godot/servers/rendering/rasterizer_rd/rasterizer_storage_rd.h

1143 lines
40 KiB
C++
Raw Normal View History

/*************************************************************************/
/* rasterizer_storage_rd.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZER_STORAGE_RD_H
#define RASTERIZER_STORAGE_RD_H
#include "core/rid_owner.h"
#include "servers/rendering/rasterizer.h"
#include "servers/rendering/rasterizer_rd/rasterizer_effects_rd.h"
#include "servers/rendering/rasterizer_rd/shader_compiler_rd.h"
#include "servers/rendering/rasterizer_rd/shaders/giprobe_sdf.glsl.gen.h"
#include "servers/rendering/rendering_device.h"
class RasterizerStorageRD : public RasterizerStorage {
public:
enum ShaderType {
SHADER_TYPE_2D,
SHADER_TYPE_3D,
SHADER_TYPE_PARTICLES,
2019-09-15 09:58:38 +00:00
SHADER_TYPE_SKY,
SHADER_TYPE_MAX
};
struct ShaderData {
virtual void set_code(const String &p_Code) = 0;
virtual void set_default_texture_param(const StringName &p_name, RID p_texture) = 0;
virtual void get_param_list(List<PropertyInfo> *p_param_list) const = 0;
virtual bool is_param_texture(const StringName &p_param) const = 0;
virtual bool is_animated() const = 0;
virtual bool casts_shadows() const = 0;
virtual Variant get_default_parameter(const StringName &p_parameter) const = 0;
virtual ~ShaderData() {}
};
typedef ShaderData *(*ShaderDataRequestFunction)();
struct MaterialData {
void update_uniform_buffer(const Map<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Map<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color);
void update_textures(const Map<StringName, Variant> &p_parameters, const Map<StringName, RID> &p_default_textures, const Vector<ShaderCompilerRD::GeneratedCode::Texture> &p_texture_uniforms, RID *p_textures, bool p_use_linear_color);
virtual void set_render_priority(int p_priority) = 0;
virtual void set_next_pass(RID p_pass) = 0;
virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) = 0;
virtual ~MaterialData() {}
};
typedef MaterialData *(*MaterialDataRequestFunction)(ShaderData *);
enum DefaultRDTexture {
DEFAULT_RD_TEXTURE_WHITE,
DEFAULT_RD_TEXTURE_BLACK,
DEFAULT_RD_TEXTURE_NORMAL,
DEFAULT_RD_TEXTURE_ANISO,
DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER,
2019-08-26 20:43:58 +00:00
DEFAULT_RD_TEXTURE_CUBEMAP_BLACK,
DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK,
DEFAULT_RD_TEXTURE_3D_WHITE,
DEFAULT_RD_TEXTURE_MAX
};
enum DefaultRDBuffer {
DEFAULT_RD_BUFFER_VERTEX,
DEFAULT_RD_BUFFER_NORMAL,
DEFAULT_RD_BUFFER_TANGENT,
DEFAULT_RD_BUFFER_COLOR,
DEFAULT_RD_BUFFER_TEX_UV,
DEFAULT_RD_BUFFER_TEX_UV2,
DEFAULT_RD_BUFFER_BONES,
DEFAULT_RD_BUFFER_WEIGHTS,
DEFAULT_RD_BUFFER_MAX,
};
private:
/* TEXTURE API */
struct Texture {
enum Type {
TYPE_2D,
TYPE_LAYERED,
TYPE_3D
};
Type type;
RenderingDevice::TextureType rd_type;
RID rd_texture;
RID rd_texture_srgb;
RenderingDevice::DataFormat rd_format;
RenderingDevice::DataFormat rd_format_srgb;
RD::TextureView rd_view;
Image::Format format;
Image::Format validated_format;
int width;
int height;
int depth;
int layers;
int mipmaps;
int height_2d;
int width_2d;
bool is_render_target;
bool is_proxy;
Ref<Image> image_cache_2d;
String path;
RID proxy_to;
Vector<RID> proxies;
RS::TextureDetectCallback detect_3d_callback = nullptr;
void *detect_3d_callback_ud = nullptr;
RS::TextureDetectCallback detect_normal_callback = nullptr;
void *detect_normal_callback_ud = nullptr;
RS::TextureDetectRoughnessCallback detect_roughness_callback = nullptr;
void *detect_roughness_callback_ud = nullptr;
};
struct TextureToRDFormat {
RD::DataFormat format;
RD::DataFormat format_srgb;
RD::TextureSwizzle swizzle_r;
RD::TextureSwizzle swizzle_g;
RD::TextureSwizzle swizzle_b;
RD::TextureSwizzle swizzle_a;
TextureToRDFormat() {
format = RD::DATA_FORMAT_MAX;
format_srgb = RD::DATA_FORMAT_MAX;
swizzle_r = RD::TEXTURE_SWIZZLE_R;
swizzle_g = RD::TEXTURE_SWIZZLE_G;
swizzle_b = RD::TEXTURE_SWIZZLE_B;
swizzle_a = RD::TEXTURE_SWIZZLE_A;
}
};
//textures can be created from threads, so this RID_Owner is thread safe
mutable RID_Owner<Texture, true> texture_owner;
Ref<Image> _validate_texture_format(const Ref<Image> &p_image, TextureToRDFormat &r_format);
RID default_rd_textures[DEFAULT_RD_TEXTURE_MAX];
RID default_rd_samplers[RS::CANVAS_ITEM_TEXTURE_FILTER_MAX][RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX];
/* SHADER */
struct Material;
struct Shader {
ShaderData *data;
String code;
ShaderType type;
Map<StringName, RID> default_texture_parameter;
Set<Material *> owners;
};
ShaderDataRequestFunction shader_data_request_func[SHADER_TYPE_MAX];
mutable RID_Owner<Shader> shader_owner;
/* Material */
struct Material {
RID self;
MaterialData *data;
Shader *shader;
//shortcut to shader data and type
ShaderType shader_type;
bool update_requested;
bool uniform_dirty;
bool texture_dirty;
Material *update_next;
Map<StringName, Variant> params;
int32_t priority;
RID next_pass;
RasterizerScene::InstanceDependency instance_dependency;
};
MaterialDataRequestFunction material_data_request_func[SHADER_TYPE_MAX];
mutable RID_Owner<Material> material_owner;
Material *material_update_list;
void _material_queue_update(Material *material, bool p_uniform, bool p_texture);
void _update_queued_materials();
/* Mesh */
struct Mesh {
struct Surface {
RS::PrimitiveType primitive = RS::PRIMITIVE_POINTS;
uint32_t format = 0;
RID vertex_buffer;
uint32_t vertex_count = 0;
// A different pipeline needs to be allocated
// depending on the inputs available in the
// material.
// There are never that many geometry/material
// combinations, so a simple array is the most
// cache-efficient structure.
struct Version {
uint32_t input_mask = 0;
RD::VertexFormatID vertex_format = 0;
RID vertex_array;
};
SpinLock version_lock; //needed to access versions
Version *versions = nullptr; //allocated on demand
uint32_t version_count = 0;
RID index_buffer;
RID index_array;
uint32_t index_count = 0;
struct LOD {
float edge_length = 0.0;
RID index_buffer;
RID index_array;
};
LOD *lods = nullptr;
uint32_t lod_count = 0;
AABB aabb;
Vector<AABB> bone_aabbs;
Vector<RID> blend_shapes;
RID blend_shape_base_buffer; //source buffer goes here when using blend shapes, and main one is uncompressed
RID material;
uint32_t render_index = 0;
uint64_t render_pass = 0;
uint32_t multimesh_render_index = 0;
uint64_t multimesh_render_pass = 0;
};
uint32_t blend_shape_count = 0;
RS::BlendShapeMode blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED;
Surface **surfaces = nullptr;
uint32_t surface_count = 0;
Vector<AABB> bone_aabbs;
AABB aabb;
AABB custom_aabb;
Vector<RID> material_cache;
RasterizerScene::InstanceDependency instance_dependency;
};
mutable RID_Owner<Mesh> mesh_owner;
void _mesh_surface_generate_version_for_input_mask(Mesh::Surface *s, uint32_t p_input_mask);
RID mesh_default_rd_buffers[DEFAULT_RD_BUFFER_MAX];
/* MultiMesh */
struct MultiMesh {
RID mesh;
int instances = 0;
RS::MultimeshTransformFormat xform_format = RS::MULTIMESH_TRANSFORM_3D;
bool uses_colors = false;
bool uses_custom_data = false;
int visible_instances = -1;
AABB aabb;
bool aabb_dirty = false;
bool buffer_set = false;
uint32_t stride_cache = 0;
uint32_t color_offset_cache = 0;
uint32_t custom_data_offset_cache = 0;
Vector<float> data_cache; //used if individual setting is used
bool *data_cache_dirty_regions = nullptr;
uint32_t data_cache_used_dirty_regions = 0;
RID buffer; //storage buffer
RID uniform_set_3d;
bool dirty = false;
MultiMesh *dirty_list = nullptr;
RasterizerScene::InstanceDependency instance_dependency;
};
mutable RID_Owner<MultiMesh> multimesh_owner;
MultiMesh *multimesh_dirty_list = nullptr;
_FORCE_INLINE_ void _multimesh_make_local(MultiMesh *multimesh) const;
_FORCE_INLINE_ void _multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb);
_FORCE_INLINE_ void _multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb);
_FORCE_INLINE_ void _multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances);
void _update_dirty_multimeshes();
2019-09-23 21:53:05 +00:00
/* Skeleton */
struct Skeleton {
bool use_2d = false;
int size = 0;
Vector<float> data;
RID buffer;
bool dirty = false;
Skeleton *dirty_list = nullptr;
Transform2D base_transform_2d;
RID uniform_set_3d;
RasterizerScene::InstanceDependency instance_dependency;
};
mutable RID_Owner<Skeleton> skeleton_owner;
_FORCE_INLINE_ void _skeleton_make_dirty(Skeleton *skeleton);
Skeleton *skeleton_dirty_list = nullptr;
void _update_dirty_skeletons();
/* LIGHT */
struct Light {
RS::LightType type;
float param[RS::LIGHT_PARAM_MAX];
Color color = Color(1, 1, 1, 1);
Color shadow_color;
RID projector;
bool shadow = false;
bool negative = false;
bool reverse_cull = false;
bool use_gi = true;
uint32_t cull_mask = 0xFFFFFFFF;
RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
RS::LightDirectionalShadowDepthRangeMode directional_range_mode = RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE;
bool directional_blend_splits = false;
uint64_t version = 0;
RasterizerScene::InstanceDependency instance_dependency;
};
mutable RID_Owner<Light> light_owner;
/* REFLECTION PROBE */
struct ReflectionProbe {
RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE;
int resolution = 256;
float intensity = 1.0;
Color interior_ambient;
float interior_ambient_energy = 1.0;
float interior_ambient_probe_contrib = 0.0;
float max_distance = 0;
Vector3 extents = Vector3(1, 1, 1);
Vector3 origin_offset;
bool interior = false;
bool box_projection = false;
bool enable_shadows = false;
uint32_t cull_mask = (1 << 20) - 1;
RasterizerScene::InstanceDependency instance_dependency;
};
mutable RID_Owner<ReflectionProbe> reflection_probe_owner;
2019-10-03 20:39:08 +00:00
/* GI PROBE */
struct GIProbe {
RID octree_buffer;
RID data_buffer;
RID sdf_texture;
2019-10-03 20:39:08 +00:00
uint32_t octree_buffer_size = 0;
uint32_t data_buffer_size = 0;
Vector<int> level_counts;
2019-10-03 20:39:08 +00:00
int cell_count = 0;
Transform to_cell_xform;
AABB bounds;
Vector3i octree_size;
float dynamic_range = 4.0;
float energy = 1.0;
float ao = 0.0;
2019-11-04 21:17:53 +00:00
float ao_size = 0.5;
2019-10-03 20:39:08 +00:00
float bias = 1.4;
float normal_bias = 0.0;
float propagation = 0.7;
bool interior = false;
bool use_two_bounces = false;
float anisotropy_strength = 0.5;
uint32_t version = 1;
uint32_t data_version = 1;
RasterizerScene::InstanceDependency instance_dependency;
};
GiprobeSdfShaderRD giprobe_sdf_shader;
RID giprobe_sdf_shader_version;
RID giprobe_sdf_shader_version_shader;
RID giprobe_sdf_shader_pipeline;
2019-10-03 20:39:08 +00:00
mutable RID_Owner<GIProbe> gi_probe_owner;
/* RENDER TARGET */
struct RenderTarget {
Size2i size;
RID framebuffer;
RID color;
//used for retrieving from CPU
RD::DataFormat color_format = RD::DATA_FORMAT_R4G4_UNORM_PACK8;
RD::DataFormat color_format_srgb = RD::DATA_FORMAT_R4G4_UNORM_PACK8;
Image::Format image_format = Image::FORMAT_L8;
bool flags[RENDER_TARGET_FLAG_MAX];
RID backbuffer; //used for effects
RID backbuffer_mipmap0;
struct BackbufferMipmap {
RID mipmap;
RID mipmap_copy;
};
Vector<BackbufferMipmap> backbuffer_mipmaps;
RID backbuffer_uniform_set;
//texture generated for this owner (nor RD).
RID texture;
bool was_used;
//clear request
bool clear_requested;
Color clear_color;
};
RID_Owner<RenderTarget> render_target_owner;
void _clear_render_target(RenderTarget *rt);
void _update_render_target(RenderTarget *rt);
void _create_render_target_backbuffer(RenderTarget *rt);
/* EFFECTS */
RasterizerEffectsRD effects;
public:
/* TEXTURE API */
virtual RID texture_2d_create(const Ref<Image> &p_image);
virtual RID texture_2d_layered_create(const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type);
virtual RID texture_3d_create(const Vector<Ref<Image>> &p_slices); //all slices, then all the mipmaps, must be coherent
virtual RID texture_proxy_create(RID p_base);
virtual void _texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer, bool p_immediate);
virtual void texture_2d_update_immediate(RID p_texture, const Ref<Image> &p_image, int p_layer = 0); //mostly used for video and streaming
virtual void texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer = 0);
virtual void texture_3d_update(RID p_texture, const Ref<Image> &p_image, int p_depth, int p_mipmap);
virtual void texture_proxy_update(RID p_texture, RID p_proxy_to);
//these two APIs can be used together or in combination with the others.
virtual RID texture_2d_placeholder_create();
virtual RID texture_2d_layered_placeholder_create();
virtual RID texture_3d_placeholder_create();
virtual Ref<Image> texture_2d_get(RID p_texture) const;
virtual Ref<Image> texture_2d_layer_get(RID p_texture, int p_layer) const;
virtual Ref<Image> texture_3d_slice_get(RID p_texture, int p_depth, int p_mipmap) const;
virtual void texture_replace(RID p_texture, RID p_by_texture);
virtual void texture_set_size_override(RID p_texture, int p_width, int p_height);
virtual void texture_set_path(RID p_texture, const String &p_path);
virtual String texture_get_path(RID p_texture) const;
virtual void texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata);
virtual void texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata);
virtual void texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata);
virtual void texture_debug_usage(List<RS::TextureInfo> *r_info);
virtual void texture_set_proxy(RID p_proxy, RID p_base);
virtual void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable);
virtual Size2 texture_size_with_proxy(RID p_proxy);
//internal usage
_FORCE_INLINE_ RID texture_get_rd_texture(RID p_texture, bool p_srgb = false) {
if (p_texture.is_null()) {
return RID();
}
Texture *tex = texture_owner.getornull(p_texture);
if (!tex) {
return RID();
}
return (p_srgb && tex->rd_texture_srgb.is_valid()) ? tex->rd_texture_srgb : tex->rd_texture;
}
_FORCE_INLINE_ Size2i texture_2d_get_size(RID p_texture) {
if (p_texture.is_null()) {
return Size2i();
}
Texture *tex = texture_owner.getornull(p_texture);
if (!tex) {
return Size2i();
}
return Size2i(tex->width_2d, tex->height_2d);
}
_FORCE_INLINE_ RID texture_rd_get_default(DefaultRDTexture p_texture) {
return default_rd_textures[p_texture];
}
_FORCE_INLINE_ RID sampler_rd_get_default(RS::CanvasItemTextureFilter p_filter, RS::CanvasItemTextureRepeat p_repeat) {
return default_rd_samplers[p_filter][p_repeat];
}
/* SHADER API */
RID shader_create();
void shader_set_code(RID p_shader, const String &p_code);
String shader_get_code(RID p_shader) const;
void shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const;
void shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture);
RID shader_get_default_texture_param(RID p_shader, const StringName &p_name) const;
Variant shader_get_param_default(RID p_shader, const StringName &p_param) const;
void shader_set_data_request_function(ShaderType p_shader_type, ShaderDataRequestFunction p_function);
/* COMMON MATERIAL API */
RID material_create();
void material_set_shader(RID p_material, RID p_shader);
void material_set_param(RID p_material, const StringName &p_param, const Variant &p_value);
Variant material_get_param(RID p_material, const StringName &p_param) const;
void material_set_next_pass(RID p_material, RID p_next_material);
void material_set_render_priority(RID p_material, int priority);
bool material_is_animated(RID p_material);
bool material_casts_shadows(RID p_material);
void material_update_dependency(RID p_material, RasterizerScene::InstanceBase *p_instance);
void material_force_update_textures(RID p_material, ShaderType p_shader_type);
void material_set_data_request_function(ShaderType p_shader_type, MaterialDataRequestFunction p_function);
_FORCE_INLINE_ MaterialData *material_get_data(RID p_material, ShaderType p_shader_type) {
Material *material = material_owner.getornull(p_material);
if (!material || material->shader_type != p_shader_type) {
2020-04-01 23:20:12 +00:00
return nullptr;
} else {
return material->data;
}
}
/* MESH API */
virtual RID mesh_create();
/// Return stride
virtual void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface);
virtual int mesh_get_blend_shape_count(RID p_mesh) const;
virtual void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode);
virtual RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const;
virtual void mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data);
virtual void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material);
virtual RID mesh_surface_get_material(RID p_mesh, int p_surface) const;
virtual RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const;
virtual int mesh_get_surface_count(RID p_mesh) const;
virtual void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb);
virtual AABB mesh_get_custom_aabb(RID p_mesh) const;
virtual AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID());
virtual void mesh_clear(RID p_mesh);
_FORCE_INLINE_ const RID *mesh_get_surface_count_and_materials(RID p_mesh, uint32_t &r_surface_count) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
2020-04-01 23:20:12 +00:00
ERR_FAIL_COND_V(!mesh, nullptr);
r_surface_count = mesh->surface_count;
if (r_surface_count == 0) {
2020-04-01 23:20:12 +00:00
return nullptr;
}
if (mesh->material_cache.empty()) {
mesh->material_cache.resize(mesh->surface_count);
for (uint32_t i = 0; i < r_surface_count; i++) {
mesh->material_cache.write[i] = mesh->surfaces[i]->material;
}
}
return mesh->material_cache.ptr();
}
_FORCE_INLINE_ RS::PrimitiveType mesh_surface_get_primitive(RID p_mesh, uint32_t p_surface_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RS::PRIMITIVE_MAX);
ERR_FAIL_UNSIGNED_INDEX_V(p_surface_index, mesh->surface_count, RS::PRIMITIVE_MAX);
return mesh->surfaces[p_surface_index]->primitive;
}
_FORCE_INLINE_ void mesh_surface_get_arrays_and_format(RID p_mesh, uint32_t p_surface_index, uint32_t p_input_mask, RID &r_vertex_array_rd, RID &r_index_array_rd, RD::VertexFormatID &r_vertex_format) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_UNSIGNED_INDEX(p_surface_index, mesh->surface_count);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
r_index_array_rd = s->index_array;
s->version_lock.lock();
//there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way
for (uint32_t i = 0; i < s->version_count; i++) {
if (s->versions[i].input_mask != p_input_mask) {
continue;
}
//we have this version, hooray
r_vertex_format = s->versions[i].vertex_format;
r_vertex_array_rd = s->versions[i].vertex_array;
s->version_lock.unlock();
return;
}
uint32_t version = s->version_count; //gets added at the end
_mesh_surface_generate_version_for_input_mask(s, p_input_mask);
r_vertex_format = s->versions[version].vertex_format;
r_vertex_array_rd = s->versions[version].vertex_array;
s->version_lock.unlock();
}
_FORCE_INLINE_ RID mesh_get_default_rd_buffer(DefaultRDBuffer p_buffer) {
ERR_FAIL_INDEX_V(p_buffer, DEFAULT_RD_BUFFER_MAX, RID());
return mesh_default_rd_buffers[p_buffer];
}
_FORCE_INLINE_ uint32_t mesh_surface_get_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->render_pass != p_render_pass) {
(*r_index)++;
s->render_pass = p_render_pass;
s->render_index = *r_index;
}
return s->render_index;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_multimesh_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->multimesh_render_pass != p_render_pass) {
(*r_index)++;
s->multimesh_render_pass = p_render_pass;
s->multimesh_render_index = *r_index;
}
return s->multimesh_render_index;
}
/* MULTIMESH API */
RID multimesh_create();
void multimesh_allocate(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false);
int multimesh_get_instance_count(RID p_multimesh) const;
void multimesh_set_mesh(RID p_multimesh, RID p_mesh);
void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform);
void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform);
void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color);
void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color);
RID multimesh_get_mesh(RID p_multimesh) const;
Transform multimesh_instance_get_transform(RID p_multimesh, int p_index) const;
Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const;
Color multimesh_instance_get_color(RID p_multimesh, int p_index) const;
Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const;
void multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer);
Vector<float> multimesh_get_buffer(RID p_multimesh) const;
void multimesh_set_visible_instances(RID p_multimesh, int p_visible);
int multimesh_get_visible_instances(RID p_multimesh) const;
AABB multimesh_get_aabb(RID p_multimesh) const;
_FORCE_INLINE_ RS::MultimeshTransformFormat multimesh_get_transform_format(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->xform_format;
}
_FORCE_INLINE_ bool multimesh_uses_colors(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->uses_colors;
}
_FORCE_INLINE_ bool multimesh_uses_custom_data(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->uses_custom_data;
}
_FORCE_INLINE_ uint32_t multimesh_get_instances_to_draw(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (multimesh->visible_instances >= 0) {
return multimesh->visible_instances;
}
return multimesh->instances;
}
_FORCE_INLINE_ RID multimesh_get_3d_uniform_set(RID p_multimesh, RID p_shader, uint32_t p_set) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (!multimesh->uniform_set_3d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(multimesh->buffer);
uniforms.push_back(u);
multimesh->uniform_set_3d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return multimesh->uniform_set_3d;
}
/* IMMEDIATE API */
RID immediate_create() { return RID(); }
void immediate_begin(RID p_immediate, RS::PrimitiveType p_rimitive, RID p_texture = RID()) {}
void immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {}
void immediate_normal(RID p_immediate, const Vector3 &p_normal) {}
void immediate_tangent(RID p_immediate, const Plane &p_tangent) {}
void immediate_color(RID p_immediate, const Color &p_color) {}
void immediate_uv(RID p_immediate, const Vector2 &tex_uv) {}
void immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {}
void immediate_end(RID p_immediate) {}
void immediate_clear(RID p_immediate) {}
void immediate_set_material(RID p_immediate, RID p_material) {}
RID immediate_get_material(RID p_immediate) const { return RID(); }
AABB immediate_get_aabb(RID p_immediate) const { return AABB(); }
/* SKELETON API */
2019-09-23 21:53:05 +00:00
RID skeleton_create();
void skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton = false);
void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform);
void skeleton_set_world_transform(RID p_skeleton, bool p_enable, const Transform &p_world_transform);
int skeleton_get_bone_count(RID p_skeleton) const;
void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform);
Transform skeleton_bone_get_transform(RID p_skeleton, int p_bone) const;
void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform);
Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const;
_FORCE_INLINE_ RID skeleton_get_3d_uniform_set(RID p_skeleton, RID p_shader, uint32_t p_set) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
2019-09-25 19:44:44 +00:00
ERR_FAIL_COND_V(!skeleton, RID());
ERR_FAIL_COND_V(skeleton->size == 0, RID());
2019-09-23 21:53:05 +00:00
if (skeleton->use_2d) {
return RID();
}
if (!skeleton->uniform_set_3d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(skeleton->buffer);
uniforms.push_back(u);
skeleton->uniform_set_3d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
2019-09-23 21:53:05 +00:00
return skeleton->uniform_set_3d;
}
/* Light API */
RID light_create(RS::LightType p_type);
RID directional_light_create() { return light_create(RS::LIGHT_DIRECTIONAL); }
RID omni_light_create() { return light_create(RS::LIGHT_OMNI); }
RID spot_light_create() { return light_create(RS::LIGHT_SPOT); }
void light_set_color(RID p_light, const Color &p_color);
void light_set_param(RID p_light, RS::LightParam p_param, float p_value);
void light_set_shadow(RID p_light, bool p_enabled);
void light_set_shadow_color(RID p_light, const Color &p_color);
void light_set_projector(RID p_light, RID p_texture);
void light_set_negative(RID p_light, bool p_enable);
void light_set_cull_mask(RID p_light, uint32_t p_mask);
void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled);
void light_set_use_gi(RID p_light, bool p_enabled);
void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode);
void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode);
void light_directional_set_blend_splits(RID p_light, bool p_enable);
bool light_directional_get_blend_splits(RID p_light) const;
void light_directional_set_shadow_depth_range_mode(RID p_light, RS::LightDirectionalShadowDepthRangeMode p_range_mode);
RS::LightDirectionalShadowDepthRangeMode light_directional_get_shadow_depth_range_mode(RID p_light) const;
RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light);
RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light);
_FORCE_INLINE_ RS::LightType light_get_type(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->type;
}
AABB light_get_aabb(RID p_light) const;
_FORCE_INLINE_ float light_get_param(RID p_light, RS::LightParam p_param) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->param[p_param];
}
_FORCE_INLINE_ Color light_get_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->color;
}
_FORCE_INLINE_ Color light_get_shadow_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->shadow_color;
}
_FORCE_INLINE_ uint32_t light_get_cull_mask(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->cull_mask;
}
_FORCE_INLINE_ bool light_has_shadow(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->shadow;
}
_FORCE_INLINE_ bool light_is_negative(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->negative;
}
_FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
}
bool light_get_use_gi(RID p_light);
uint64_t light_get_version(RID p_light) const;
/* PROBE API */
RID reflection_probe_create();
void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode);
void reflection_probe_set_intensity(RID p_probe, float p_intensity);
void reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient);
void reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy);
void reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib);
void reflection_probe_set_max_distance(RID p_probe, float p_distance);
void reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents);
void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset);
void reflection_probe_set_as_interior(RID p_probe, bool p_enable);
void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable);
void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable);
void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers);
void reflection_probe_set_resolution(RID p_probe, int p_resolution);
AABB reflection_probe_get_aabb(RID p_probe) const;
RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const;
uint32_t reflection_probe_get_cull_mask(RID p_probe) const;
Vector3 reflection_probe_get_extents(RID p_probe) const;
Vector3 reflection_probe_get_origin_offset(RID p_probe) const;
float reflection_probe_get_origin_max_distance(RID p_probe) const;
int reflection_probe_get_resolution(RID p_probe) const;
bool reflection_probe_renders_shadows(RID p_probe) const;
float reflection_probe_get_intensity(RID p_probe) const;
bool reflection_probe_is_interior(RID p_probe) const;
bool reflection_probe_is_box_projection(RID p_probe) const;
Color reflection_probe_get_interior_ambient(RID p_probe) const;
float reflection_probe_get_interior_ambient_energy(RID p_probe) const;
float reflection_probe_get_interior_ambient_probe_contribution(RID p_probe) const;
void base_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance);
2019-09-23 21:53:05 +00:00
void skeleton_update_dependency(RID p_skeleton, RasterizerScene::InstanceBase *p_instance);
/* GI PROBE API */
2019-10-03 20:39:08 +00:00
RID gi_probe_create();
void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts);
2019-10-03 20:39:08 +00:00
AABB gi_probe_get_bounds(RID p_gi_probe) const;
Vector3i gi_probe_get_octree_size(RID p_gi_probe) const;
Vector<uint8_t> gi_probe_get_octree_cells(RID p_gi_probe) const;
Vector<uint8_t> gi_probe_get_data_cells(RID p_gi_probe) const;
Vector<uint8_t> gi_probe_get_distance_field(RID p_gi_probe) const;
Vector<int> gi_probe_get_level_counts(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range);
float gi_probe_get_dynamic_range(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_propagation(RID p_gi_probe, float p_range);
float gi_probe_get_propagation(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_energy(RID p_gi_probe, float p_energy);
float gi_probe_get_energy(RID p_gi_probe) const;
void gi_probe_set_ao(RID p_gi_probe, float p_ao);
float gi_probe_get_ao(RID p_gi_probe) const;
2019-11-04 21:17:53 +00:00
void gi_probe_set_ao_size(RID p_gi_probe, float p_strength);
float gi_probe_get_ao_size(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_bias(RID p_gi_probe, float p_bias);
float gi_probe_get_bias(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_normal_bias(RID p_gi_probe, float p_range);
float gi_probe_get_normal_bias(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_interior(RID p_gi_probe, bool p_enable);
bool gi_probe_is_interior(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable);
bool gi_probe_is_using_two_bounces(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength);
float gi_probe_get_anisotropy_strength(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
uint32_t gi_probe_get_version(RID p_probe);
uint32_t gi_probe_get_data_version(RID p_probe);
2019-10-03 20:39:08 +00:00
RID gi_probe_get_octree_buffer(RID p_gi_probe) const;
RID gi_probe_get_data_buffer(RID p_gi_probe) const;
RID gi_probe_get_sdf_texture(RID p_gi_probe);
/* LIGHTMAP CAPTURE */
void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) {}
AABB lightmap_capture_get_bounds(RID p_capture) const { return AABB(); }
void lightmap_capture_set_octree(RID p_capture, const Vector<uint8_t> &p_octree) {}
RID lightmap_capture_create() {
return RID();
}
Vector<uint8_t> lightmap_capture_get_octree(RID p_capture) const {
return Vector<uint8_t>();
}
void lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) {}
Transform lightmap_capture_get_octree_cell_transform(RID p_capture) const { return Transform(); }
void lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) {}
int lightmap_capture_get_octree_cell_subdiv(RID p_capture) const { return 0; }
void lightmap_capture_set_energy(RID p_capture, float p_energy) {}
float lightmap_capture_get_energy(RID p_capture) const { return 0.0; }
const Vector<LightmapCaptureOctree> *lightmap_capture_get_octree_ptr(RID p_capture) const {
2020-04-01 23:20:12 +00:00
return nullptr;
}
/* PARTICLES */
RID particles_create() { return RID(); }
void particles_set_emitting(RID p_particles, bool p_emitting) {}
void particles_set_amount(RID p_particles, int p_amount) {}
void particles_set_lifetime(RID p_particles, float p_lifetime) {}
void particles_set_one_shot(RID p_particles, bool p_one_shot) {}
void particles_set_pre_process_time(RID p_particles, float p_time) {}
void particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {}
void particles_set_randomness_ratio(RID p_particles, float p_ratio) {}
void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {}
void particles_set_speed_scale(RID p_particles, float p_scale) {}
void particles_set_use_local_coordinates(RID p_particles, bool p_enable) {}
void particles_set_process_material(RID p_particles, RID p_material) {}
void particles_set_fixed_fps(RID p_particles, int p_fps) {}
void particles_set_fractional_delta(RID p_particles, bool p_enable) {}
void particles_restart(RID p_particles) {}
void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {}
void particles_set_draw_passes(RID p_particles, int p_count) {}
void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {}
void particles_request_process(RID p_particles) {}
AABB particles_get_current_aabb(RID p_particles) { return AABB(); }
AABB particles_get_aabb(RID p_particles) const { return AABB(); }
void particles_set_emission_transform(RID p_particles, const Transform &p_transform) {}
bool particles_get_emitting(RID p_particles) { return false; }
int particles_get_draw_passes(RID p_particles) const { return 0; }
RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { return RID(); }
virtual bool particles_is_inactive(RID p_particles) const { return false; }
/* RENDER TARGET API */
RID render_target_create();
void render_target_set_position(RID p_render_target, int p_x, int p_y);
void render_target_set_size(RID p_render_target, int p_width, int p_height);
RID render_target_get_texture(RID p_render_target);
void render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id);
void render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value);
bool render_target_was_used(RID p_render_target);
void render_target_set_as_unused(RID p_render_target);
void render_target_copy_to_back_buffer(RID p_render_target, const Rect2i &p_region);
RID render_target_get_back_buffer_uniform_set(RID p_render_target, RID p_base_shader);
virtual void render_target_request_clear(RID p_render_target, const Color &p_clear_color);
virtual bool render_target_is_clear_requested(RID p_render_target);
virtual Color render_target_get_clear_request_color(RID p_render_target);
virtual void render_target_disable_clear_request(RID p_render_target);
virtual void render_target_do_clear_request(RID p_render_target);
Size2 render_target_get_size(RID p_render_target);
RID render_target_get_rd_framebuffer(RID p_render_target);
RID render_target_get_rd_texture(RID p_render_target);
RS::InstanceType get_base_type(RID p_rid) const;
bool free(RID p_rid);
bool has_os_feature(const String &p_feature) const;
void update_dirty_resources();
void set_debug_generate_wireframes(bool p_generate) {}
void render_info_begin_capture() {}
void render_info_end_capture() {}
int get_captured_render_info(RS::RenderInfo p_info) { return 0; }
int get_render_info(RS::RenderInfo p_info) { return 0; }
String get_video_adapter_name() const { return String(); }
String get_video_adapter_vendor() const { return String(); }
virtual void capture_timestamps_begin();
virtual void capture_timestamp(const String &p_name);
virtual uint32_t get_captured_timestamps_count() const;
virtual uint64_t get_captured_timestamps_frame() const;
virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
virtual String get_captured_timestamp_name(uint32_t p_index) const;
static RasterizerStorage *base_singleton;
RasterizerEffectsRD *get_effects();
RasterizerStorageRD();
~RasterizerStorageRD();
};
#endif // RASTERIZER_STORAGE_RD_H