3296 lines
107 KiB
GLSL
3296 lines
107 KiB
GLSL
#[vertex]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#include "scene_forward_inc.glsl"
|
|
|
|
/* INPUT ATTRIBS */
|
|
|
|
layout(location = 0) in vec3 vertex_attrib;
|
|
|
|
//only for pure render depth when normal is not used
|
|
|
|
#ifdef NORMAL_USED
|
|
layout(location = 1) in vec3 normal_attrib;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 2) in vec4 tangent_attrib;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 3) in vec4 color_attrib;
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
layout(location = 4) in vec2 uv_attrib;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
|
|
layout(location = 5) in vec2 uv2_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM0_USED)
|
|
layout(location = 6) in vec4 custom0_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM1_USED)
|
|
layout(location = 7) in vec4 custom1_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM2_USED)
|
|
layout(location = 8) in vec4 custom2_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM3_USED)
|
|
layout(location = 9) in vec4 custom3_attrib;
|
|
#endif
|
|
|
|
#if defined(BONES_USED)
|
|
layout(location = 10) in uvec4 bone_attrib;
|
|
#endif
|
|
|
|
#if defined(WEIGHTS_USED)
|
|
layout(location = 11) in vec4 weight_attrib;
|
|
#endif
|
|
|
|
/* Varyings */
|
|
|
|
layout(location = 0) out vec3 vertex_interp;
|
|
|
|
#ifdef NORMAL_USED
|
|
layout(location = 1) out vec3 normal_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 2) out vec4 color_interp;
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
layout(location = 3) out vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 4) out vec2 uv2_interp;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 5) out vec3 tangent_interp;
|
|
layout(location = 6) out vec3 binormal_interp;
|
|
#endif
|
|
|
|
#ifdef USE_MATERIAL_UNIFORMS
|
|
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
|
|
/* clang-format off */
|
|
MATERIAL_UNIFORMS
|
|
/* clang-format on */
|
|
} material;
|
|
#endif
|
|
|
|
invariant gl_Position;
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
layout(location = 8) out float dp_clip;
|
|
|
|
#endif
|
|
|
|
layout(location = 9) out flat uint instance_index;
|
|
|
|
/* clang-format off */
|
|
|
|
VERTEX_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
void main() {
|
|
vec4 instance_custom = vec4(0.0);
|
|
#if defined(COLOR_USED)
|
|
color_interp = color_attrib;
|
|
#endif
|
|
|
|
instance_index = draw_call.instance_index;
|
|
|
|
bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH);
|
|
if (!is_multimesh) {
|
|
instance_index += gl_InstanceIndex;
|
|
}
|
|
|
|
mat4 world_matrix = instances.data[instance_index].transform;
|
|
|
|
mat3 world_normal_matrix;
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
|
|
world_normal_matrix = inverse(mat3(world_matrix));
|
|
} else {
|
|
world_normal_matrix = mat3(world_matrix);
|
|
}
|
|
|
|
if (is_multimesh) {
|
|
//multimesh, instances are for it
|
|
uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
|
|
offset *= gl_InstanceIndex;
|
|
|
|
mat4 matrix;
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
|
|
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 2;
|
|
} else {
|
|
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 3;
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
|
|
#ifdef COLOR_USED
|
|
color_interp *= transforms.data[offset];
|
|
#endif
|
|
offset += 1;
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
|
|
instance_custom = transforms.data[offset];
|
|
}
|
|
|
|
//transpose
|
|
matrix = transpose(matrix);
|
|
world_matrix = world_matrix * matrix;
|
|
world_normal_matrix = world_normal_matrix * mat3(matrix);
|
|
}
|
|
|
|
vec3 vertex = vertex_attrib;
|
|
#ifdef NORMAL_USED
|
|
vec3 normal = normal_attrib * 2.0 - 1.0;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
|
|
float binormalf = tangent_attrib.a * 2.0 - 1.0;
|
|
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
|
|
#endif
|
|
|
|
#if 0
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
|
|
//multimesh, instances are for it
|
|
|
|
uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
|
|
uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3;
|
|
vec2 weights_01 = unpackUnorm2x16(bone_attrib.z);
|
|
vec2 weights_23 = unpackUnorm2x16(bone_attrib.w);
|
|
|
|
mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x;
|
|
m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y;
|
|
m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x;
|
|
m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y;
|
|
|
|
//reverse order because its transposed
|
|
vertex = (vec4(vertex, 1.0) * m).xyz;
|
|
normal = (vec4(normal, 0.0) * m).xyz;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
tangent = (vec4(tangent, 0.0) * m).xyz;
|
|
binormal = (vec4(binormal, 0.0) * m).xyz;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
uv_interp = uv_attrib;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
uv2_interp = uv2_attrib;
|
|
#endif
|
|
|
|
#ifdef OVERRIDE_POSITION
|
|
vec4 position;
|
|
#endif
|
|
|
|
mat4 projection_matrix = scene_data.projection_matrix;
|
|
|
|
//using world coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
|
|
|
|
normal = world_normal_matrix * normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
tangent = world_normal_matrix * tangent;
|
|
binormal = world_normal_matrix * binormal;
|
|
|
|
#endif
|
|
#endif
|
|
|
|
float roughness = 1.0;
|
|
|
|
mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
|
|
mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
|
|
|
|
{
|
|
/* clang-format off */
|
|
|
|
VERTEX_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
// using local coordinates (default)
|
|
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (modelview * vec4(vertex, 1.0)).xyz;
|
|
#ifdef NORMAL_USED
|
|
normal = modelview_normal * normal;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
binormal = modelview_normal * binormal;
|
|
tangent = modelview_normal * tangent;
|
|
#endif
|
|
|
|
//using world coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
|
|
normal = mat3(scene_data.inverse_normal_matrix) * normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
|
|
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
|
|
#endif
|
|
#endif
|
|
|
|
vertex_interp = vertex;
|
|
#ifdef NORMAL_USED
|
|
normal_interp = normal;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
tangent_interp = tangent;
|
|
binormal_interp = binormal;
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
vertex_interp.z *= scene_data.dual_paraboloid_side;
|
|
|
|
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
|
|
|
|
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
|
|
|
|
vec3 vtx = vertex_interp;
|
|
float distance = length(vtx);
|
|
vtx = normalize(vtx);
|
|
vtx.xy /= 1.0 - vtx.z;
|
|
vtx.z = (distance / scene_data.z_far);
|
|
vtx.z = vtx.z * 2.0 - 1.0;
|
|
vertex_interp = vtx;
|
|
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_DEPTH
|
|
|
|
#ifdef OVERRIDE_POSITION
|
|
gl_Position = position;
|
|
#else
|
|
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
if (scene_data.pancake_shadows) {
|
|
if (gl_Position.z <= 0.00001) {
|
|
gl_Position.z = 0.00001;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
if (scene_data.material_uv2_mode) {
|
|
vec2 uv_offset = unpackHalf2x16(draw_call.uv_offset);
|
|
gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0;
|
|
gl_Position.z = 0.00001;
|
|
gl_Position.w = 1.0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#include "scene_forward_inc.glsl"
|
|
|
|
/* Varyings */
|
|
|
|
layout(location = 0) in vec3 vertex_interp;
|
|
|
|
#ifdef NORMAL_USED
|
|
layout(location = 1) in vec3 normal_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 2) in vec4 color_interp;
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
layout(location = 3) in vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 4) in vec2 uv2_interp;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 5) in vec3 tangent_interp;
|
|
layout(location = 6) in vec3 binormal_interp;
|
|
#endif
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
layout(location = 8) in float dp_clip;
|
|
|
|
#endif
|
|
|
|
layout(location = 9) in flat uint instance_index;
|
|
|
|
//defines to keep compatibility with vertex
|
|
|
|
#define world_matrix instances.data[instance_index].transform
|
|
#define projection_matrix scene_data.projection_matrix
|
|
|
|
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
|
|
//both required for transmittance to be enabled
|
|
#define LIGHT_TRANSMITTANCE_USED
|
|
#endif
|
|
|
|
#ifdef USE_MATERIAL_UNIFORMS
|
|
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
|
|
/* clang-format off */
|
|
MATERIAL_UNIFORMS
|
|
/* clang-format on */
|
|
} material;
|
|
#endif
|
|
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
|
|
layout(location = 0) out vec4 albedo_output_buffer;
|
|
layout(location = 1) out vec4 normal_output_buffer;
|
|
layout(location = 2) out vec4 orm_output_buffer;
|
|
layout(location = 3) out vec4 emission_output_buffer;
|
|
layout(location = 4) out float depth_output_buffer;
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
|
|
layout(location = 0) out vec4 normal_roughness_output_buffer;
|
|
|
|
#ifdef MODE_RENDER_GIPROBE
|
|
layout(location = 1) out uvec2 giprobe_buffer;
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_NORMAL
|
|
#else // RENDER DEPTH
|
|
|
|
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
|
|
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
|
|
#else
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
#endif
|
|
|
|
#endif // RENDER DEPTH
|
|
|
|
#ifdef ALPHA_HASH_USED
|
|
|
|
float hash_2d(vec2 p) {
|
|
return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) *
|
|
(0.1 + abs(sin(13.0 * p.y + p.x))));
|
|
}
|
|
|
|
float hash_3d(vec3 p) {
|
|
return hash_2d(vec2(hash_2d(p.xy), p.z));
|
|
}
|
|
|
|
float compute_alpha_hash_threshold(vec3 pos, float hash_scale) {
|
|
vec3 dx = dFdx(pos);
|
|
vec3 dy = dFdx(pos);
|
|
float delta_max_sqr = max(length(dx), length(dy));
|
|
float pix_scale = 1.0 / (hash_scale * delta_max_sqr);
|
|
|
|
vec2 pix_scales =
|
|
vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale))));
|
|
|
|
vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)),
|
|
hash_3d(floor(pix_scales.y * pos.xyz)));
|
|
|
|
float lerp_factor = fract(log2(pix_scale));
|
|
|
|
float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y;
|
|
|
|
float min_lerp = min(lerp_factor, 1.0 - lerp_factor);
|
|
|
|
vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)),
|
|
(a_interp - 0.5 * min_lerp) / (1.0 - min_lerp),
|
|
1.0 - ((1.0 - a_interp) * (1.0 - a_interp) /
|
|
(2.0 * min_lerp * (1.0 - min_lerp))));
|
|
|
|
float alpha_hash_threshold =
|
|
(lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z;
|
|
|
|
return clamp(alpha_hash_threshold, 0.0, 1.0);
|
|
}
|
|
|
|
#endif // ALPHA_HASH_USED
|
|
|
|
#ifdef ALPHA_ANTIALIASING_EDGE_USED
|
|
|
|
float calc_mip_level(vec2 texture_coord) {
|
|
vec2 dx = dFdx(texture_coord);
|
|
vec2 dy = dFdy(texture_coord);
|
|
float delta_max_sqr = max(dot(dx, dx), dot(dy, dy));
|
|
return max(0.0, 0.5 * log2(delta_max_sqr));
|
|
}
|
|
|
|
float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) {
|
|
input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number
|
|
input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5;
|
|
return clamp(input_alpha, 0.0, 1.0);
|
|
}
|
|
|
|
#endif // ALPHA_ANTIALIASING_USED
|
|
|
|
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
|
|
// We're dividing this factor off because the overall term we'll end up looks like
|
|
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
|
|
//
|
|
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
|
|
//
|
|
// We're basically regouping this as
|
|
//
|
|
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
|
|
//
|
|
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
|
|
//
|
|
// The contents of the D and G (G1) functions (GGX) are taken from
|
|
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
|
|
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
float G_GGX_2cos(float cos_theta_m, float alpha) {
|
|
// Schlick's approximation
|
|
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
|
|
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
|
|
// It nevertheless approximates GGX well with k = alpha/2.
|
|
float k = 0.5 * alpha;
|
|
return 0.5 / (cos_theta_m * (1.0 - k) + k);
|
|
|
|
// float cos2 = cos_theta_m * cos_theta_m;
|
|
// float sin2 = (1.0 - cos2);
|
|
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
|
|
}
|
|
|
|
float D_GGX(float cos_theta_m, float alpha) {
|
|
float alpha2 = alpha * alpha;
|
|
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
|
|
return alpha2 / (M_PI * d * d);
|
|
}
|
|
|
|
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
|
float cos2 = cos_theta_m * cos_theta_m;
|
|
float sin2 = (1.0 - cos2);
|
|
float s_x = alpha_x * cos_phi;
|
|
float s_y = alpha_y * sin_phi;
|
|
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
|
|
}
|
|
|
|
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
|
|
float cos2 = cos_theta_m * cos_theta_m;
|
|
float sin2 = (1.0 - cos2);
|
|
float r_x = cos_phi / alpha_x;
|
|
float r_y = sin_phi / alpha_y;
|
|
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
|
|
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
|
|
}
|
|
|
|
float SchlickFresnel(float u) {
|
|
float m = 1.0 - u;
|
|
float m2 = m * m;
|
|
return m2 * m2 * m; // pow(m,5)
|
|
}
|
|
|
|
float GTR1(float NdotH, float a) {
|
|
if (a >= 1.0)
|
|
return 1.0 / M_PI;
|
|
float a2 = a * a;
|
|
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
|
|
return (a2 - 1.0) / (M_PI * log(a2) * t);
|
|
}
|
|
|
|
vec3 F0(float metallic, float specular, vec3 albedo) {
|
|
float dielectric = 0.16 * specular * specular;
|
|
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
|
|
// see https://google.github.io/filament/Filament.md.html
|
|
return mix(vec3(dielectric), albedo, vec3(metallic));
|
|
}
|
|
|
|
void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
vec3 backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
vec4 transmittance_color,
|
|
float transmittance_depth,
|
|
float transmittance_curve,
|
|
float transmittance_boost,
|
|
float transmittance_z,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
float rim, float rim_tint, vec3 rim_color,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
float clearcoat, float clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
vec3 B, vec3 T, float anisotropy,
|
|
#endif
|
|
#ifdef USE_SOFT_SHADOWS
|
|
float A,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
inout float alpha,
|
|
#endif
|
|
inout vec3 diffuse_light, inout vec3 specular_light) {
|
|
|
|
#if defined(USE_LIGHT_SHADER_CODE)
|
|
// light is written by the light shader
|
|
|
|
vec3 normal = N;
|
|
vec3 light = L;
|
|
vec3 view = V;
|
|
|
|
/* clang-format off */
|
|
|
|
LIGHT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
|
|
#else
|
|
|
|
#ifdef USE_SOFT_SHADOWS
|
|
float NdotL = min(A + dot(N, L), 1.0);
|
|
#else
|
|
float NdotL = dot(N, L);
|
|
#endif
|
|
float cNdotL = max(NdotL, 0.0); // clamped NdotL
|
|
float NdotV = dot(N, V);
|
|
float cNdotV = max(NdotV, 0.0);
|
|
|
|
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
|
|
vec3 H = normalize(V + L);
|
|
#endif
|
|
|
|
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
|
|
#ifdef USE_SOFT_SHADOWS
|
|
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
|
|
#else
|
|
float cNdotH = clamp(dot(N, H), 0.0, 1.0);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
|
|
#ifdef USE_SOFT_SHADOWS
|
|
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
|
|
#else
|
|
float cLdotH = clamp(dot(L, H), 0.0, 1.0);
|
|
#endif
|
|
#endif
|
|
|
|
float metallic = unpackUnorm4x8(orms).z;
|
|
if (metallic < 1.0) {
|
|
float roughness = unpackUnorm4x8(orms).y;
|
|
|
|
#if defined(DIFFUSE_OREN_NAYAR)
|
|
vec3 diffuse_brdf_NL;
|
|
#else
|
|
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
|
|
#endif
|
|
|
|
#if defined(DIFFUSE_LAMBERT_WRAP)
|
|
// energy conserving lambert wrap shader
|
|
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
|
|
#elif defined(DIFFUSE_TOON)
|
|
|
|
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
|
|
|
|
#elif defined(DIFFUSE_BURLEY)
|
|
|
|
{
|
|
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
|
|
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
|
|
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
|
|
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
|
|
/*
|
|
float energyBias = mix(roughness, 0.0, 0.5);
|
|
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
|
|
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
|
|
float f0 = 1.0;
|
|
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
|
|
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
|
|
|
|
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
|
|
*/
|
|
}
|
|
#else
|
|
// lambert
|
|
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
|
|
#endif
|
|
|
|
diffuse_light += light_color * diffuse_brdf_NL * attenuation;
|
|
|
|
#if defined(LIGHT_BACKLIGHT_USED)
|
|
diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
|
|
#endif
|
|
|
|
#if defined(LIGHT_RIM_USED)
|
|
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
|
|
diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color;
|
|
#endif
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
|
|
#ifdef SSS_MODE_SKIN
|
|
|
|
{
|
|
float scale = 8.25 / transmittance_depth;
|
|
float d = scale * abs(transmittance_z);
|
|
float dd = -d * d;
|
|
vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
|
|
vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
|
|
vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
|
|
vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
|
|
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
|
|
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
|
|
|
|
diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
|
|
}
|
|
#else
|
|
|
|
if (transmittance_depth > 0.0) {
|
|
float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0);
|
|
|
|
fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
|
|
fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);
|
|
|
|
diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade;
|
|
}
|
|
|
|
#endif //SSS_MODE_SKIN
|
|
|
|
#endif //LIGHT_TRANSMITTANCE_USED
|
|
}
|
|
|
|
float roughness = unpackUnorm4x8(orms).y;
|
|
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
|
|
|
|
// D
|
|
|
|
#if defined(SPECULAR_BLINN)
|
|
|
|
//normalized blinn
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float blinn = pow(cNdotH, shininess) * cNdotL;
|
|
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
|
|
float intensity = blinn;
|
|
|
|
specular_light += light_color * intensity * attenuation * specular_amount;
|
|
|
|
#elif defined(SPECULAR_PHONG)
|
|
|
|
vec3 R = normalize(-reflect(L, N));
|
|
float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
|
|
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
|
|
float phong = pow(cRdotV, shininess);
|
|
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
|
|
float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
|
|
|
|
specular_light += light_color * intensity * attenuation * specular_amount;
|
|
|
|
#elif defined(SPECULAR_TOON)
|
|
|
|
vec3 R = normalize(-reflect(L, N));
|
|
float RdotV = dot(R, V);
|
|
float mid = 1.0 - roughness;
|
|
mid *= mid;
|
|
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
|
|
diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
|
|
|
|
#elif defined(SPECULAR_DISABLED)
|
|
// none..
|
|
|
|
#elif defined(SPECULAR_SCHLICK_GGX)
|
|
// shlick+ggx as default
|
|
|
|
#if defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
float alpha_ggx = roughness * roughness;
|
|
float aspect = sqrt(1.0 - anisotropy * 0.9);
|
|
float ax = alpha_ggx / aspect;
|
|
float ay = alpha_ggx * aspect;
|
|
float XdotH = dot(T, H);
|
|
float YdotH = dot(B, H);
|
|
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
|
|
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
|
|
|
|
#else
|
|
float alpha_ggx = roughness * roughness;
|
|
float D = D_GGX(cNdotH, alpha_ggx);
|
|
float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
|
|
#endif
|
|
// F
|
|
float cLdotH5 = SchlickFresnel(cLdotH);
|
|
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
|
|
|
|
vec3 specular_brdf_NL = cNdotL * D * F * G;
|
|
|
|
specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
|
|
#endif
|
|
|
|
#if defined(LIGHT_CLEARCOAT_USED)
|
|
|
|
#if !defined(SPECULAR_SCHLICK_GGX)
|
|
float cLdotH5 = SchlickFresnel(cLdotH);
|
|
#endif
|
|
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
|
|
float Fr = mix(.04, 1.0, cLdotH5);
|
|
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
|
|
|
|
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
|
|
|
|
specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0));
|
|
#endif
|
|
|
|
#endif //defined(USE_LIGHT_SHADER_CODE)
|
|
}
|
|
|
|
#ifndef USE_NO_SHADOWS
|
|
|
|
// Produces cheap white noise, optimized for window-space
|
|
// Comes from: https://www.shadertoy.com/view/4djSRW
|
|
// Copyright: Dave Hoskins, MIT License
|
|
float quick_hash(vec2 pos) {
|
|
vec3 p3 = fract(vec3(pos.xyx) * .1031);
|
|
p3 += dot(p3, p3.yzx + 33.33);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
|
|
vec2 pos = coord.xy;
|
|
float depth = coord.z;
|
|
|
|
//if only one sample is taken, take it from the center
|
|
if (scene_data.directional_soft_shadow_samples == 1) {
|
|
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
|
|
}
|
|
|
|
mat2 disk_rotation;
|
|
{
|
|
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
|
|
float sr = sin(r);
|
|
float cr = cos(r);
|
|
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
|
|
}
|
|
|
|
float avg = 0.0;
|
|
|
|
for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) {
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
|
|
}
|
|
|
|
return avg * (1.0 / float(scene_data.directional_soft_shadow_samples));
|
|
}
|
|
|
|
float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
|
|
vec2 pos = coord.xy;
|
|
float depth = coord.z;
|
|
|
|
//if only one sample is taken, take it from the center
|
|
if (scene_data.soft_shadow_samples == 1) {
|
|
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
|
|
}
|
|
|
|
mat2 disk_rotation;
|
|
{
|
|
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
|
|
float sr = sin(r);
|
|
float cr = cos(r);
|
|
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
|
|
}
|
|
|
|
float avg = 0.0;
|
|
|
|
for (uint i = 0; i < scene_data.soft_shadow_samples; i++) {
|
|
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0));
|
|
}
|
|
|
|
return avg * (1.0 / float(scene_data.soft_shadow_samples));
|
|
}
|
|
|
|
float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
|
|
//find blocker
|
|
float blocker_count = 0.0;
|
|
float blocker_average = 0.0;
|
|
|
|
mat2 disk_rotation;
|
|
{
|
|
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
|
|
float sr = sin(r);
|
|
float cr = cos(r);
|
|
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
|
|
}
|
|
|
|
for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
|
|
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
|
|
float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
|
|
if (d < pssm_coord.z) {
|
|
blocker_average += d;
|
|
blocker_count += 1.0;
|
|
}
|
|
}
|
|
|
|
if (blocker_count > 0.0) {
|
|
//blockers found, do soft shadow
|
|
blocker_average /= blocker_count;
|
|
float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
|
|
tex_scale *= penumbra;
|
|
|
|
float s = 0.0;
|
|
for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
|
|
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
|
|
s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
|
|
}
|
|
|
|
return s / float(scene_data.directional_penumbra_shadow_samples);
|
|
|
|
} else {
|
|
//no blockers found, so no shadow
|
|
return 1.0;
|
|
}
|
|
}
|
|
|
|
#endif //USE_NO_SHADOWS
|
|
|
|
float get_omni_attenuation(float distance, float inv_range, float decay) {
|
|
float nd = distance * inv_range;
|
|
nd *= nd;
|
|
nd *= nd; // nd^4
|
|
nd = max(1.0 - nd, 0.0);
|
|
nd *= nd; // nd^2
|
|
return nd * pow(max(distance, 0.0001), -decay);
|
|
}
|
|
|
|
float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) {
|
|
#ifndef USE_NO_SHADOWS
|
|
if (omni_lights.data[idx].shadow_enabled) {
|
|
// there is a shadowmap
|
|
|
|
vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
vec4 splane = (omni_lights.data[idx].shadow_matrix * v);
|
|
float shadow_len = length(splane.xyz); //need to remember shadow len from here
|
|
|
|
{
|
|
vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius;
|
|
nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
|
|
v.xyz += nofs;
|
|
splane = (omni_lights.data[idx].shadow_matrix * v);
|
|
}
|
|
|
|
float shadow;
|
|
|
|
#ifdef USE_SOFT_SHADOWS
|
|
if (omni_lights.data[idx].soft_shadow_size > 0.0) {
|
|
//soft shadow
|
|
|
|
//find blocker
|
|
|
|
float blocker_count = 0.0;
|
|
float blocker_average = 0.0;
|
|
|
|
mat2 disk_rotation;
|
|
{
|
|
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
|
|
float sr = sin(r);
|
|
float cr = cos(r);
|
|
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
|
|
}
|
|
|
|
vec3 normal = normalize(splane.xyz);
|
|
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, normal));
|
|
vec3 bitangent = normalize(cross(tangent, normal));
|
|
float z_norm = shadow_len * omni_lights.data[idx].inv_radius;
|
|
|
|
tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
|
|
bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
|
|
|
|
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
|
|
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
|
|
|
|
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
|
|
|
|
pos = normalize(pos);
|
|
vec4 uv_rect = omni_lights.data[idx].atlas_rect;
|
|
|
|
if (pos.z >= 0.0) {
|
|
pos.z += 1.0;
|
|
uv_rect.y += uv_rect.w;
|
|
} else {
|
|
pos.z = 1.0 - pos.z;
|
|
}
|
|
|
|
pos.xy /= pos.z;
|
|
|
|
pos.xy = pos.xy * 0.5 + 0.5;
|
|
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
|
|
|
|
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
|
|
if (d < z_norm) {
|
|
blocker_average += d;
|
|
blocker_count += 1.0;
|
|
}
|
|
}
|
|
|
|
if (blocker_count > 0.0) {
|
|
//blockers found, do soft shadow
|
|
blocker_average /= blocker_count;
|
|
float penumbra = (z_norm - blocker_average) / blocker_average;
|
|
tangent *= penumbra;
|
|
bitangent *= penumbra;
|
|
|
|
z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias;
|
|
|
|
shadow = 0.0;
|
|
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
|
|
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
|
|
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
|
|
|
|
pos = normalize(pos);
|
|
vec4 uv_rect = omni_lights.data[idx].atlas_rect;
|
|
|
|
if (pos.z >= 0.0) {
|
|
pos.z += 1.0;
|
|
uv_rect.y += uv_rect.w;
|
|
} else {
|
|
pos.z = 1.0 - pos.z;
|
|
}
|
|
|
|
pos.xy /= pos.z;
|
|
|
|
pos.xy = pos.xy * 0.5 + 0.5;
|
|
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
|
|
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
|
|
}
|
|
|
|
shadow /= float(scene_data.penumbra_shadow_samples);
|
|
|
|
} else {
|
|
//no blockers found, so no shadow
|
|
shadow = 1.0;
|
|
}
|
|
} else {
|
|
#endif
|
|
splane.xyz = normalize(splane.xyz);
|
|
vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
|
|
|
|
if (splane.z >= 0.0) {
|
|
splane.z += 1.0;
|
|
|
|
clamp_rect.y += clamp_rect.w;
|
|
|
|
} else {
|
|
splane.z = 1.0 - splane.z;
|
|
}
|
|
|
|
splane.xy /= splane.z;
|
|
|
|
splane.xy = splane.xy * 0.5 + 0.5;
|
|
splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius;
|
|
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
|
|
splane.w = 1.0; //needed? i think it should be 1 already
|
|
shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
|
|
#ifdef USE_SOFT_SHADOWS
|
|
}
|
|
#endif
|
|
|
|
return shadow;
|
|
}
|
|
#endif
|
|
|
|
return 1.0;
|
|
}
|
|
|
|
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
vec3 backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
vec4 transmittance_color,
|
|
float transmittance_depth,
|
|
float transmittance_curve,
|
|
float transmittance_boost,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
float rim, float rim_tint, vec3 rim_color,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
float clearcoat, float clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
vec3 binormal, vec3 tangent, float anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
inout float alpha,
|
|
#endif
|
|
inout vec3 diffuse_light, inout vec3 specular_light) {
|
|
vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation);
|
|
float light_attenuation = omni_attenuation;
|
|
vec3 color = omni_lights.data[idx].color;
|
|
|
|
#ifdef USE_SOFT_SHADOWS
|
|
float size_A = 0.0;
|
|
|
|
if (omni_lights.data[idx].size > 0.0) {
|
|
float t = omni_lights.data[idx].size / max(0.001, light_length);
|
|
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
|
|
}
|
|
#endif
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
float transmittance_z = transmittance_depth; //no transmittance by default
|
|
transmittance_color.a *= light_attenuation;
|
|
{
|
|
vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
|
|
|
|
//redo shadowmapping, but shrink the model a bit to avoid arctifacts
|
|
vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0));
|
|
|
|
shadow_len = length(splane.xyz);
|
|
splane = normalize(splane.xyz);
|
|
|
|
if (splane.z >= 0.0) {
|
|
splane.z += 1.0;
|
|
|
|
} else {
|
|
splane.z = 1.0 - splane.z;
|
|
}
|
|
|
|
splane.xy /= splane.z;
|
|
splane.xy = splane.xy * 0.5 + 0.5;
|
|
splane.z = shadow_len * omni_lights.data[idx].inv_radius;
|
|
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
|
|
splane.w = 1.0; //needed? i think it should be 1 already
|
|
|
|
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
|
|
transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (omni_lights.data[idx].projector_rect != vec4(0.0)) {
|
|
vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
|
|
local_v = normalize(local_v);
|
|
|
|
vec4 atlas_rect = omni_lights.data[idx].projector_rect;
|
|
|
|
if (local_v.z >= 0.0) {
|
|
local_v.z += 1.0;
|
|
atlas_rect.y += atlas_rect.w;
|
|
|
|
} else {
|
|
local_v.z = 1.0 - local_v.z;
|
|
}
|
|
|
|
local_v.xy /= local_v.z;
|
|
local_v.xy = local_v.xy * 0.5 + 0.5;
|
|
vec2 proj_uv = local_v.xy * atlas_rect.zw;
|
|
|
|
vec2 proj_uv_ddx;
|
|
vec2 proj_uv_ddy;
|
|
{
|
|
vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
|
|
local_v_ddx = normalize(local_v_ddx);
|
|
|
|
if (local_v_ddx.z >= 0.0) {
|
|
local_v_ddx.z += 1.0;
|
|
} else {
|
|
local_v_ddx.z = 1.0 - local_v_ddx.z;
|
|
}
|
|
|
|
local_v_ddx.xy /= local_v_ddx.z;
|
|
local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
|
|
|
|
proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
|
|
|
|
vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
|
|
local_v_ddy = normalize(local_v_ddy);
|
|
|
|
if (local_v_ddy.z >= 0.0) {
|
|
local_v_ddy.z += 1.0;
|
|
} else {
|
|
local_v_ddy.z = 1.0 - local_v_ddy.z;
|
|
}
|
|
|
|
local_v_ddy.xy /= local_v_ddy.z;
|
|
local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
|
|
|
|
proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
|
|
}
|
|
|
|
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
|
|
no_shadow = mix(no_shadow, proj.rgb, proj.a);
|
|
}
|
|
#endif
|
|
|
|
light_attenuation *= shadow;
|
|
|
|
light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_curve,
|
|
transmittance_boost,
|
|
transmittance_z,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim * omni_attenuation, rim_tint, rim_color,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SOFT_SHADOWS
|
|
size_A,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light,
|
|
specular_light);
|
|
}
|
|
|
|
float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) {
|
|
#ifndef USE_NO_SHADOWS
|
|
if (spot_lights.data[idx].shadow_enabled) {
|
|
vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
vec3 spot_dir = spot_lights.data[idx].direction;
|
|
//there is a shadowmap
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias;
|
|
|
|
float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius;
|
|
|
|
float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
|
|
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale;
|
|
normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
|
|
v.xyz += normal_bias;
|
|
|
|
//adjust with bias
|
|
z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius;
|
|
|
|
float shadow;
|
|
|
|
vec4 splane = (spot_lights.data[idx].shadow_matrix * v);
|
|
splane /= splane.w;
|
|
|
|
#ifdef USE_SOFT_SHADOWS
|
|
if (spot_lights.data[idx].soft_shadow_size > 0.0) {
|
|
//soft shadow
|
|
|
|
//find blocker
|
|
|
|
vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
|
|
|
|
float blocker_count = 0.0;
|
|
float blocker_average = 0.0;
|
|
|
|
mat2 disk_rotation;
|
|
{
|
|
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
|
|
float sr = sin(r);
|
|
float cr = cos(r);
|
|
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
|
|
}
|
|
|
|
float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale;
|
|
vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw;
|
|
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
|
|
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
|
|
suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
|
|
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
|
|
if (d < z_norm) {
|
|
blocker_average += d;
|
|
blocker_count += 1.0;
|
|
}
|
|
}
|
|
|
|
if (blocker_count > 0.0) {
|
|
//blockers found, do soft shadow
|
|
blocker_average /= blocker_count;
|
|
float penumbra = (z_norm - blocker_average) / blocker_average;
|
|
uv_size *= penumbra;
|
|
|
|
shadow = 0.0;
|
|
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
|
|
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
|
|
suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
|
|
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
|
|
}
|
|
|
|
shadow /= float(scene_data.penumbra_shadow_samples);
|
|
|
|
} else {
|
|
//no blockers found, so no shadow
|
|
shadow = 1.0;
|
|
}
|
|
|
|
} else {
|
|
#endif
|
|
//hard shadow
|
|
vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z, 1.0);
|
|
|
|
shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
|
|
#ifdef USE_SOFT_SHADOWS
|
|
}
|
|
#endif
|
|
|
|
return shadow;
|
|
}
|
|
|
|
#endif //USE_NO_SHADOWS
|
|
|
|
return 1.0;
|
|
}
|
|
|
|
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
vec3 backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
vec4 transmittance_color,
|
|
float transmittance_depth,
|
|
float transmittance_curve,
|
|
float transmittance_boost,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
float rim, float rim_tint, vec3 rim_color,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
float clearcoat, float clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
vec3 binormal, vec3 tangent, float anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
inout float alpha,
|
|
#endif
|
|
inout vec3 diffuse_light,
|
|
inout vec3 specular_light) {
|
|
vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
|
|
float light_length = length(light_rel_vec);
|
|
float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation);
|
|
vec3 spot_dir = spot_lights.data[idx].direction;
|
|
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle);
|
|
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle));
|
|
spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation);
|
|
float light_attenuation = spot_attenuation;
|
|
vec3 color = spot_lights.data[idx].color;
|
|
float specular_amount = spot_lights.data[idx].specular_amount;
|
|
|
|
#ifdef USE_SOFT_SHADOWS
|
|
float size_A = 0.0;
|
|
|
|
if (spot_lights.data[idx].size > 0.0) {
|
|
float t = spot_lights.data[idx].size / max(0.001, light_length);
|
|
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) {
|
|
//use projector texture
|
|
}
|
|
*/
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
float transmittance_z = transmittance_depth;
|
|
transmittance_color.a *= light_attenuation;
|
|
{
|
|
splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0));
|
|
splane /= splane.w;
|
|
splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
|
|
|
|
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
|
|
//reconstruct depth
|
|
shadow_z /= spot_lights.data[idx].inv_radius;
|
|
//distance to light plane
|
|
float z = dot(spot_dir, -light_rel_vec);
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
#endif //LIGHT_TRANSMITTANCE_USED
|
|
|
|
light_attenuation *= shadow;
|
|
|
|
light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_curve,
|
|
transmittance_boost,
|
|
transmittance_z,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim * spot_attenuation, rim_tint, rim_color,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SOFT_SHADOW
|
|
size_A,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
|
|
void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
|
|
vec3 box_extents = reflections.data[ref_index].box_extents;
|
|
vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
|
|
|
|
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
|
|
return;
|
|
}
|
|
|
|
vec3 ref_vec = normalize(reflect(vertex, normal));
|
|
|
|
vec3 inner_pos = abs(local_pos / box_extents);
|
|
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
|
//make blend more rounded
|
|
blend = mix(length(inner_pos), blend, blend);
|
|
blend *= blend;
|
|
blend = max(0.0, 1.0 - blend);
|
|
|
|
if (reflections.data[ref_index].intensity > 0.0) { // compute reflection
|
|
|
|
vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
|
|
|
|
if (reflections.data[ref_index].box_project) { //box project
|
|
|
|
vec3 nrdir = normalize(local_ref_vec);
|
|
vec3 rbmax = (box_extents - local_pos) / nrdir;
|
|
vec3 rbmin = (-box_extents - local_pos) / nrdir;
|
|
|
|
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
|
|
|
|
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
|
|
vec3 posonbox = local_pos + nrdir * fa;
|
|
local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
|
|
}
|
|
|
|
vec4 reflection;
|
|
|
|
reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
|
|
|
|
if (reflections.data[ref_index].exterior) {
|
|
reflection.rgb = mix(specular_light, reflection.rgb, blend);
|
|
}
|
|
|
|
reflection.rgb *= reflections.data[ref_index].intensity; //intensity
|
|
reflection.a = blend;
|
|
reflection.rgb *= reflection.a;
|
|
|
|
reflection_accum += reflection;
|
|
}
|
|
|
|
switch (reflections.data[ref_index].ambient_mode) {
|
|
case REFLECTION_AMBIENT_DISABLED: {
|
|
//do nothing
|
|
} break;
|
|
case REFLECTION_AMBIENT_ENVIRONMENT: {
|
|
//do nothing
|
|
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
|
|
|
|
vec4 ambient_out;
|
|
|
|
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
|
|
ambient_out.a = blend;
|
|
if (reflections.data[ref_index].exterior) {
|
|
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
|
}
|
|
|
|
ambient_out.rgb *= ambient_out.a;
|
|
ambient_accum += ambient_out;
|
|
} break;
|
|
case REFLECTION_AMBIENT_COLOR: {
|
|
vec4 ambient_out;
|
|
ambient_out.a = blend;
|
|
ambient_out.rgb = reflections.data[ref_index].ambient;
|
|
if (reflections.data[ref_index].exterior) {
|
|
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
|
}
|
|
ambient_out.rgb *= ambient_out.a;
|
|
ambient_accum += ambient_out;
|
|
} break;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_FORWARD_GI
|
|
|
|
//standard voxel cone trace
|
|
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
|
float dist = p_bias;
|
|
vec4 color = vec4(0.0);
|
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
float half_diameter = diameter * 0.5;
|
|
//check if outside, then break
|
|
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
|
|
break;
|
|
}
|
|
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
|
|
float a = (1.0 - color.a);
|
|
color += a * scolor;
|
|
dist += half_diameter;
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
|
float dist = p_bias;
|
|
vec4 color = vec4(0.0);
|
|
float radius = max(0.5, tan_half_angle * dist);
|
|
float lod_level = log2(radius * 2.0);
|
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
|
|
|
//check if outside, then break
|
|
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
|
|
break;
|
|
}
|
|
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
|
|
lod_level += 1.0;
|
|
|
|
float a = (1.0 - color.a);
|
|
scolor *= a;
|
|
color += scolor;
|
|
dist += radius;
|
|
radius = max(0.5, tan_half_angle * dist);
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
|
|
position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
|
|
ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
|
|
normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);
|
|
|
|
position += normal * gi_probes.data[index].normal_bias;
|
|
|
|
//this causes corrupted pixels, i have no idea why..
|
|
if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
|
|
return;
|
|
}
|
|
|
|
vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
|
|
float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
|
|
//float blend=1.0;
|
|
|
|
float max_distance = length(gi_probes.data[index].bounds);
|
|
vec3 cell_size = 1.0 / gi_probes.data[index].bounds;
|
|
|
|
//radiance
|
|
|
|
#define MAX_CONE_DIRS 4
|
|
|
|
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
|
vec3(0.707107, 0.0, 0.707107),
|
|
vec3(0.0, 0.707107, 0.707107),
|
|
vec3(-0.707107, 0.0, 0.707107),
|
|
vec3(0.0, -0.707107, 0.707107));
|
|
|
|
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
|
|
float cone_angle_tan = 0.98269;
|
|
|
|
vec3 light = vec3(0.0);
|
|
|
|
for (int i = 0; i < MAX_CONE_DIRS; i++) {
|
|
vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
|
|
|
|
vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
|
|
|
if (gi_probes.data[index].blend_ambient) {
|
|
cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
|
|
}
|
|
|
|
light += cone_weights[i] * cone_light.rgb;
|
|
}
|
|
|
|
light *= gi_probes.data[index].dynamic_range;
|
|
out_diff += vec4(light * blend, blend);
|
|
|
|
//irradiance
|
|
vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
|
|
if (gi_probes.data[index].blend_ambient) {
|
|
irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
|
|
}
|
|
irr_light.rgb *= gi_probes.data[index].dynamic_range;
|
|
//irr_light=vec3(0.0);
|
|
|
|
out_spec += vec4(irr_light.rgb * blend, blend);
|
|
}
|
|
|
|
vec2 octahedron_wrap(vec2 v) {
|
|
vec2 signVal;
|
|
signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
|
|
signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
|
|
return (1.0 - abs(v.yx)) * signVal;
|
|
}
|
|
|
|
vec2 octahedron_encode(vec3 n) {
|
|
// https://twitter.com/Stubbesaurus/status/937994790553227264
|
|
n /= (abs(n.x) + abs(n.y) + abs(n.z));
|
|
n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
|
|
n.xy = n.xy * 0.5 + 0.5;
|
|
return n.xy;
|
|
}
|
|
|
|
void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) {
|
|
cascade_pos += cam_normal * sdfgi.normal_bias;
|
|
|
|
vec3 base_pos = floor(cascade_pos);
|
|
//cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
|
|
ivec3 probe_base_pos = ivec3(base_pos);
|
|
|
|
vec4 diffuse_accum = vec4(0.0);
|
|
vec3 specular_accum;
|
|
|
|
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
|
|
tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
|
|
tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);
|
|
|
|
vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
|
|
|
|
vec3 specular_posf;
|
|
|
|
if (use_specular) {
|
|
specular_accum = vec3(0.0);
|
|
specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
|
|
}
|
|
|
|
vec4 light_accum = vec4(0.0);
|
|
float weight_accum = 0.0;
|
|
|
|
for (uint j = 0; j < 8; j++) {
|
|
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
|
|
ivec3 probe_posi = probe_base_pos;
|
|
probe_posi += offset;
|
|
|
|
// Compute weight
|
|
|
|
vec3 probe_pos = vec3(probe_posi);
|
|
vec3 probe_to_pos = cascade_pos - probe_pos;
|
|
vec3 probe_dir = normalize(-probe_to_pos);
|
|
|
|
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
|
|
float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));
|
|
|
|
// Compute lightprobe occlusion
|
|
|
|
if (sdfgi.use_occlusion) {
|
|
ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
|
|
vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
|
|
|
|
vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
|
|
occ_pos.z += float(cascade);
|
|
if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
|
|
occ_pos.x += 1.0;
|
|
}
|
|
|
|
occ_pos *= sdfgi.occlusion_renormalize;
|
|
float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask);
|
|
|
|
weight *= max(occlusion, 0.01);
|
|
}
|
|
|
|
// Compute lightprobe texture position
|
|
|
|
vec3 diffuse;
|
|
vec3 pos_uvw = diffuse_posf;
|
|
pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
|
|
pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
|
|
diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb;
|
|
|
|
diffuse_accum += vec4(diffuse * weight, weight);
|
|
|
|
if (use_specular) {
|
|
vec3 specular = vec3(0.0);
|
|
vec3 pos_uvw = specular_posf;
|
|
pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
|
|
pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
|
|
if (roughness < 0.99) {
|
|
specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
|
|
}
|
|
if (roughness > 0.5) {
|
|
specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0);
|
|
}
|
|
|
|
specular_accum += specular * weight;
|
|
}
|
|
}
|
|
|
|
if (diffuse_accum.a > 0.0) {
|
|
diffuse_accum.rgb /= diffuse_accum.a;
|
|
}
|
|
|
|
diffuse_light = diffuse_accum.rgb;
|
|
|
|
if (use_specular) {
|
|
if (diffuse_accum.a > 0.0) {
|
|
specular_accum /= diffuse_accum.a;
|
|
}
|
|
|
|
specular_light = specular_accum;
|
|
}
|
|
|
|
{
|
|
//process blend
|
|
float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
|
|
float blend_to = blend_from + 2.0;
|
|
|
|
vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;
|
|
|
|
float len = length(inner_pos);
|
|
|
|
inner_pos = abs(normalize(inner_pos));
|
|
len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
|
|
|
if (len >= blend_from) {
|
|
blend = smoothstep(blend_from, blend_to, len);
|
|
} else {
|
|
blend = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif //USE_FORWARD_GI
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifndef MODE_RENDER_DEPTH
|
|
|
|
#ifndef LOW_END_MODE
|
|
|
|
vec4 volumetric_fog_process(vec2 screen_uv, float z) {
|
|
vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
|
|
if (fog_pos.z < 0.0) {
|
|
return vec4(0.0);
|
|
} else if (fog_pos.z < 1.0) {
|
|
fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
|
|
}
|
|
|
|
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
|
|
}
|
|
#endif
|
|
|
|
vec4 fog_process(vec3 vertex) {
|
|
vec3 fog_color = scene_data.fog_light_color;
|
|
|
|
if (scene_data.fog_aerial_perspective > 0.0) {
|
|
vec3 sky_fog_color = vec3(0.0);
|
|
vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
|
|
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
|
|
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
float lod, blend;
|
|
blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
|
|
sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
|
|
sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
|
|
#else
|
|
sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
|
|
}
|
|
|
|
if (scene_data.fog_sun_scatter > 0.001) {
|
|
vec4 sun_scatter = vec4(0.0);
|
|
float sun_total = 0.0;
|
|
vec3 view = normalize(vertex);
|
|
|
|
for (uint i = 0; i < scene_data.directional_light_count; i++) {
|
|
vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
|
|
float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
|
|
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
|
|
}
|
|
}
|
|
|
|
float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density));
|
|
|
|
if (abs(scene_data.fog_height_density) > 0.001) {
|
|
float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;
|
|
|
|
float y_dist = scene_data.fog_height - y;
|
|
|
|
float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0);
|
|
|
|
fog_amount = max(vfog_amount, fog_amount);
|
|
}
|
|
|
|
return vec4(fog_color, fog_amount);
|
|
}
|
|
|
|
void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
|
|
uint item_min_max = cluster_buffer.data[p_offset];
|
|
item_min = item_min_max & 0xFFFF;
|
|
item_max = item_min_max >> 16;
|
|
;
|
|
|
|
item_from = item_min >> 5;
|
|
item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
|
|
}
|
|
|
|
uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
|
|
int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
|
|
int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
|
|
return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
|
|
}
|
|
|
|
float blur_shadow(float shadow) {
|
|
return shadow;
|
|
#if 0
|
|
//disabling for now, will investigate later
|
|
float interp_shadow = shadow;
|
|
if (gl_HelperInvocation) {
|
|
interp_shadow = -4.0; // technically anything below -4 will do but just to make sure
|
|
}
|
|
|
|
uvec2 fc2 = uvec2(gl_FragCoord.xy);
|
|
interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5);
|
|
interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5);
|
|
|
|
if (interp_shadow >= 0.0) {
|
|
shadow = interp_shadow;
|
|
}
|
|
return shadow;
|
|
#endif
|
|
}
|
|
|
|
#endif //!MODE_RENDER DEPTH
|
|
|
|
void main() {
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
if (dp_clip > 0.0)
|
|
discard;
|
|
#endif
|
|
|
|
//lay out everything, whathever is unused is optimized away anyway
|
|
vec3 vertex = vertex_interp;
|
|
vec3 view = -normalize(vertex_interp);
|
|
vec3 albedo = vec3(1.0);
|
|
vec3 backlight = vec3(0.0);
|
|
vec4 transmittance_color = vec4(0.0);
|
|
float transmittance_depth = 0.0;
|
|
float transmittance_curve = 1.0;
|
|
float transmittance_boost = 0.0;
|
|
float metallic = 0.0;
|
|
float specular = 0.5;
|
|
vec3 emission = vec3(0.0);
|
|
float roughness = 1.0;
|
|
float rim = 0.0;
|
|
float rim_tint = 0.0;
|
|
float clearcoat = 0.0;
|
|
float clearcoat_gloss = 0.0;
|
|
float anisotropy = 0.0;
|
|
vec2 anisotropy_flow = vec2(1.0, 0.0);
|
|
vec4 fog = vec4(0.0);
|
|
#if defined(CUSTOM_RADIANCE_USED)
|
|
vec4 custom_radiance = vec4(0.0);
|
|
#endif
|
|
#if defined(CUSTOM_IRRADIANCE_USED)
|
|
vec4 custom_irradiance = vec4(0.0);
|
|
#endif
|
|
|
|
float ao = 1.0;
|
|
float ao_light_affect = 0.0;
|
|
|
|
float alpha = 1.0;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
vec3 binormal = normalize(binormal_interp);
|
|
vec3 tangent = normalize(tangent_interp);
|
|
#else
|
|
vec3 binormal = vec3(0.0);
|
|
vec3 tangent = vec3(0.0);
|
|
#endif
|
|
|
|
#ifdef NORMAL_USED
|
|
vec3 normal = normalize(normal_interp);
|
|
|
|
#if defined(DO_SIDE_CHECK)
|
|
if (!gl_FrontFacing) {
|
|
normal = -normal;
|
|
}
|
|
#endif
|
|
|
|
#endif //NORMAL_USED
|
|
|
|
#ifdef UV_USED
|
|
vec2 uv = uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
vec2 uv2 = uv2_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
vec4 color = color_interp;
|
|
#endif
|
|
|
|
#if defined(NORMAL_MAP_USED)
|
|
|
|
vec3 normal_map = vec3(0.5);
|
|
#endif
|
|
|
|
float normal_map_depth = 1.0;
|
|
|
|
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
|
|
|
|
float sss_strength = 0.0;
|
|
|
|
#ifdef ALPHA_SCISSOR_USED
|
|
float alpha_scissor_threshold = 1.0;
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef ALPHA_HASH_USED
|
|
float alpha_hash_scale = 1.0;
|
|
#endif // ALPHA_HASH_USED
|
|
|
|
#ifdef ALPHA_ANTIALIASING_EDGE_USED
|
|
float alpha_antialiasing_edge = 0.0;
|
|
vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
|
|
#endif // ALPHA_ANTIALIASING_EDGE_USED
|
|
|
|
{
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
#ifdef SSS_MODE_SKIN
|
|
transmittance_color.a = sss_strength;
|
|
#else
|
|
transmittance_color.a *= sss_strength;
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef USE_SHADOW_TO_OPACITY
|
|
|
|
#ifdef ALPHA_SCISSOR_USED
|
|
if (alpha < alpha_scissor_threshold) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
// alpha hash can be used in unison with alpha antialiasing
|
|
#ifdef ALPHA_HASH_USED
|
|
if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_HASH_USED
|
|
|
|
// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
|
|
#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
|
|
alpha = 1.0;
|
|
#endif
|
|
|
|
#ifdef ALPHA_ANTIALIASING_EDGE_USED
|
|
// If alpha scissor is used, we must further the edge threshold, otherwise we wont get any edge feather
|
|
#ifdef ALPHA_SCISSOR_USED
|
|
alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
|
|
#endif
|
|
alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
|
|
#endif // ALPHA_ANTIALIASING_EDGE_USED
|
|
|
|
#ifdef USE_OPAQUE_PREPASS
|
|
if (alpha < opaque_prepass_threshold) {
|
|
discard;
|
|
}
|
|
#endif // USE_OPAQUE_PREPASS
|
|
|
|
#endif // !USE_SHADOW_TO_OPACITY
|
|
|
|
#ifdef NORMAL_MAP_USED
|
|
|
|
normal_map.xy = normal_map.xy * 2.0 - 1.0;
|
|
normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
|
|
|
|
normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
|
|
|
|
#endif
|
|
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
|
|
if (anisotropy > 0.01) {
|
|
//rotation matrix
|
|
mat3 rot = mat3(tangent, binormal, normal);
|
|
//make local to space
|
|
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
|
|
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENABLE_CLIP_ALPHA
|
|
if (albedo.a < 0.99) {
|
|
//used for doublepass and shadowmapping
|
|
discard;
|
|
}
|
|
#endif
|
|
|
|
/////////////////////// FOG //////////////////////
|
|
#ifndef MODE_RENDER_DEPTH
|
|
|
|
#ifndef CUSTOM_FOG_USED
|
|
// fog must be processed as early as possible and then packed.
|
|
// to maximize VGPR usage
|
|
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
|
|
|
|
if (scene_data.fog_enabled) {
|
|
fog = fog_process(vertex);
|
|
}
|
|
|
|
#ifndef LOW_END_MODE
|
|
if (scene_data.volumetric_fog_enabled) {
|
|
vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z);
|
|
if (scene_data.fog_enabled) {
|
|
//must use the full blending equation here to blend fogs
|
|
vec4 res;
|
|
float sa = 1.0 - volumetric_fog.a;
|
|
res.a = fog.a * sa + volumetric_fog.a;
|
|
if (res.a == 0.0) {
|
|
res.rgb = vec3(0.0);
|
|
} else {
|
|
res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a;
|
|
}
|
|
fog = res;
|
|
} else {
|
|
fog = volumetric_fog;
|
|
}
|
|
}
|
|
#endif //!LOW_END_MODE
|
|
#endif //!CUSTOM_FOG_USED
|
|
|
|
uint fog_rg = packHalf2x16(fog.rg);
|
|
uint fog_ba = packHalf2x16(fog.ba);
|
|
|
|
#endif //!MODE_RENDER_DEPTH
|
|
|
|
/////////////////////// DECALS ////////////////////////////////
|
|
|
|
#ifndef MODE_RENDER_DEPTH
|
|
|
|
uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift;
|
|
uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32);
|
|
|
|
uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0));
|
|
|
|
//used for interpolating anything cluster related
|
|
vec3 vertex_ddx = dFdx(vertex);
|
|
vec3 vertex_ddy = dFdy(vertex);
|
|
|
|
{ // process decals
|
|
|
|
uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_decal_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
uint decal_index = 32 * i + bit;
|
|
|
|
if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
|
|
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
|
|
continue; //out of decal
|
|
}
|
|
|
|
//we need ddx/ddy for mipmaps, so simulate them
|
|
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
|
|
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
|
|
|
|
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
|
|
|
|
if (decals.data[decal_index].normal_fade > 0.0) {
|
|
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
|
|
}
|
|
|
|
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
|
|
//has albedo
|
|
vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
|
|
decal_albedo *= decals.data[decal_index].modulate;
|
|
decal_albedo.a *= fade;
|
|
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
|
|
|
|
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
|
|
vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
|
|
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
|
|
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
|
|
//convert to view space, use xzy because y is up
|
|
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
|
|
|
|
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
|
|
}
|
|
|
|
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
|
|
vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
|
|
ao = mix(ao, decal_orm.r, decal_albedo.a);
|
|
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
|
|
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
|
|
}
|
|
}
|
|
|
|
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
|
|
//emission is additive, so its independent from albedo
|
|
emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//pack albedo until needed again, saves 2 VGPRs in the meantime
|
|
|
|
#endif //not render depth
|
|
/////////////////////// LIGHTING //////////////////////////////
|
|
|
|
#ifdef NORMAL_USED
|
|
if (scene_data.roughness_limiter_enabled) {
|
|
//http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
|
|
float roughness2 = roughness * roughness;
|
|
vec3 dndu = dFdx(normal), dndv = dFdx(normal);
|
|
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
|
|
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
|
|
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
|
|
roughness = sqrt(filteredRoughness2);
|
|
}
|
|
#endif
|
|
//apply energy conservation
|
|
|
|
vec3 specular_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
if (scene_data.use_reflection_cubemap) {
|
|
vec3 ref_vec = reflect(-view, normal);
|
|
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
|
|
float lod, blend;
|
|
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
|
|
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
|
|
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
|
|
|
|
#else
|
|
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
|
|
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
specular_light *= scene_data.ambient_light_color_energy.a;
|
|
}
|
|
|
|
#if defined(CUSTOM_RADIANCE_USED)
|
|
specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
|
|
#endif
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
//lightmap overrides everything
|
|
if (scene_data.use_ambient_light) {
|
|
ambient_light = scene_data.ambient_light_color_energy.rgb;
|
|
|
|
if (scene_data.use_ambient_cubemap) {
|
|
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
|
|
#else
|
|
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
|
|
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
|
|
}
|
|
}
|
|
#endif // USE_LIGHTMAP
|
|
#if defined(CUSTOM_IRRADIANCE_USED)
|
|
ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a);
|
|
#endif
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
//radiance
|
|
|
|
/// GI ///
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifdef USE_LIGHTMAP
|
|
|
|
//lightmap
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
|
|
uint index = instances.data[instance_index].gi_offset;
|
|
|
|
vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
|
|
const float c1 = 0.429043;
|
|
const float c2 = 0.511664;
|
|
const float c3 = 0.743125;
|
|
const float c4 = 0.886227;
|
|
const float c5 = 0.247708;
|
|
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
|
|
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
|
|
c4 * lightmap_captures.data[index].sh[0].rgb -
|
|
c5 * lightmap_captures.data[index].sh[6].rgb +
|
|
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
|
|
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
|
|
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
|
|
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
|
|
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
|
|
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
|
|
|
|
} else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
|
|
bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
|
|
uint ofs = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
vec3 uvw;
|
|
uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
|
|
uvw.z = float((instances.data[instance_index].gi_offset >> 16) & 0xFFFF);
|
|
|
|
if (uses_sh) {
|
|
uvw.z *= 4.0; //SH textures use 4 times more data
|
|
vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
|
|
vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
|
|
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
|
|
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
|
|
|
|
uint idx = instances.data[instance_index].gi_offset >> 20;
|
|
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
|
|
|
|
ambient_light += lm_light_l0 * 0.282095f;
|
|
ambient_light += lm_light_l1n1 * 0.32573 * n.y;
|
|
ambient_light += lm_light_l1_0 * 0.32573 * n.z;
|
|
ambient_light += lm_light_l1p1 * 0.32573 * n.x;
|
|
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
|
|
vec3 r = reflect(normalize(-vertex), normal);
|
|
specular_light += lm_light_l1n1 * 0.32573 * r.y;
|
|
specular_light += lm_light_l1_0 * 0.32573 * r.z;
|
|
specular_light += lm_light_l1p1 * 0.32573 * r.x;
|
|
}
|
|
|
|
} else {
|
|
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
|
|
}
|
|
}
|
|
#elif defined(USE_FORWARD_GI)
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
|
|
|
|
//make vertex orientation the world one, but still align to camera
|
|
vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
|
|
vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
|
|
vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);
|
|
|
|
//apply y-mult
|
|
cam_pos.y *= sdfgi.y_mult;
|
|
cam_normal.y *= sdfgi.y_mult;
|
|
cam_normal = normalize(cam_normal);
|
|
cam_reflection.y *= sdfgi.y_mult;
|
|
cam_normal = normalize(cam_normal);
|
|
cam_reflection = normalize(cam_reflection);
|
|
|
|
vec4 light_accum = vec4(0.0);
|
|
float weight_accum = 0.0;
|
|
|
|
vec4 light_blend_accum = vec4(0.0);
|
|
float weight_blend_accum = 0.0;
|
|
|
|
float blend = -1.0;
|
|
|
|
// helper constants, compute once
|
|
|
|
uint cascade = 0xFFFFFFFF;
|
|
vec3 cascade_pos;
|
|
vec3 cascade_normal;
|
|
|
|
for (uint i = 0; i < sdfgi.max_cascades; i++) {
|
|
cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
|
|
|
|
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
|
|
continue; //skip cascade
|
|
}
|
|
|
|
cascade = i;
|
|
break;
|
|
}
|
|
|
|
if (cascade < SDFGI_MAX_CASCADES) {
|
|
bool use_specular = true;
|
|
float blend;
|
|
vec3 diffuse, specular;
|
|
sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);
|
|
|
|
if (blend > 0.0) {
|
|
//blend
|
|
if (cascade == sdfgi.max_cascades - 1) {
|
|
diffuse = mix(diffuse, ambient_light, blend);
|
|
if (use_specular) {
|
|
specular = mix(specular, specular_light, blend);
|
|
}
|
|
} else {
|
|
vec3 diffuse2, specular2;
|
|
float blend2;
|
|
cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
|
|
sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
|
|
diffuse = mix(diffuse, diffuse2, blend);
|
|
if (use_specular) {
|
|
specular = mix(specular, specular2, blend);
|
|
}
|
|
}
|
|
}
|
|
|
|
ambient_light = diffuse;
|
|
if (use_specular) {
|
|
specular_light = specular;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
|
|
|
|
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
|
|
//find arbitrary tangent and bitangent, then build a matrix
|
|
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, normal));
|
|
vec3 bitangent = normalize(cross(tangent, normal));
|
|
mat3 normal_mat = mat3(tangent, bitangent, normal);
|
|
|
|
vec4 amb_accum = vec4(0.0);
|
|
vec4 spec_accum = vec4(0.0);
|
|
gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
|
|
|
|
uint index2 = instances.data[instance_index].gi_offset >> 16;
|
|
|
|
if (index2 != 0xFFFF) {
|
|
gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
|
|
}
|
|
|
|
if (amb_accum.a > 0.0) {
|
|
amb_accum.rgb /= amb_accum.a;
|
|
}
|
|
|
|
if (spec_accum.a > 0.0) {
|
|
spec_accum.rgb /= spec_accum.a;
|
|
}
|
|
|
|
specular_light = spec_accum.rgb;
|
|
ambient_light = amb_accum.rgb;
|
|
}
|
|
#elif !defined(LOW_END_MODE)
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
|
|
|
|
vec2 coord;
|
|
|
|
if (scene_data.gi_upscale_for_msaa) {
|
|
vec2 base_coord = screen_uv;
|
|
vec2 closest_coord = base_coord;
|
|
float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0.0).xyz * 2.0 - 1.0);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const vec2 neighbours[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1));
|
|
vec2 neighbour_coord = base_coord + neighbours[i] * scene_data.screen_pixel_size;
|
|
float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0.0).xyz * 2.0 - 1.0);
|
|
if (neighbour_ang > closest_ang) {
|
|
closest_ang = neighbour_ang;
|
|
closest_coord = neighbour_coord;
|
|
}
|
|
}
|
|
|
|
coord = closest_coord;
|
|
|
|
} else {
|
|
coord = screen_uv;
|
|
}
|
|
|
|
vec4 buffer_ambient = textureLod(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
|
|
vec4 buffer_reflection = textureLod(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
|
|
|
|
ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
|
|
specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
|
|
}
|
|
#endif
|
|
|
|
#ifndef LOW_END_MODE
|
|
if (scene_data.ssao_enabled) {
|
|
float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
|
|
ao = min(ao, ssao);
|
|
ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
|
|
}
|
|
#endif //LOW_END_MODE
|
|
|
|
{ // process reflections
|
|
|
|
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_reflection_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
uint reflection_index = 32 * i + bit;
|
|
|
|
if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
|
|
}
|
|
}
|
|
|
|
if (reflection_accum.a > 0.0) {
|
|
specular_light = reflection_accum.rgb / reflection_accum.a;
|
|
}
|
|
|
|
#if !defined(USE_LIGHTMAP)
|
|
if (ambient_accum.a > 0.0) {
|
|
ambient_light = ambient_accum.rgb / ambient_accum.a;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//finalize ambient light here
|
|
ambient_light *= albedo.rgb;
|
|
ambient_light *= ao;
|
|
|
|
// convert ao to direct light ao
|
|
ao = mix(1.0, ao, ao_light_affect);
|
|
|
|
//this saves some VGPRs
|
|
vec3 f0 = F0(metallic, specular, albedo);
|
|
|
|
{
|
|
#if defined(DIFFUSE_TOON)
|
|
//simplify for toon, as
|
|
specular_light *= specular * metallic * albedo * 2.0;
|
|
#else
|
|
|
|
// scales the specular reflections, needs to be be computed before lighting happens,
|
|
// but after environment, GI, and reflection probes are added
|
|
// Environment brdf approximation (Lazarov 2013)
|
|
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
|
|
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
|
|
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
|
|
vec4 r = roughness * c0 + c1;
|
|
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
|
|
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
|
|
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
|
|
|
|
specular_light *= env.x * f0 + env.y;
|
|
#endif
|
|
}
|
|
|
|
#endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#if !defined(MODE_RENDER_DEPTH)
|
|
//this saves some VGPRs
|
|
uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
|
|
#endif
|
|
|
|
// LIGHTING
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
{ //directional light
|
|
|
|
// Do shadow and lighting in two passes to reduce register pressure
|
|
uint shadow0 = 0;
|
|
uint shadow1 = 0;
|
|
|
|
for (uint i = 0; i < 8; i++) {
|
|
if (i >= scene_data.directional_light_count) {
|
|
break;
|
|
}
|
|
|
|
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
float shadow = 1.0;
|
|
|
|
#ifdef USE_SOFT_SHADOWS
|
|
//version with soft shadows, more expensive
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
float depth_z = -vertex.z;
|
|
|
|
vec4 pssm_coord;
|
|
vec3 shadow_color = vec3(0.0);
|
|
vec3 light_dir = directional_lights.data[i].direction;
|
|
|
|
#define BIAS_FUNC(m_var, m_idx) \
|
|
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
|
|
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
|
|
normal_bias -= light_dir * dot(light_dir, normal_bias); \
|
|
m_var.xyz += normal_bias;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 0)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.x;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
|
|
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
shadow_color = directional_lights.data[i].shadow_color1.rgb;
|
|
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 1)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.y;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
|
|
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
shadow_color = directional_lights.data[i].shadow_color2.rgb;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 2)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.z;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
|
|
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
shadow_color = directional_lights.data[i].shadow_color3.rgb;
|
|
|
|
} else {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 3)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.w;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
|
|
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
shadow_color = directional_lights.data[i].shadow_color4.rgb;
|
|
}
|
|
|
|
if (directional_lights.data[i].blend_splits) {
|
|
vec3 shadow_color_blend = vec3(0.0);
|
|
float pssm_blend;
|
|
float shadow2;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 1)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.y;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
|
|
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
|
|
shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 2)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.z;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
|
|
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
|
|
|
|
shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 3)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
if (directional_lights.data[i].softshadow_angle > 0) {
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.w;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
|
|
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
} else {
|
|
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
}
|
|
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
|
|
shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
|
|
} else {
|
|
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
|
|
}
|
|
|
|
pssm_blend = sqrt(pssm_blend);
|
|
|
|
shadow = mix(shadow, shadow2, pssm_blend);
|
|
shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
|
|
}
|
|
|
|
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
|
|
|
|
#undef BIAS_FUNC
|
|
}
|
|
#else
|
|
// Soft shadow disabled version
|
|
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
float depth_z = -vertex.z;
|
|
|
|
vec4 pssm_coord;
|
|
vec3 light_dir = directional_lights.data[i].direction;
|
|
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
|
|
|
|
#define BIAS_FUNC(m_var, m_idx) \
|
|
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
|
|
vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
|
|
normal_bias -= light_dir * dot(light_dir, normal_bias); \
|
|
m_var.xyz += normal_bias;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 0)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
{
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
#endif
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 1)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
{
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
#endif
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 2)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
{
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
#endif
|
|
|
|
} else {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 3)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
{
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
|
|
if (directional_lights.data[i].blend_splits) {
|
|
float pssm_blend;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 1)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 2)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 3)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
|
|
} else {
|
|
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
|
|
}
|
|
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
shadow = mix(shadow, shadow2, pssm_blend);
|
|
}
|
|
|
|
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
|
|
|
|
#undef BIAS_FUNC
|
|
}
|
|
#endif
|
|
|
|
if (i < 4) {
|
|
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
|
|
} else {
|
|
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
|
|
}
|
|
}
|
|
|
|
for (uint i = 0; i < 8; i++) {
|
|
if (i >= scene_data.directional_light_count) {
|
|
break;
|
|
}
|
|
|
|
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
float transmittance_z = transmittance_depth;
|
|
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
float depth_z = -vertex.z;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
|
|
} else {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
#endif
|
|
|
|
float shadow = 1.0;
|
|
|
|
if (i < 4) {
|
|
shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
|
|
} else {
|
|
shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
|
|
}
|
|
|
|
blur_shadow(shadow);
|
|
|
|
light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_curve,
|
|
transmittance_boost,
|
|
transmittance_z,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim, rim_tint, albedo,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SOFT_SHADOW
|
|
directional_lights.data[i].size,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light,
|
|
specular_light);
|
|
}
|
|
}
|
|
|
|
{ //omni lights
|
|
|
|
uint cluster_omni_offset = cluster_offset;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_omni_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
uint light_index = 32 * i + bit;
|
|
|
|
if (!bool(omni_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
float shadow = light_process_omni_shadow(light_index, vertex, view);
|
|
|
|
shadow = blur_shadow(shadow);
|
|
|
|
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_curve,
|
|
transmittance_boost,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim,
|
|
rim_tint,
|
|
albedo,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
tangent, binormal, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
}
|
|
}
|
|
|
|
{ //spot lights
|
|
|
|
uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_spot_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
uint light_index = 32 * i + bit;
|
|
|
|
if (!bool(spot_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
float shadow = light_process_spot_shadow(light_index, vertex, view);
|
|
|
|
shadow = blur_shadow(shadow);
|
|
|
|
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_curve,
|
|
transmittance_boost,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim,
|
|
rim_tint,
|
|
albedo,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
tangent, binormal, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
if (alpha < alpha_scissor) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef USE_OPAQUE_PREPASS
|
|
|
|
if (alpha < opaque_prepass_threshold) {
|
|
discard;
|
|
}
|
|
|
|
#endif // USE_OPAQUE_PREPASS
|
|
|
|
#endif // USE_SHADOW_TO_OPACITY
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_RENDER_SDF
|
|
|
|
{
|
|
vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
|
|
ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
|
|
|
|
uint albedo16 = 0x1; //solid flag
|
|
albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
|
|
albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
|
|
albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
|
|
|
|
imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
|
|
|
|
uint facing_bits = 0;
|
|
const vec3 aniso_dir[6] = vec3[](
|
|
vec3(1, 0, 0),
|
|
vec3(0, 1, 0),
|
|
vec3(0, 0, 1),
|
|
vec3(-1, 0, 0),
|
|
vec3(0, -1, 0),
|
|
vec3(0, 0, -1));
|
|
|
|
vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
|
|
|
|
float closest_dist = -1e20;
|
|
|
|
for (uint i = 0; i < 6; i++) {
|
|
float d = dot(cam_normal, aniso_dir[i]);
|
|
if (d > closest_dist) {
|
|
closest_dist = d;
|
|
facing_bits = (1 << i);
|
|
}
|
|
}
|
|
|
|
imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
|
|
|
|
if (length(emission) > 0.001) {
|
|
float lumas[6];
|
|
vec3 light_total = vec3(0);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
|
|
vec3 light = emission * strength;
|
|
light_total += light;
|
|
lumas[i] = max(light.r, max(light.g, light.b));
|
|
}
|
|
|
|
float luma_total = max(light_total.r, max(light_total.g, light_total.b));
|
|
|
|
uint light_aniso = 0;
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
|
|
}
|
|
|
|
//compress to RGBE9995 to save space
|
|
|
|
const float pow2to9 = 512.0f;
|
|
const float B = 15.0f;
|
|
const float N = 9.0f;
|
|
const float LN2 = 0.6931471805599453094172321215;
|
|
|
|
float cRed = clamp(light_total.r, 0.0, 65408.0);
|
|
float cGreen = clamp(light_total.g, 0.0, 65408.0);
|
|
float cBlue = clamp(light_total.b, 0.0, 65408.0);
|
|
|
|
float cMax = max(cRed, max(cGreen, cBlue));
|
|
|
|
float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
|
|
|
|
float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
|
|
|
|
float exps = expp + 1.0f;
|
|
|
|
if (0.0 <= sMax && sMax < pow2to9) {
|
|
exps = expp;
|
|
}
|
|
|
|
float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
|
|
float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
|
|
float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
|
|
//store as 8985 to have 2 extra neighbour bits
|
|
uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
|
|
|
|
imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
|
|
imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
|
|
albedo_output_buffer.rgb = albedo;
|
|
albedo_output_buffer.a = alpha;
|
|
|
|
normal_output_buffer.rgb = normal * 0.5 + 0.5;
|
|
normal_output_buffer.a = 0.0;
|
|
depth_output_buffer.r = -vertex.z;
|
|
|
|
orm_output_buffer.r = ao;
|
|
orm_output_buffer.g = roughness;
|
|
orm_output_buffer.b = metallic;
|
|
orm_output_buffer.a = sss_strength;
|
|
|
|
emission_output_buffer.rgb = emission;
|
|
emission_output_buffer.a = 0.0;
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
|
|
normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
|
|
|
|
#ifdef MODE_RENDER_GIPROBE
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
|
|
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
uint index2 = instances.data[instance_index].gi_offset >> 16;
|
|
giprobe_buffer.x = index1 & 0xFF;
|
|
giprobe_buffer.y = index2 & 0xFF;
|
|
} else {
|
|
giprobe_buffer.x = 0xFF;
|
|
giprobe_buffer.y = 0xFF;
|
|
}
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_NORMAL_ROUGHNESS
|
|
|
|
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
|
|
#else
|
|
|
|
// multiply by albedo
|
|
diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
|
|
|
|
// apply direct light AO
|
|
ao = unpackUnorm4x8(orms).x;
|
|
specular_light *= ao;
|
|
diffuse_light *= ao;
|
|
|
|
// apply metallic
|
|
metallic = unpackUnorm4x8(orms).z;
|
|
diffuse_light *= 1.0 - metallic;
|
|
ambient_light *= 1.0 - metallic;
|
|
|
|
//restore fog
|
|
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
|
|
|
|
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#ifdef MODE_UNSHADED
|
|
diffuse_buffer = vec4(albedo.rgb, 0.0);
|
|
specular_buffer = vec4(0.0);
|
|
|
|
#else
|
|
|
|
#ifdef SSS_MODE_SKIN
|
|
sss_strength = -sss_strength;
|
|
#endif
|
|
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
|
|
specular_buffer = vec4(specular_light, metallic);
|
|
#endif
|
|
|
|
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
|
|
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
|
|
|
|
#else //MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#ifdef MODE_UNSHADED
|
|
frag_color = vec4(albedo, alpha);
|
|
#else
|
|
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
|
|
//frag_color = vec4(1.0);
|
|
#endif //USE_NO_SHADING
|
|
|
|
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
|
|
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
|
|
;
|
|
|
|
#endif //MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#endif //MODE_RENDER_DEPTH
|
|
}
|