_name) {
axis_data[axis].linear_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION, axis_data[axis].linear_restitution);
}
} else if ("linear_damping" == var_name) {
axis_data[axis].linear_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING, axis_data[axis].linear_damping);
}
} else if ("angular_limit_enabled" == var_name) {
axis_data[axis].angular_limit_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, axis_data[axis].angular_limit_enabled);
}
} else if ("angular_limit_upper" == var_name) {
axis_data[axis].angular_limit_upper = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, axis_data[axis].angular_limit_upper);
}
} else if ("angular_limit_lower" == var_name) {
axis_data[axis].angular_limit_lower = Math::deg2rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, axis_data[axis].angular_limit_lower);
}
} else if ("angular_limit_softness" == var_name) {
axis_data[axis].angular_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, axis_data[axis].angular_limit_softness);
}
} else if ("angular_restitution" == var_name) {
axis_data[axis].angular_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION, axis_data[axis].angular_restitution);
}
} else if ("angular_damping" == var_name) {
axis_data[axis].angular_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING, axis_data[axis].angular_damping);
}
} else if ("erp" == var_name) {
axis_data[axis].erp = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP, axis_data[axis].erp);
}
} else if ("angular_spring_enabled" == var_name) {
axis_data[axis].angular_spring_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, axis_data[axis].angular_spring_enabled);
}
} else if ("angular_spring_stiffness" == var_name) {
axis_data[axis].angular_spring_stiffness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, axis_data[axis].angular_spring_stiffness);
}
} else if ("angular_spring_damping" == var_name) {
axis_data[axis].angular_spring_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, axis_data[axis].angular_spring_damping);
}
} else if ("angular_equilibrium_point" == var_name) {
axis_data[axis].angular_equilibrium_point = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].angular_equilibrium_point);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::SixDOFJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
String path = p_name;
if (!path.begins_with("joint_constraints/")) {
return false;
}
int axis;
{
const String axis_s = path.get_slicec('/', 1);
if ("x" == axis_s) {
axis = 0;
} else if ("y" == axis_s) {
axis = 1;
} else if ("z" == axis_s) {
axis = 2;
} else {
return false;
}
}
String var_name = path.get_slicec('/', 2);
if ("linear_limit_enabled" == var_name) {
r_ret = axis_data[axis].linear_limit_enabled;
} else if ("linear_limit_upper" == var_name) {
r_ret = axis_data[axis].linear_limit_upper;
} else if ("linear_limit_lower" == var_name) {
r_ret = axis_data[axis].linear_limit_lower;
} else if ("linear_limit_softness" == var_name) {
r_ret = axis_data[axis].linear_limit_softness;
} else if ("linear_spring_enabled" == var_name) {
r_ret = axis_data[axis].linear_spring_enabled;
} else if ("linear_spring_stiffness" == var_name) {
r_ret = axis_data[axis].linear_spring_stiffness;
} else if ("linear_spring_damping" == var_name) {
r_ret = axis_data[axis].linear_spring_damping;
} else if ("linear_equilibrium_point" == var_name) {
r_ret = axis_data[axis].linear_equilibrium_point;
} else if ("linear_restitution" == var_name) {
r_ret = axis_data[axis].linear_restitution;
} else if ("linear_damping" == var_name) {
r_ret = axis_data[axis].linear_damping;
} else if ("angular_limit_enabled" == var_name) {
r_ret = axis_data[axis].angular_limit_enabled;
} else if ("angular_limit_upper" == var_name) {
r_ret = Math::rad2deg(axis_data[axis].angular_limit_upper);
} else if ("angular_limit_lower" == var_name) {
r_ret = Math::rad2deg(axis_data[axis].angular_limit_lower);
} else if ("angular_limit_softness" == var_name) {
r_ret = axis_data[axis].angular_limit_softness;
} else if ("angular_restitution" == var_name) {
r_ret = axis_data[axis].angular_restitution;
} else if ("angular_damping" == var_name) {
r_ret = axis_data[axis].angular_damping;
} else if ("erp" == var_name) {
r_ret = axis_data[axis].erp;
} else if ("angular_spring_enabled" == var_name) {
r_ret = axis_data[axis].angular_spring_enabled;
} else if ("angular_spring_stiffness" == var_name) {
r_ret = axis_data[axis].angular_spring_stiffness;
} else if ("angular_spring_damping" == var_name) {
r_ret = axis_data[axis].angular_spring_damping;
} else if ("angular_equilibrium_point" == var_name) {
r_ret = axis_data[axis].angular_equilibrium_point;
} else {
return false;
}
return true;
}
void PhysicalBone3D::SixDOFJointData::_get_property_list(List<PropertyInfo> *p_list) const {
const StringName axis_names[] = { "x", "y", "z" };
for (int i = 0; i < 3; ++i) {
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/linear_limit_enabled"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_limit_upper"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_limit_lower"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/linear_spring_enabled"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_spring_stiffness"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_spring_damping"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_equilibrium_point"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_restitution", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/linear_damping", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/angular_limit_enabled"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_restitution", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_damping", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/erp"));
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/angular_spring_enabled"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_spring_stiffness"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_spring_damping"));
p_list->push_back(PropertyInfo(Variant::FLOAT, "joint_constraints/" + axis_names[i] + "/angular_equilibrium_point"));
}
}
bool PhysicalBone3D::_set(const StringName &p_name, const Variant &p_value) {
if (p_name == "bone_name") {
set_bone_name(p_value);
return true;
}
if (joint_data) {
if (joint_data->_set(p_name, p_value, joint)) {
#ifdef TOOLS_ENABLED
update_gizmos();
#endif
return true;
}
}
return false;
}
bool PhysicalBone3D::_get(const StringName &p_name, Variant &r_ret) const {
if (p_name == "bone_name") {
r_ret = get_bone_name();
return true;
}
if (joint_data) {
return joint_data->_get(p_name, r_ret);
}
return false;
}
void PhysicalBone3D::_get_property_list(List<PropertyInfo> *p_list) const {
Skeleton3D *parent = find_skeleton_parent(get_parent());
if (parent) {
String names;
for (int i = 0; i < parent->get_bone_count(); i++) {
if (i > 0) {
names += ",";
}
names += parent->get_bone_name(i);
}
p_list->push_back(PropertyInfo(Variant::STRING_NAME, "bone_name", PROPERTY_HINT_ENUM, names));
} else {
p_list->push_back(PropertyInfo(Variant::STRING_NAME, "bone_name"));
}
if (joint_data) {
joint_data->_get_property_list(p_list);
}
}
void PhysicalBone3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE:
parent_skeleton = find_skeleton_parent(get_parent());
update_bone_id();
reset_to_rest_position();
reset_physics_simulation_state();
if (joint_data) {
_reload_joint();
}
break;
case NOTIFICATION_EXIT_TREE: {
if (parent_skeleton) {
if (-1 != bone_id) {
parent_skeleton->unbind_physical_bone_from_bone(bone_id);
parent_skeleton->unbind_child_node_from_bone(bone_id, this);
bone_id = -1;
}
}
parent_skeleton = nullptr;
PhysicsServer3D::get_singleton()->joint_clear(joint);
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
if (Engine::get_singleton()->is_editor_hint()) {
update_offset();
}
} break;
}
}
void PhysicalBone3D::_direct_state_changed(Object *p_state) {
if (!simulate_physics || !_internal_simulate_physics) {
return;
}
/// Update bone transform
PhysicsDirectBodyState3D *state;
#ifdef DEBUG_ENABLED
state = Object::cast_to<PhysicsDirectBodyState3D>(p_state);
ERR_FAIL_NULL_MSG(state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState3D object as argument");
#else
state = (PhysicsDirectBodyState3D *)p_state; //trust it
#endif
Transform3D global_transform(state->get_transform());
set_ignore_transform_notification(true);
set_global_transform(global_transform);
set_ignore_transform_notification(false);
_on_transform_changed();
// Update skeleton
if (parent_skeleton) {
if (-1 != bone_id) {
parent_skeleton->set_bone_global_pose_override(bone_id, parent_skeleton->get_global_transform().affine_inverse() * (global_transform * body_offset_inverse), 1.0, true);
}
}
}
void PhysicalBone3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &PhysicalBone3D::apply_central_impulse);
ClassDB::bind_method(D_METHOD("apply_impulse", "impulse", "position"), &PhysicalBone3D::apply_impulse, Vector3());
ClassDB::bind_method(D_METHOD("set_joint_type", "joint_type"), &PhysicalBone3D::set_joint_type);
ClassDB::bind_method(D_METHOD("get_joint_type"), &PhysicalBone3D::get_joint_type);
ClassDB::bind_method(D_METHOD("set_joint_offset", "offset"), &PhysicalBone3D::set_joint_offset);
ClassDB::bind_method(D_METHOD("get_joint_offset"), &PhysicalBone3D::get_joint_offset);
ClassDB::bind_method(D_METHOD("set_joint_rotation", "euler"), &PhysicalBone3D::set_joint_rotation);
ClassDB::bind_method(D_METHOD("get_joint_rotation"), &PhysicalBone3D::get_joint_rotation);
ClassDB::bind_method(D_METHOD("set_body_offset", "offset"), &PhysicalBone3D::set_body_offset);
ClassDB::bind_method(D_METHOD("get_body_offset"), &PhysicalBone3D::get_body_offset);
ClassDB::bind_method(D_METHOD("get_simulate_physics"), &PhysicalBone3D::get_simulate_physics);
ClassDB::bind_method(D_METHOD("is_simulating_physics"), &PhysicalBone3D::is_simulating_physics);
ClassDB::bind_method(D_METHOD("get_bone_id"), &PhysicalBone3D::get_bone_id);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &PhysicalBone3D::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &PhysicalBone3D::get_mass);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &PhysicalBone3D::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &PhysicalBone3D::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &PhysicalBone3D::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &PhysicalBone3D::get_bounce);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &PhysicalBone3D::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &PhysicalBone3D::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &PhysicalBone3D::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &PhysicalBone3D::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &PhysicalBone3D::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &PhysicalBone3D::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &PhysicalBone3D::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &PhysicalBone3D::is_able_to_sleep);
ADD_GROUP("Joint", "joint_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "joint_type", PROPERTY_HINT_ENUM, "None,PinJoint,ConeJoint,HingeJoint,SliderJoint,6DOFJoint"), "set_joint_type", "get_joint_type");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM3D, "joint_offset"), "set_joint_offset", "get_joint_offset");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "joint_rotation", PROPERTY_HINT_RANGE, "-360,360,0.01,or_lesser,or_greater,radians"), "set_joint_rotation", "get_joint_rotation");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM3D, "body_offset"), "set_body_offset", "get_body_offset");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mass", PROPERTY_HINT_RANGE, "0.01,65535,0.01,exp"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "gravity_scale", PROPERTY_HINT_RANGE, "-10,10,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "linear_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "angular_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
BIND_ENUM_CONSTANT(JOINT_TYPE_NONE);
BIND_ENUM_CONSTANT(JOINT_TYPE_PIN);
BIND_ENUM_CONSTANT(JOINT_TYPE_CONE);
BIND_ENUM_CONSTANT(JOINT_TYPE_HINGE);
BIND_ENUM_CONSTANT(JOINT_TYPE_SLIDER);
BIND_ENUM_CONSTANT(JOINT_TYPE_6DOF);
}
Skeleton3D *PhysicalBone3D::find_skeleton_parent(Node *p_parent) {
if (!p_parent) {
return nullptr;
}
Skeleton3D *s = Object::cast_to<Skeleton3D>(p_parent);
return s ? s : find_skeleton_parent(p_parent->get_parent());
}
void PhysicalBone3D::_update_joint_offset() {
_fix_joint_offset();
set_ignore_transform_notification(true);
reset_to_rest_position();
set_ignore_transform_notification(false);
#ifdef TOOLS_ENABLED
update_gizmos();
#endif
}
void PhysicalBone3D::_fix_joint_offset() {
// Clamp joint origin to bone origin
if (parent_skeleton) {
joint_offset.origin = body_offset.affine_inverse().origin;
}
}
void PhysicalBone3D::_reload_joint() {
if (!parent_skeleton) {
PhysicsServer3D::get_singleton()->joint_clear(joint);
return;
}
PhysicalBone3D *body_a = parent_skeleton->get_physical_bone_parent(bone_id);
if (!body_a) {
PhysicsServer3D::get_singleton()->joint_clear(joint);
return;
}
Transform3D joint_transf = get_global_transform() * joint_offset;
Transform3D local_a = body_a->get_global_transform().affine_inverse() * joint_transf;
local_a.orthonormalize();
switch (get_joint_type()) {
case JOINT_TYPE_PIN: {
PhysicsServer3D::get_singleton()->joint_make_pin(joint, body_a->get_rid(), local_a.origin, get_rid(), joint_offset.origin);
const PinJointData *pjd(static_cast<const PinJointData *>(joint_data));
PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_BIAS, pjd->bias);
PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_DAMPING, pjd->damping);
PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP, pjd->impulse_clamp);
} break;
case JOINT_TYPE_CONE: {
PhysicsServer3D::get_singleton()->joint_make_cone_twist(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const ConeJointData *cjd(static_cast<const ConeJointData *>(joint_data));
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN, cjd->swing_span);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN, cjd->twist_span);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_BIAS, cjd->bias);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS, cjd->softness);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION, cjd->relaxation);
} break;
case JOINT_TYPE_HINGE: {
PhysicsServer3D::get_singleton()->joint_make_hinge(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const HingeJointData *hjd(static_cast<const HingeJointData *>(joint_data));
PhysicsServer3D::get_singleton()->hinge_joint_set_flag(joint, PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT, hjd->angular_limit_enabled);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER, hjd->angular_limit_upper);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER, hjd->angular_limit_lower);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS, hjd->angular_limit_bias);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS, hjd->angular_limit_softness);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION, hjd->angular_limit_relaxation);
} break;
case JOINT_TYPE_SLIDER: {
PhysicsServer3D::get_singleton()->joint_make_slider(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const SliderJointData *sjd(static_cast<const SliderJointData *>(joint_data));
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER, sjd->linear_limit_upper);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER, sjd->linear_limit_lower);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, sjd->linear_limit_softness);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, sjd->linear_limit_restitution);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, sjd->linear_limit_restitution);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, sjd->angular_limit_upper);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, sjd->angular_limit_lower);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, sjd->angular_limit_damping);
} break;
case JOINT_TYPE_6DOF: {
PhysicsServer3D::get_singleton()->joint_make_generic_6dof(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const SixDOFJointData *g6dofjd(static_cast<const SixDOFJointData *>(joint_data));
for (int axis = 0; axis < 3; ++axis) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, g6dofjd->axis_data[axis].linear_limit_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT, g6dofjd->axis_data[axis].linear_limit_upper);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT, g6dofjd->axis_data[axis].linear_limit_lower);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].linear_limit_softness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, g6dofjd->axis_data[axis].linear_spring_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].linear_spring_stiffness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING, g6dofjd->axis_data[axis].linear_spring_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].linear_equilibrium_point);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION, g6dofjd->axis_data[axis].linear_restitution);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING, g6dofjd->axis_data[axis].linear_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, g6dofjd->axis_data[axis].angular_limit_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, g6dofjd->axis_data[axis].angular_limit_upper);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, g6dofjd->axis_data[axis].angular_limit_lower);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].angular_limit_softness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION, g6dofjd->axis_data[axis].angular_restitution);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING, g6dofjd->axis_data[axis].angular_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP, g6dofjd->axis_data[axis].erp);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, g6dofjd->axis_data[axis].angular_spring_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].angular_spring_stiffness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, g6dofjd->axis_data[axis].angular_spring_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].angular_equilibrium_point);
}
} break;
case JOINT_TYPE_NONE: {
} break;
}
}
void PhysicalBone3D::_on_bone_parent_changed() {
_reload_joint();
}
void PhysicalBone3D::_set_gizmo_move_joint(bool p_move_joint) {
#ifdef TOOLS_ENABLED
gizmo_move_joint = p_move_joint;
Node3DEditor::get_singleton()->update_transform_gizmo();
#endif
}
#ifdef TOOLS_ENABLED
Transform3D PhysicalBone3D::get_global_gizmo_transform() const {
return gizmo_move_joint ? get_global_transform() * joint_offset : get_global_transform();
}
Transform3D PhysicalBone3D::get_local_gizmo_transform() const {
return gizmo_move_joint ? get_transform() * joint_offset : get_transform();
}
#endif
const PhysicalBone3D::JointData *PhysicalBone3D::get_joint_data() const {
return joint_data;
}
Skeleton3D *PhysicalBone3D::find_skeleton_parent() {
return find_skeleton_parent(this);
}
void PhysicalBone3D::set_joint_type(JointType p_joint_type) {
if (p_joint_type == get_joint_type()) {
return;
}
if (joint_data) {
memdelete(joint_data);
}
joint_data = nullptr;
switch (p_joint_type) {
case JOINT_TYPE_PIN:
joint_data = memnew(PinJointData);
break;
case JOINT_TYPE_CONE:
joint_data = memnew(ConeJointData);
break;
case JOINT_TYPE_HINGE:
joint_data = memnew(HingeJointData);
break;
case JOINT_TYPE_SLIDER:
joint_data = memnew(SliderJointData);
break;
case JOINT_TYPE_6DOF:
joint_data = memnew(SixDOFJointData);
break;
case JOINT_TYPE_NONE:
break;
}
_reload_joint();
#ifdef TOOLS_ENABLED
notify_property_list_changed();
update_gizmos();
#endif
}
PhysicalBone3D::JointType PhysicalBone3D::get_joint_type() const {
return joint_data ? joint_data->get_joint_type() : JOINT_TYPE_NONE;
}
void PhysicalBone3D::set_joint_offset(const Transform3D &p_offset) {
joint_offset = p_offset;
_update_joint_offset();
}
const Transform3D &PhysicalBone3D::get_joint_offset() const {
return joint_offset;
}
void PhysicalBone3D::set_joint_rotation(const Vector3 &p_euler_rad) {
joint_offset.basis.set_euler_scale(p_euler_rad, joint_offset.basis.get_scale());
_update_joint_offset();
}
Vector3 PhysicalBone3D::get_joint_rotation() const {
return joint_offset.basis.get_rotation();
}
const Transform3D &PhysicalBone3D::get_body_offset() const {
return body_offset;
}
void PhysicalBone3D::set_body_offset(const Transform3D &p_offset) {
body_offset = p_offset;
body_offset_inverse = body_offset.affine_inverse();
_update_joint_offset();
}
void PhysicalBone3D::set_simulate_physics(bool p_simulate) {
if (simulate_physics == p_simulate) {
return;
}
simulate_physics = p_simulate;
reset_physics_simulation_state();
}
bool PhysicalBone3D::get_simulate_physics() {
return simulate_physics;
}
bool PhysicalBone3D::is_simulating_physics() {
return _internal_simulate_physics;
}
void PhysicalBone3D::set_bone_name(const String &p_name) {
bone_name = p_name;
bone_id = -1;
update_bone_id();
reset_to_rest_position();
}
const String &PhysicalBone3D::get_bone_name() const {
return bone_name;
}
void PhysicalBone3D::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_MASS, mass);
}
real_t PhysicalBone3D::get_mass() const {
return mass;
}
void PhysicalBone3D::set_friction(real_t p_friction) {
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
friction = p_friction;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, friction);
}
real_t PhysicalBone3D::get_friction() const {
return friction;
}
void PhysicalBone3D::set_bounce(real_t p_bounce) {
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
bounce = p_bounce;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, bounce);
}
real_t PhysicalBone3D::get_bounce() const {
return bounce;
}
void PhysicalBone3D::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t PhysicalBone3D::get_gravity_scale() const {
return gravity_scale;
}
void PhysicalBone3D::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < -1);
linear_damp = p_linear_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t PhysicalBone3D::get_linear_damp() const {
return linear_damp;
}
void PhysicalBone3D::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < -1);
angular_damp = p_angular_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t PhysicalBone3D::get_angular_damp() const {
return angular_damp;
}
void PhysicalBone3D::set_can_sleep(bool p_active) {
can_sleep = p_active;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_CAN_SLEEP, p_active);
}
bool PhysicalBone3D::is_able_to_sleep() const {
return can_sleep;
}
PhysicalBone3D::PhysicalBone3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_STATIC) {
joint = PhysicsServer3D::get_singleton()->joint_create();
reset_physics_simulation_state();
}
PhysicalBone3D::~PhysicalBone3D() {
if (joint_data) {
memdelete(joint_data);
}
PhysicsServer3D::get_singleton()->free(joint);
}
void PhysicalBone3D::update_bone_id() {
if (!parent_skeleton) {
return;
}
const int new_bone_id = parent_skeleton->find_bone(bone_name);
if (new_bone_id != bone_id) {
if (-1 != bone_id) {
// Assert the unbind from old node
parent_skeleton->unbind_physical_bone_from_bone(bone_id);
parent_skeleton->unbind_child_node_from_bone(bone_id, this);
}
bone_id = new_bone_id;
parent_skeleton->bind_physical_bone_to_bone(bone_id, this);
_fix_joint_offset();
reset_physics_simulation_state();
}
}
void PhysicalBone3D::update_offset() {
#ifdef TOOLS_ENABLED
if (parent_skeleton) {
Transform3D bone_transform(parent_skeleton->get_global_transform());
if (-1 != bone_id) {
bone_transform *= parent_skeleton->get_bone_global_pose(bone_id);
}
if (gizmo_move_joint) {
bone_transform *= body_offset;
set_joint_offset(bone_transform.affine_inverse() * get_global_transform());
} else {
set_body_offset(bone_transform.affine_inverse() * get_global_transform());
}
}
#endif
}
void PhysicalBone3D::_start_physics_simulation() {
if (_internal_simulate_physics || !parent_skeleton) {
return;
}
reset_to_rest_position();
set_body_mode(PhysicsServer3D::BODY_MODE_DYNAMIC);
PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer());
PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask());
PhysicsServer3D::get_singleton()->body_set_force_integration_callback(get_rid(), callable_mp(this, &PhysicalBone3D::_direct_state_changed));
set_as_top_level(true);
_internal_simulate_physics = true;
}
void PhysicalBone3D::_stop_physics_simulation() {
if (!parent_skeleton) {
return;
}
if (parent_skeleton->get_animate_physical_bones()) {
set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC);
PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer());
PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask());
} else {
set_body_mode(PhysicsServer3D::BODY_MODE_STATIC);
PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), 0);
PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), 0);
}
if (_internal_simulate_physics) {
PhysicsServer3D::get_singleton()->body_set_force_integration_callback(get_rid(), Callable());
parent_skeleton->set_bone_global_pose_override(bone_id, Transform3D(), 0.0, false);
set_as_top_level(false);
_internal_simulate_physics = false;
}
}