2020-05-18 08:56:22 +00:00
#[vertex]
2019-08-18 22:40:52 +00:00
#version 450
VERSION_DEFINES
2020-01-21 17:24:22 +00:00
#include "scene_high_end_inc.glsl"
2019-08-20 20:54:03 +00:00
2019-08-18 22:40:52 +00:00
/* INPUT ATTRIBS */
layout(location = 0) in vec3 vertex_attrib;
layout(location = 1) in vec3 normal_attrib;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif
#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
layout(location = 4) in vec2 uv_attrib;
2020-05-01 12:34:23 +00:00
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
2019-08-18 22:40:52 +00:00
layout(location = 5) in vec2 uv2_attrib;
#endif
layout(location = 6) in uvec4 bone_attrib; // always bound, even if unused
/* Varyings */
2019-08-20 20:54:03 +00:00
layout(location = 0) out vec3 vertex_interp;
layout(location = 1) out vec3 normal_interp;
2019-08-18 22:40:52 +00:00
#if defined(COLOR_USED)
2019-08-20 20:54:03 +00:00
layout(location = 2) out vec4 color_interp;
2019-08-18 22:40:52 +00:00
#endif
2019-08-26 20:43:58 +00:00
layout(location = 3) out vec2 uv_interp;
2019-08-18 22:40:52 +00:00
2019-08-20 20:54:03 +00:00
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) out vec2 uv2_interp;
2019-08-18 22:40:52 +00:00
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
2019-08-20 20:54:03 +00:00
layout(location = 5) out vec3 tangent_interp;
layout(location = 6) out vec3 binormal_interp;
2019-08-18 22:40:52 +00:00
#endif
#ifdef USE_MATERIAL_UNIFORMS
2020-05-01 12:34:23 +00:00
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
2019-11-05 11:01:00 +00:00
/* clang-format off */
2019-08-18 22:40:52 +00:00
MATERIAL_UNIFORMS
2019-11-05 11:01:00 +00:00
/* clang-format on */
2019-08-18 22:40:52 +00:00
} material;
#endif
/* clang-format off */
VERTEX_SHADER_GLOBALS
/* clang-format on */
2019-10-03 20:39:08 +00:00
invariant gl_Position;
2019-08-18 22:40:52 +00:00
2019-11-05 11:01:00 +00:00
layout(location = 7) flat out uint instance_index;
2019-09-07 01:51:27 +00:00
#ifdef MODE_DUAL_PARABOLOID
2019-11-05 11:01:00 +00:00
layout(location = 8) out float dp_clip;
2019-09-07 01:51:27 +00:00
#endif
2019-08-18 22:40:52 +00:00
void main() {
2019-09-07 01:51:27 +00:00
instance_index = draw_call.instance_index;
2019-09-14 03:37:42 +00:00
vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
2019-08-18 22:40:52 +00:00
2019-09-07 01:51:27 +00:00
mat4 world_matrix = instances.data[instance_index].transform;
2019-11-05 11:01:00 +00:00
mat3 world_normal_matrix = mat3(instances.data[instance_index].normal_transform);
2019-08-18 22:40:52 +00:00
2019-09-14 03:37:42 +00:00
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH)) {
//multimesh, instances are for it
2019-11-05 11:01:00 +00:00
uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
offset *= gl_InstanceIndex;
2019-09-14 03:37:42 +00:00
mat4 matrix;
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
2019-11-05 11:01:00 +00:00
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
2019-09-14 03:37:42 +00:00
} else {
2019-11-05 11:01:00 +00:00
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
offset += 3;
2019-09-14 03:37:42 +00:00
}
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
color_interp *= transforms.data[offset];
#endif
2019-11-05 11:01:00 +00:00
offset += 1;
2019-09-14 03:37:42 +00:00
}
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
2019-09-23 19:01:05 +00:00
//transpose
matrix = transpose(matrix);
world_matrix = world_matrix * matrix;
world_normal_matrix = world_normal_matrix * mat3(matrix);
2019-09-14 03:37:42 +00:00
} else {
//not a multimesh, instances are for multiple draw calls
instance_index += gl_InstanceIndex;
}
vec3 vertex = vertex_attrib;
2019-08-18 22:40:52 +00:00
vec3 normal = normal_attrib;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 tangent = tangent_attrib.xyz;
float binormalf = tangent_attrib.a;
2019-09-23 21:53:05 +00:00
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
2019-08-18 22:40:52 +00:00
#endif
2019-09-23 21:53:05 +00:00
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
//multimesh, instances are for it
2019-11-05 11:01:00 +00:00
uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3;
2019-09-23 21:53:05 +00:00
vec2 weights_01 = unpackUnorm2x16(bone_attrib.z);
vec2 weights_23 = unpackUnorm2x16(bone_attrib.w);
2019-11-05 11:01:00 +00:00
mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x;
m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y;
m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x;
m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y;
2019-09-23 21:53:05 +00:00
//reverse order because its transposed
2019-11-05 11:01:00 +00:00
vertex = (vec4(vertex, 1.0) * m).xyz;
normal = (vec4(normal, 0.0) * m).xyz;
2019-09-23 21:53:05 +00:00
2019-08-18 22:40:52 +00:00
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
2019-11-05 11:01:00 +00:00
tangent = (vec4(tangent, 0.0) * m).xyz;
binormal = (vec4(binormal, 0.0) * m).xyz;
2019-08-18 22:40:52 +00:00
#endif
2019-09-23 21:53:05 +00:00
}
2019-08-18 22:40:52 +00:00
uv_interp = uv_attrib;
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#ifdef USE_OVERRIDE_POSITION
vec4 position;
#endif
mat4 projection_matrix = scene_data.projection_matrix;
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
2019-11-05 11:01:00 +00:00
vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
2019-08-18 22:40:52 +00:00
normal = world_normal_matrix * normal;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = world_normal_matrix * tangent;
binormal = world_normal_matrix * binormal;
#endif
#endif
float roughness = 1.0;
2019-09-07 01:51:27 +00:00
mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
2019-08-18 22:40:52 +00:00
{
/* clang-format off */
VERTEX_SHADER_CODE
/* clang-format on */
}
// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
2019-11-05 11:01:00 +00:00
vertex = (modelview * vec4(vertex, 1.0)).xyz;
2019-08-18 22:40:52 +00:00
normal = modelview_normal * normal;
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
#endif
2019-08-20 20:54:03 +00:00
2019-08-18 22:40:52 +00:00
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
2019-11-05 11:01:00 +00:00
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
2019-08-18 22:40:52 +00:00
normal = mat3(scene_data.inverse_normal_matrix) * normal;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
#endif
#endif
vertex_interp = vertex;
normal_interp = normal;
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef MODE_RENDER_DEPTH
2019-09-07 01:51:27 +00:00
#ifdef MODE_DUAL_PARABOLOID
vertex_interp.z *= scene_data.dual_paraboloid_side;
normal_interp.z *= scene_data.dual_paraboloid_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
2020-04-08 01:51:52 +00:00
vec3 vtx = vertex_interp;
2019-09-07 01:51:27 +00:00
float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / scene_data.z_far);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
2019-08-18 22:40:52 +00:00
2019-09-07 01:51:27 +00:00
#endif
2019-08-18 22:40:52 +00:00
#endif //MODE_RENDER_DEPTH
#ifdef USE_OVERRIDE_POSITION
2019-10-03 20:39:08 +00:00
gl_Position = position;
2019-08-18 22:40:52 +00:00
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
2020-04-08 01:51:52 +00:00
#ifdef MODE_RENDER_DEPTH
if (scene_data.pancake_shadows) {
if (gl_Position.z <= 0.00001) {
gl_Position.z = 0.00001;
}
}
#endif
2020-05-01 12:34:23 +00:00
#ifdef MODE_RENDER_MATERIAL
if (scene_data.material_uv2_mode) {
gl_Position.xy = (uv2_attrib.xy + draw_call.bake_uv2_offset) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
}
#endif
2019-08-18 22:40:52 +00:00
}
2020-05-18 08:56:22 +00:00
#[fragment]
2019-08-18 22:40:52 +00:00
#version 450
VERSION_DEFINES
2020-01-21 17:24:22 +00:00
#include "scene_high_end_inc.glsl"
2019-08-18 22:40:52 +00:00
/* Varyings */
2019-08-20 20:54:03 +00:00
layout(location = 0) in vec3 vertex_interp;
layout(location = 1) in vec3 normal_interp;
2019-08-18 22:40:52 +00:00
#if defined(COLOR_USED)
2019-08-20 20:54:03 +00:00
layout(location = 2) in vec4 color_interp;
2019-08-18 22:40:52 +00:00
#endif
2019-08-26 20:43:58 +00:00
layout(location = 3) in vec2 uv_interp;
2019-08-18 22:40:52 +00:00
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
2019-08-20 20:54:03 +00:00
layout(location = 4) in vec2 uv2_interp;
2019-08-18 22:40:52 +00:00
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
2019-08-20 20:54:03 +00:00
layout(location = 5) in vec3 tangent_interp;
layout(location = 6) in vec3 binormal_interp;
2019-08-18 22:40:52 +00:00
#endif
2019-11-05 11:01:00 +00:00
layout(location = 7) flat in uint instance_index;
2019-09-07 01:51:27 +00:00
#ifdef MODE_DUAL_PARABOLOID
2019-11-05 11:01:00 +00:00
layout(location = 8) in float dp_clip;
2019-09-07 01:51:27 +00:00
#endif
2019-08-18 22:40:52 +00:00
//defines to keep compatibility with vertex
2019-10-05 13:27:43 +00:00
#define world_matrix instances.data[instance_index].transform
#define world_normal_matrix instances.data[instance_index].normal_transform
#define projection_matrix scene_data.projection_matrix
2019-08-18 22:40:52 +00:00
2020-04-08 01:51:52 +00:00
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
#define LIGHT_TRANSMITTANCE_USED
#endif
2019-08-18 22:40:52 +00:00
#ifdef USE_MATERIAL_UNIFORMS
2020-05-01 12:34:23 +00:00
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
2019-11-05 11:01:00 +00:00
/* clang-format off */
2019-08-18 22:40:52 +00:00
MATERIAL_UNIFORMS
2019-11-05 11:01:00 +00:00
/* clang-format on */
2019-08-18 22:40:52 +00:00
} material;
#endif
/* clang-format off */
FRAGMENT_SHADER_GLOBALS
/* clang-format on */
2019-10-11 02:14:56 +00:00
#ifdef MODE_RENDER_DEPTH
#ifdef MODE_RENDER_MATERIAL
layout(location = 0) out vec4 albedo_output_buffer;
layout(location = 1) out vec4 normal_output_buffer;
layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
layout(location = 4) out float depth_output_buffer;
#endif
2020-06-25 13:33:28 +00:00
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
layout(location = 0) out vec4 normal_roughness_output_buffer;
#ifdef MODE_RENDER_GIPROBE
layout(location = 1) out uvec2 giprobe_buffer;
#endif
2020-01-25 10:18:55 +00:00
#endif //MODE_RENDER_NORMAL
2019-10-11 02:14:56 +00:00
#else // RENDER DEPTH
2019-08-18 22:40:52 +00:00
#ifdef MODE_MULTIPLE_RENDER_TARGETS
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
#else
layout(location = 0) out vec4 frag_color;
2019-09-07 01:51:27 +00:00
#endif
2019-08-18 22:40:52 +00:00
2019-10-11 02:14:56 +00:00
#endif // RENDER DEPTH
2019-08-18 22:40:52 +00:00
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
2019-09-15 04:01:52 +00:00
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
2019-08-18 22:40:52 +00:00
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
2020-05-10 10:56:01 +00:00
if (a >= 1.0)
return 1.0 / M_PI;
2019-08-18 22:40:52 +00:00
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
2020-04-09 18:11:15 +00:00
void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_curve,
float transmittance_boost,
float transmittance_z,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
vec3 B, vec3 T, float anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
inout float alpha,
#endif
2019-11-05 11:01:00 +00:00
inout vec3 diffuse_light, inout vec3 specular_light) {
2019-08-18 22:40:52 +00:00
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
LIGHT_SHADER_CODE
/* clang-format on */
#else
2020-04-09 18:11:15 +00:00
float NdotL = min(A + dot(N, L), 1.0);
2019-08-18 22:40:52 +00:00
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
2019-08-26 20:43:58 +00:00
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
2019-08-18 22:40:52 +00:00
vec3 H = normalize(V + L);
#endif
2019-08-26 20:43:58 +00:00
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
2020-04-09 18:11:15 +00:00
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
2019-08-18 22:40:52 +00:00
#endif
2019-08-26 20:43:58 +00:00
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
2020-04-09 18:11:15 +00:00
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
2019-08-18 22:40:52 +00:00
#endif
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
2020-04-08 01:51:52 +00:00
diffuse_light += light_color * diffuse_color * shadow_attenuation * diffuse_brdf_NL * attenuation;
2019-08-18 22:40:52 +00:00
2020-04-08 01:51:52 +00:00
#if defined(LIGHT_BACKLIGHT_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
2019-08-18 22:40:52 +00:00
#endif
2019-09-07 01:51:27 +00:00
#if defined(LIGHT_RIM_USED)
2019-08-18 22:40:52 +00:00
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
#ifdef SSS_MODE_SKIN
{
float scale = 8.25 / transmittance_depth;
float d = scale * abs(transmittance_z);
float dd = -d * d;
vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
diffuse_light += profile * transmittance_color.a * diffuse_color * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI) * attenuation;
}
#else
if (transmittance_depth > 0.0) {
float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0);
fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);
diffuse_light += diffuse_color * transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade * attenuation;
}
#endif //SSS_MODE_SKIN
#endif //LIGHT_TRANSMITTANCE_USED
2019-08-18 22:40:52 +00:00
}
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
#if defined(SPECULAR_BLINN)
//normalized blinn
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
2020-01-02 20:05:29 +00:00
float blinn = pow(cNdotH, shininess) * cNdotL;
2019-08-18 22:40:52 +00:00
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
2020-01-02 20:05:29 +00:00
float intensity = blinn;
2019-08-18 22:40:52 +00:00
2020-04-08 01:51:52 +00:00
specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;
2019-08-18 22:40:52 +00:00
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
2020-04-09 18:11:15 +00:00
float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
2019-08-18 22:40:52 +00:00
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
2020-04-08 01:51:52 +00:00
specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;
2019-08-18 22:40:52 +00:00
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
2020-04-08 01:51:52 +00:00
diffuse_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
2019-08-18 22:40:52 +00:00
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
#if defined(LIGHT_ANISOTROPY_USED)
float alpha_ggx = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
#else
float alpha_ggx = roughness * roughness;
float D = D_GGX(cNdotH, alpha_ggx);
float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
vec3 specular_brdf_NL = cNdotL * D * F * G;
2020-04-08 01:51:52 +00:00
specular_light += specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
2019-08-18 22:40:52 +00:00
#endif
2019-08-26 20:43:58 +00:00
#if defined(LIGHT_CLEARCOAT_USED)
2019-08-18 22:40:52 +00:00
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
2020-04-08 01:51:52 +00:00
specular_light += clearcoat_specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
2019-08-18 22:40:52 +00:00
#endif
}
#ifdef USE_SHADOW_TO_OPACITY
2020-04-08 01:51:52 +00:00
alpha = min(alpha, clamp(1.0 - length(shadow_attenuation * attenuation), 0.0, 1.0));
2019-08-18 22:40:52 +00:00
#endif
#endif //defined(USE_LIGHT_SHADER_CODE)
}
2019-09-07 01:51:27 +00:00
#ifndef USE_NO_SHADOWS
2020-09-18 11:35:51 +00:00
// Produces cheap white noise, optimized for window-space
2020-08-02 00:48:40 +00:00
// Comes from: https://www.shadertoy.com/view/4djSRW
// Copyright: Dave Hoskins, MIT License
2020-04-10 09:30:36 +00:00
float quick_hash(vec2 pos) {
2020-08-02 00:48:40 +00:00
vec3 p3 = fract(vec3(pos.xyx) * .1031);
p3 += dot(p3, p3.yzx + 33.33);
return fract((p3.x + p3.y) * p3.z);
2020-04-10 09:30:36 +00:00
}
float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
2019-09-07 17:38:17 +00:00
vec2 pos = coord.xy;
float depth = coord.z;
2019-09-07 01:51:27 +00:00
2020-04-10 09:30:36 +00:00
//if only one sample is taken, take it from the center
if (scene_data.directional_soft_shadow_samples == 1) {
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
2020-04-08 01:51:52 +00:00
}
2019-09-07 01:51:27 +00:00
2020-04-10 09:30:36 +00:00
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) {
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
}
return avg * (1.0 / float(scene_data.directional_soft_shadow_samples));
}
float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
vec2 pos = coord.xy;
float depth = coord.z;
//if only one sample is taken, take it from the center
if (scene_data.soft_shadow_samples == 1) {
return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
}
mat2 disk_rotation;
{
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
float sr = sin(r);
float cr = cos(r);
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
float avg = 0.0;
for (uint i = 0; i < scene_data.soft_shadow_samples; i++) {
avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0));
}
return avg * (1.0 / float(scene_data.soft_shadow_samples));
2019-09-07 01:51:27 +00:00
}
2020-04-09 18:11:15 +00:00
float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
2020-04-10 09:30:36 +00:00
mat2 disk_rotation;
2020-04-09 18:11:15 +00:00
{
2020-04-10 09:30:36 +00:00
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
2020-04-09 18:11:15 +00:00
float sr = sin(r);
float cr = cos(r);
2020-04-10 09:30:36 +00:00
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
2020-04-09 18:11:15 +00:00
}
2020-04-10 09:30:36 +00:00
for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
2020-04-09 18:11:15 +00:00
float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < pssm_coord.z) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
tex_scale *= penumbra;
float s = 0.0;
2020-04-10 09:30:36 +00:00
for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
2020-04-09 18:11:15 +00:00
s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
}
2020-04-10 09:30:36 +00:00
return s / float(scene_data.directional_penumbra_shadow_samples);
2020-04-09 18:11:15 +00:00
} else {
//no blockers found, so no shadow
return 1.0;
}
}
2019-09-07 01:51:27 +00:00
#endif //USE_NO_SHADOWS
2020-04-14 20:05:45 +00:00
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_curve,
float transmittance_boost,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
float rim, float rim_tint,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
float clearcoat, float clearcoat_gloss,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
vec3 binormal, vec3 tangent, float anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
inout float alpha,
2019-09-07 01:51:27 +00:00
#endif
2019-11-05 11:01:00 +00:00
inout vec3 diffuse_light, inout vec3 specular_light) {
2019-09-07 01:51:27 +00:00
vec3 light_rel_vec = lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * lights.data[idx].inv_radius;
vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), attenuation_energy.x);
2020-04-08 01:51:52 +00:00
float light_attenuation = omni_attenuation;
vec3 shadow_attenuation = vec3(1.0);
2019-09-07 01:51:27 +00:00
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
2019-11-05 11:01:00 +00:00
color_specular.rgb *= attenuation_energy.y;
2020-04-09 18:11:15 +00:00
float size_A = 0.0;
if (lights.data[idx].size > 0.0) {
float t = lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
2019-09-07 01:51:27 +00:00
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth; //no transmittance by default
#endif
2019-09-07 01:51:27 +00:00
#ifndef USE_NO_SHADOWS
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
if (shadow_color_enabled.w > 0.5) {
// there is a shadowmap
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
vec4 splane = (lights.data[idx].shadow_matrix * v);
2020-04-09 18:11:15 +00:00
float shadow_len = length(splane.xyz); //need to remember shadow len from here
2020-04-08 01:51:52 +00:00
{
vec3 nofs = normal_interp * lights.data[idx].shadow_normal_bias / lights.data[idx].inv_radius;
nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
v.xyz += nofs;
splane = (lights.data[idx].shadow_matrix * v);
}
2020-04-09 18:11:15 +00:00
float shadow;
if (lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
float blocker_count = 0.0;
float blocker_average = 0.0;
2020-04-10 09:30:36 +00:00
mat2 disk_rotation;
2020-04-09 18:11:15 +00:00
{
2020-04-10 09:30:36 +00:00
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
2020-04-09 18:11:15 +00:00
float sr = sin(r);
float cr = cos(r);
2020-04-10 09:30:36 +00:00
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
2020-04-09 18:11:15 +00:00
}
vec3 normal = normalize(splane.xyz);
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
float z_norm = shadow_len * lights.data[idx].inv_radius;
2020-04-10 09:30:36 +00:00
tangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
bitangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
2019-09-07 01:51:27 +00:00
2020-04-10 09:30:36 +00:00
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
2019-09-07 01:51:27 +00:00
2020-04-09 18:11:15 +00:00
pos = normalize(pos);
vec4 uv_rect = lights.data[idx].atlas_rect;
2019-09-07 01:51:27 +00:00
2020-04-09 18:11:15 +00:00
if (pos.z >= 0.0) {
pos.z += 1.0;
uv_rect.y += uv_rect.w;
} else {
pos.z = 1.0 - pos.z;
}
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
if (d < z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (z_norm - blocker_average) / blocker_average;
tangent *= penumbra;
bitangent *= penumbra;
z_norm -= lights.data[idx].inv_radius * lights.data[idx].shadow_bias;
shadow = 0.0;
2020-04-10 09:30:36 +00:00
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
2020-04-09 18:11:15 +00:00
pos = normalize(pos);
vec4 uv_rect = lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
uv_rect.y += uv_rect.w;
} else {
pos.z = 1.0 - pos.z;
}
pos.xy /= pos.z;
pos.xy = pos.xy * 0.5 + 0.5;
pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
}
2020-04-10 09:30:36 +00:00
shadow /= float(scene_data.penumbra_shadow_samples);
2020-04-09 18:11:15 +00:00
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
2019-09-07 01:51:27 +00:00
} else {
2020-04-09 18:11:15 +00:00
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = lights.data[idx].atlas_rect;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
2020-04-08 01:51:52 +00:00
2020-04-09 18:11:15 +00:00
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = (shadow_len - lights.data[idx].shadow_bias) * lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
2020-04-10 09:30:36 +00:00
shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
2020-04-09 18:11:15 +00:00
}
2019-09-07 01:51:27 +00:00
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
{
2020-04-12 18:33:57 +00:00
vec4 clamp_rect = lights.data[idx].atlas_rect;
2020-04-08 01:51:52 +00:00
//redo shadowmapping, but shrink the model a bit to avoid arctifacts
splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
2020-04-14 20:05:45 +00:00
shadow_len = length(splane.xyz);
splane = normalize(splane.xyz);
2020-04-08 01:51:52 +00:00
if (splane.z >= 0.0) {
splane.z += 1.0;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len * lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
transmittance_z = (splane.z - shadow_z) / lights.data[idx].inv_radius;
}
#endif
2020-04-14 20:05:45 +00:00
vec3 no_shadow = vec3(1.0);
if (lights.data[idx].projector_rect != vec4(0.0)) {
vec3 local_v = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
local_v = normalize(local_v);
vec4 atlas_rect = lights.data[idx].projector_rect;
if (local_v.z >= 0.0) {
local_v.z += 1.0;
atlas_rect.y += atlas_rect.w;
} else {
local_v.z = 1.0 - local_v.z;
}
local_v.xy /= local_v.z;
local_v.xy = local_v.xy * 0.5 + 0.5;
vec2 proj_uv = local_v.xy * atlas_rect.zw;
vec2 proj_uv_ddx;
vec2 proj_uv_ddy;
{
vec3 local_v_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
local_v_ddx = normalize(local_v_ddx);
if (local_v_ddx.z >= 0.0) {
local_v_ddx.z += 1.0;
} else {
local_v_ddx.z = 1.0 - local_v_ddx.z;
}
local_v_ddx.xy /= local_v_ddx.z;
local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
vec3 local_v_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
local_v_ddy = normalize(local_v_ddy);
if (local_v_ddy.z >= 0.0) {
local_v_ddy.z += 1.0;
} else {
local_v_ddy.z = 1.0 - local_v_ddy.z;
}
local_v_ddy.xy /= local_v_ddy.z;
local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
}
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
no_shadow = mix(no_shadow, proj.rgb, proj.a);
}
shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
2019-09-07 01:51:27 +00:00
}
#endif //USE_NO_SHADOWS
2020-04-09 18:11:15 +00:00
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
transmittance_z,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
rim * omni_attenuation, rim_tint,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
clearcoat, clearcoat_gloss,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
binormal, tangent, anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
alpha,
2019-09-07 01:51:27 +00:00
#endif
2019-11-05 11:01:00 +00:00
diffuse_light,
specular_light);
2019-09-07 01:51:27 +00:00
}
2020-04-14 20:05:45 +00:00
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
vec4 transmittance_color,
float transmittance_depth,
float transmittance_curve,
float transmittance_boost,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
float rim, float rim_tint,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
float clearcoat, float clearcoat_gloss,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
vec3 binormal, vec3 tangent, float anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
inout float alpha,
2019-09-07 01:51:27 +00:00
#endif
2019-11-05 11:01:00 +00:00
inout vec3 diffuse_light,
inout vec3 specular_light) {
2019-09-07 01:51:27 +00:00
vec3 light_rel_vec = lights.data[idx].position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length * lights.data[idx].inv_radius;
vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), attenuation_energy.x);
vec3 spot_dir = lights.data[idx].direction;
vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle);
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
2020-04-08 01:51:52 +00:00
float light_attenuation = spot_attenuation;
vec3 shadow_attenuation = vec3(1.0);
2019-09-07 01:51:27 +00:00
vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
2019-11-05 11:01:00 +00:00
color_specular.rgb *= attenuation_energy.y;
2019-09-07 01:51:27 +00:00
2020-04-09 18:11:15 +00:00
float size_A = 0.0;
if (lights.data[idx].size > 0.0) {
float t = lights.data[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
}
2019-09-07 01:51:27 +00:00
/*
if (lights.data[idx].atlas_rect!=vec4(0.0)) {
//use projector texture
}
*/
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth;
#endif
2019-09-07 01:51:27 +00:00
#ifndef USE_NO_SHADOWS
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
if (shadow_color_enabled.w > 0.5) {
//there is a shadowmap
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
v.xyz -= spot_dir * lights.data[idx].shadow_bias;
2020-04-09 18:11:15 +00:00
float z_norm = dot(spot_dir, -light_rel_vec) * lights.data[idx].inv_radius;
float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
2020-04-08 01:51:52 +00:00
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * lights.data[idx].shadow_normal_bias * depth_bias_scale;
normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
v.xyz += normal_bias;
2020-04-09 18:11:15 +00:00
//adjust with bias
z_norm = dot(spot_dir, v.xyz - lights.data[idx].position) * lights.data[idx].inv_radius;
float shadow;
2020-04-08 01:51:52 +00:00
vec4 splane = (lights.data[idx].shadow_matrix * v);
2019-09-07 17:38:17 +00:00
splane /= splane.w;
2020-04-09 18:11:15 +00:00
if (lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
2020-04-14 20:05:45 +00:00
vec2 shadow_uv = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;
2020-04-09 18:11:15 +00:00
float blocker_count = 0.0;
float blocker_average = 0.0;
2020-04-10 09:30:36 +00:00
mat2 disk_rotation;
2020-04-09 18:11:15 +00:00
{
2020-04-10 09:30:36 +00:00
float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
2020-04-09 18:11:15 +00:00
float sr = sin(r);
float cr = cos(r);
2020-04-10 09:30:36 +00:00
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
2020-04-09 18:11:15 +00:00
}
2020-04-10 09:30:36 +00:00
float uv_size = lights.data[idx].soft_shadow_size * z_norm * lights.data[idx].soft_shadow_scale;
2020-04-14 20:05:45 +00:00
vec2 clamp_max = lights.data[idx].atlas_rect.xy + lights.data[idx].atlas_rect.zw;
2020-04-10 09:30:36 +00:00
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
2020-04-14 20:05:45 +00:00
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
2020-04-09 18:11:15 +00:00
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < z_norm) {
blocker_average += d;
blocker_count += 1.0;
}
}
if (blocker_count > 0.0) {
//blockers found, do soft shadow
blocker_average /= blocker_count;
float penumbra = (z_norm - blocker_average) / blocker_average;
uv_size *= penumbra;
shadow = 0.0;
2020-04-10 09:30:36 +00:00
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
2020-04-14 20:05:45 +00:00
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
2020-04-09 18:11:15 +00:00
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
}
2020-04-10 09:30:36 +00:00
shadow /= float(scene_data.penumbra_shadow_samples);
2020-04-09 18:11:15 +00:00
} else {
//no blockers found, so no shadow
shadow = 1.0;
}
} else {
//hard shadow
2020-04-14 20:05:45 +00:00
vec4 shadow_uv = vec4(splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy, z_norm, 1.0);
shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
2020-04-09 18:11:15 +00:00
}
2019-09-07 01:51:27 +00:00
2020-04-14 20:05:45 +00:00
vec3 no_shadow = vec3(1.0);
if (lights.data[idx].projector_rect != vec4(0.0)) {
splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
splane /= splane.w;
vec2 proj_uv = splane.xy * lights.data[idx].projector_rect.zw;
//ensure we have proper mipmaps
vec4 splane_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0));
splane_ddx /= splane_ddx.w;
vec2 proj_uv_ddx = splane_ddx.xy * lights.data[idx].projector_rect.zw - proj_uv;
vec4 splane_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0));
splane_ddy /= splane_ddy.w;
vec2 proj_uv_ddy = splane_ddy.xy * lights.data[idx].projector_rect.zw - proj_uv;
vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy);
no_shadow = mix(no_shadow, proj.rgb, proj.a);
}
shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
{
2020-04-14 20:05:45 +00:00
splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
2020-04-08 01:51:52 +00:00
splane /= splane.w;
2020-04-14 20:05:45 +00:00
splane.xy = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;
2020-04-08 01:51:52 +00:00
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
//reconstruct depth
2020-08-13 01:21:01 +00:00
shadow_z /= lights.data[idx].inv_radius;
2020-04-08 01:51:52 +00:00
//distance to light plane
float z = dot(spot_dir, -light_rel_vec);
transmittance_z = z - shadow_z;
}
#endif //LIGHT_TRANSMITTANCE_USED
2019-09-07 01:51:27 +00:00
}
#endif //USE_NO_SHADOWS
2020-04-09 18:11:15 +00:00
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
transmittance_z,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
rim * spot_attenuation, rim_tint,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
clearcoat, clearcoat_gloss,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
binormal, tangent, anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
alpha,
2019-09-07 01:51:27 +00:00
#endif
2019-11-05 11:01:00 +00:00
diffuse_light, specular_light);
2019-09-07 01:51:27 +00:00
}
2019-08-18 22:40:52 +00:00
2019-11-05 11:01:00 +00:00
void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
2019-09-09 20:50:51 +00:00
vec3 box_extents = reflections.data[ref_index].box_extents;
vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 ref_vec = normalize(reflect(vertex, normal));
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
//make blend more rounded
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
if (reflections.data[ref_index].params.x > 0.0) { // compute reflection
vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
if (reflections.data[ref_index].params.w > 0.5) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
}
vec4 reflection;
2019-11-05 11:01:00 +00:00
reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
2019-09-09 20:50:51 +00:00
if (reflections.data[ref_index].params.z < 0.5) {
reflection.rgb = mix(specular_light, reflection.rgb, blend);
}
reflection.rgb *= reflections.data[ref_index].params.x;
reflection.a = blend;
reflection.rgb *= reflection.a;
reflection_accum += reflection;
}
2020-06-25 13:33:28 +00:00
switch (reflections.data[ref_index].ambient_mode) {
case REFLECTION_AMBIENT_DISABLED: {
//do nothing
} break;
case REFLECTION_AMBIENT_ENVIRONMENT: {
//do nothing
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
2019-09-09 20:50:51 +00:00
2020-06-25 13:33:28 +00:00
vec4 ambient_out;
2019-09-09 20:50:51 +00:00
2020-06-25 13:33:28 +00:00
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
ambient_out.a = blend;
if (reflections.data[ref_index].params.z < 0.5) { //interior
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
2019-09-09 20:50:51 +00:00
2020-06-25 13:33:28 +00:00
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} break;
case REFLECTION_AMBIENT_COLOR: {
vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = reflections.data[ref_index].ambient;
if (reflections.data[ref_index].params.z < 0.5) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum += ambient_out;
} break;
2019-09-09 20:50:51 +00:00
}
}
2019-09-15 04:01:52 +00:00
2020-06-25 13:33:28 +00:00
#ifdef USE_FORWARD_GI
2019-10-03 20:39:08 +00:00
//standard voxel cone trace
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
float dist = p_bias;
vec4 color = vec4(0.0);
while (dist < max_distance && color.a < 0.95) {
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
vec3 uvw_pos = (pos + dist * direction) * cell_size;
float half_diameter = diameter * 0.5;
//check if outside, then break
2019-11-05 11:01:00 +00:00
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
2019-10-03 20:39:08 +00:00
break;
}
2019-11-05 11:01:00 +00:00
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
2019-10-03 20:39:08 +00:00
float a = (1.0 - color.a);
color += a * scolor;
dist += half_diameter;
}
return color;
}
2019-11-05 11:01:00 +00:00
vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
2019-10-03 20:39:08 +00:00
float dist = p_bias;
vec4 color = vec4(0.0);
float radius = max(0.5, tan_half_angle * dist);
2019-11-05 11:01:00 +00:00
float lod_level = log2(radius * 2.0);
2019-10-03 20:39:08 +00:00
while (dist < max_distance && color.a < 0.95) {
vec3 uvw_pos = (pos + dist * direction) * cell_size;
//check if outside, then break
2019-11-05 11:01:00 +00:00
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
2019-10-03 20:39:08 +00:00
break;
}
2019-11-05 11:01:00 +00:00
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
lod_level += 1.0;
2019-10-03 20:39:08 +00:00
float a = (1.0 - color.a);
2019-10-14 06:45:44 +00:00
scolor *= a;
color += scolor;
2019-10-03 20:39:08 +00:00
dist += radius;
radius = max(0.5, tan_half_angle * dist);
}
return color;
}
2019-11-05 11:01:00 +00:00
void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
2019-10-03 20:39:08 +00:00
position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);
position += normal * gi_probes.data[index].normal_bias;
//this causes corrupted pixels, i have no idea why..
if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
return;
}
vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
//float blend=1.0;
float max_distance = length(gi_probes.data[index].bounds);
vec3 cell_size = 1.0 / gi_probes.data[index].bounds;
//radiance
2019-10-03 23:15:38 +00:00
2019-10-03 20:39:08 +00:00
#define MAX_CONE_DIRS 4
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
vec3(0.707107, 0.0, 0.707107),
vec3(0.0, 0.707107, 0.707107),
vec3(-0.707107, 0.0, 0.707107),
vec3(0.0, -0.707107, 0.707107));
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
float cone_angle_tan = 0.98269;
vec3 light = vec3(0.0);
2019-10-14 06:45:44 +00:00
for (int i = 0; i < MAX_CONE_DIRS; i++) {
2019-10-03 20:39:08 +00:00
vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
2020-06-25 13:33:28 +00:00
vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
2019-10-03 20:39:08 +00:00
if (gi_probes.data[index].blend_ambient) {
cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
}
2019-10-14 06:45:44 +00:00
2019-11-05 11:01:00 +00:00
light += cone_weights[i] * cone_light.rgb;
2019-10-03 20:39:08 +00:00
}
light *= gi_probes.data[index].dynamic_range;
out_diff += vec4(light * blend, blend);
//irradiance
2020-06-25 13:33:28 +00:00
vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
2019-10-03 20:39:08 +00:00
if (gi_probes.data[index].blend_ambient) {
2019-11-05 11:01:00 +00:00
irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
2019-10-03 20:39:08 +00:00
}
irr_light.rgb *= gi_probes.data[index].dynamic_range;
//irr_light=vec3(0.0);
out_spec += vec4(irr_light.rgb * blend, blend);
}
2020-06-25 13:33:28 +00:00
#endif //USE_FORWARD_GI
vec2 octahedron_wrap(vec2 v) {
vec2 signVal;
signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
return (1.0 - abs(v.yx)) * signVal;
}
vec2 octahedron_encode(vec3 n) {
// https://twitter.com/Stubbesaurus/status/937994790553227264
n /= (abs(n.x) + abs(n.y) + abs(n.z));
n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
n.xy = n.xy * 0.5 + 0.5;
return n.xy;
}
void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) {
cascade_pos += cam_normal * sdfgi.normal_bias;
vec3 base_pos = floor(cascade_pos);
//cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
ivec3 probe_base_pos = ivec3(base_pos);
vec4 diffuse_accum = vec4(0.0);
vec3 specular_accum;
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);
vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
vec3 specular_posf;
if (use_specular) {
specular_accum = vec3(0.0);
specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
}
vec4 light_accum = vec4(0.0);
float weight_accum = 0.0;
for (uint j = 0; j < 8; j++) {
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
ivec3 probe_posi = probe_base_pos;
probe_posi += offset;
// Compute weight
vec3 probe_pos = vec3(probe_posi);
vec3 probe_to_pos = cascade_pos - probe_pos;
vec3 probe_dir = normalize(-probe_to_pos);
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));
// Compute lightprobe occlusion
if (sdfgi.use_occlusion) {
ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
occ_pos.z += float(cascade);
if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
occ_pos.x += 1.0;
}
occ_pos *= sdfgi.occlusion_renormalize;
float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask);
weight *= max(occlusion, 0.01);
}
// Compute lightprobe texture position
vec3 diffuse;
vec3 pos_uvw = diffuse_posf;
pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb;
diffuse_accum += vec4(diffuse * weight, weight);
if (use_specular) {
vec3 specular = vec3(0.0);
vec3 pos_uvw = specular_posf;
pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
if (roughness < 0.99) {
specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
}
if (roughness > 0.5) {
specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0);
}
specular_accum += specular * weight;
}
}
if (diffuse_accum.a > 0.0) {
diffuse_accum.rgb /= diffuse_accum.a;
}
diffuse_light = diffuse_accum.rgb;
if (use_specular) {
if (diffuse_accum.a > 0.0) {
specular_accum /= diffuse_accum.a;
}
specular_light = specular_accum;
}
{
//process blend
float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
float blend_to = blend_from + 2.0;
vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;
float len = length(inner_pos);
inner_pos = abs(normalize(inner_pos));
len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));
if (len >= blend_from) {
blend = smoothstep(blend_from, blend_to, len);
} else {
blend = 0.0;
}
}
}
2019-10-03 20:39:08 +00:00
2019-09-15 04:01:52 +00:00
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
2020-08-13 01:21:01 +00:00
#ifndef MODE_RENDER_DEPTH
vec4 volumetric_fog_process(vec2 screen_uv, float z) {
vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
if (fog_pos.z < 0.0) {
return vec4(0.0);
} else if (fog_pos.z < 1.0) {
fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
}
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
}
2020-08-14 01:07:49 +00:00
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data.fog_light_color;
if (scene_data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
vec3 view = normalize(vertex);
for (uint i = 0; i < scene_data.directional_light_count; i++) {
vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
}
}
float fog_amount = 1.0 - exp(vertex.z * scene_data.fog_density);
if (abs(scene_data.fog_height_density) > 0.001) {
float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;
float y_dist = scene_data.fog_height - y;
float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0);
fog_amount = max(vfog_amount, fog_amount);
}
return vec4(fog_color, fog_amount);
}
2020-08-13 01:21:01 +00:00
#endif
2019-08-18 22:40:52 +00:00
void main() {
2019-09-07 01:51:27 +00:00
#ifdef MODE_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
2019-08-18 22:40:52 +00:00
//lay out everything, whathever is unused is optimized away anyway
vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
2020-04-08 01:51:52 +00:00
vec3 backlight = vec3(0.0);
vec4 transmittance_color = vec4(0.0);
float transmittance_depth = 0.0;
float transmittance_curve = 1.0;
float transmittance_boost = 0.0;
2019-08-18 22:40:52 +00:00
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
2019-08-26 20:43:58 +00:00
#if defined(AO_USED)
2019-08-18 22:40:52 +00:00
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
float alpha = 1.0;
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
vec2 uv = uv_interp;
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(COLOR_USED)
vec4 color = color_interp;
#endif
#if defined(NORMALMAP_USED)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
2020-01-25 10:18:55 +00:00
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
2019-08-18 22:40:52 +00:00
float sss_strength = 0.0;
{
/* clang-format off */
FRAGMENT_SHADER_CODE
/* clang-format on */
}
2020-04-08 01:51:52 +00:00
#if defined(LIGHT_TRANSMITTANCE_USED)
#ifdef SSS_MODE_SKIN
transmittance_color.a = sss_strength;
#else
transmittance_color.a *= sss_strength;
#endif
#endif
2019-08-18 22:40:52 +00:00
#if !defined(USE_SHADOW_TO_OPACITY)
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#if defined(NORMALMAP_USED)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
#endif
#if defined(LIGHT_ANISOTROPY_USED)
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (albedo.a < 0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
2020-04-14 03:05:21 +00:00
/////////////////////// DECALS ////////////////////////////////
#ifndef MODE_RENDER_DEPTH
uvec4 cluster_cell = texture(usampler3D(cluster_texture, material_samplers[SAMPLER_NEAREST_CLAMP]), vec3(screen_uv, (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)));
2020-04-14 20:05:45 +00:00
//used for interpolating anything cluster related
vec3 vertex_ddx = dFdx(vertex);
vec3 vertex_ddy = dFdy(vertex);
2020-04-14 03:05:21 +00:00
{ // process decals
uint decal_count = cluster_cell.w >> CLUSTER_COUNTER_SHIFT;
uint decal_pointer = cluster_cell.w & CLUSTER_POINTER_MASK;
2019-08-18 22:40:52 +00:00
2020-04-14 03:05:21 +00:00
//do outside for performance and avoiding arctifacts
for (uint i = 0; i < decal_count; i++) {
uint decal_index = cluster_data.indices[decal_pointer + i];
if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
continue; //out of decal
}
//we need ddx/ddy for mipmaps, so simulate them
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
if (decals.data[decal_index].normal_fade > 0.0) {
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
}
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
//has albedo
vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
decal_albedo *= decals.data[decal_index].modulate;
decal_albedo.a *= fade;
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
//convert to view space, use xzy because y is up
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
}
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
#if defined(AO_USED)
ao = mix(ao, decal_orm.r, decal_albedo.a);
#endif
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
}
}
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
//emission is additive, so its independent from albedo
emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
}
}
}
#endif //not render depth
2019-08-18 22:40:52 +00:00
/////////////////////// LIGHTING //////////////////////////////
2020-06-25 13:33:28 +00:00
if (scene_data.roughness_limiter_enabled) {
//http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
float roughness2 = roughness * roughness;
vec3 dndu = dFdx(normal), dndv = dFdx(normal);
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
roughness = sqrt(filteredRoughness2);
}
2019-08-18 22:40:52 +00:00
//apply energy conservation
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
2019-11-05 11:01:00 +00:00
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
2019-08-18 22:40:52 +00:00
2019-09-15 04:01:52 +00:00
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
2019-11-05 11:01:00 +00:00
if (scene_data.use_reflection_cubemap) {
2019-08-26 20:43:58 +00:00
vec3 ref_vec = reflect(-view, normal);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
2019-11-05 11:01:00 +00:00
float lod, blend;
2019-08-26 20:43:58 +00:00
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
2019-11-05 11:01:00 +00:00
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
2019-08-26 20:43:58 +00:00
#else
2019-11-05 11:01:00 +00:00
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
2019-08-26 20:43:58 +00:00
#endif //USE_RADIANCE_CUBEMAP_ARRAY
specular_light *= scene_data.ambient_light_color_energy.a;
}
#ifndef USE_LIGHTMAP
//lightmap overrides everything
2019-11-05 11:01:00 +00:00
if (scene_data.use_ambient_light) {
2019-08-26 20:43:58 +00:00
ambient_light = scene_data.ambient_light_color_energy.rgb;
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
2019-11-05 11:01:00 +00:00
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
2019-08-26 20:43:58 +00:00
#else
2019-11-05 11:01:00 +00:00
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
2019-08-26 20:43:58 +00:00
#endif //USE_RADIANCE_CUBEMAP_ARRAY
2019-11-05 11:01:00 +00:00
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
2019-08-26 20:43:58 +00:00
}
}
#endif // USE_LIGHTMAP
2019-09-15 04:01:52 +00:00
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
2019-08-18 22:40:52 +00:00
//radiance
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
2019-09-15 04:01:52 +00:00
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
2019-08-18 22:40:52 +00:00
2020-05-01 12:34:23 +00:00
#ifdef USE_LIGHTMAP
2019-08-18 22:40:52 +00:00
//lightmap
2020-05-01 12:34:23 +00:00
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
uint index = instances.data[instance_index].gi_offset;
vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
const float c1 = 0.429043;
const float c2 = 0.511664;
const float c3 = 0.743125;
const float c4 = 0.886227;
const float c5 = 0.247708;
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
c4 * lightmap_captures.data[index].sh[0].rgb -
c5 * lightmap_captures.data[index].sh[6].rgb +
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
} else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
uint ofs = instances.data[instance_index].gi_offset & 0xFFF;
vec3 uvw;
uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
uvw.z = float((instances.data[instance_index].gi_offset >> 12) & 0xFF);
if (uses_sh) {
uvw.z *= 4.0; //SH textures use 4 times more data
vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
uint idx = instances.data[instance_index].gi_offset >> 20;
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
ambient_light += lm_light_l0 * 0.282095f;
ambient_light += lm_light_l1n1 * 0.32573 * n.y;
ambient_light += lm_light_l1_0 * 0.32573 * n.z;
ambient_light += lm_light_l1p1 * 0.32573 * n.x;
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
vec3 r = reflect(normalize(-vertex), normal);
specular_light += lm_light_l1n1 * 0.32573 * r.y;
specular_light += lm_light_l1_0 * 0.32573 * r.z;
specular_light += lm_light_l1p1 * 0.32573 * r.x;
}
} else {
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
}
}
2020-06-25 13:33:28 +00:00
#elif defined(USE_FORWARD_GI)
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
//make vertex orientation the world one, but still align to camera
vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);
//apply y-mult
cam_pos.y *= sdfgi.y_mult;
cam_normal.y *= sdfgi.y_mult;
cam_normal = normalize(cam_normal);
cam_reflection.y *= sdfgi.y_mult;
cam_normal = normalize(cam_normal);
cam_reflection = normalize(cam_reflection);
vec4 light_accum = vec4(0.0);
float weight_accum = 0.0;
vec4 light_blend_accum = vec4(0.0);
float weight_blend_accum = 0.0;
float blend = -1.0;
// helper constants, compute once
uint cascade = 0xFFFFFFFF;
vec3 cascade_pos;
vec3 cascade_normal;
for (uint i = 0; i < sdfgi.max_cascades; i++) {
cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
continue; //skip cascade
}
cascade = i;
break;
}
if (cascade < SDFGI_MAX_CASCADES) {
bool use_specular = true;
float blend;
vec3 diffuse, specular;
sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);
if (blend > 0.0) {
//blend
if (cascade == sdfgi.max_cascades - 1) {
diffuse = mix(diffuse, ambient_light, blend);
if (use_specular) {
specular = mix(specular, specular_light, blend);
}
} else {
vec3 diffuse2, specular2;
float blend2;
cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
diffuse = mix(diffuse, diffuse2, blend);
if (use_specular) {
specular = mix(specular, specular2, blend);
}
}
}
ambient_light = diffuse;
if (use_specular) {
specular_light = specular;
}
}
}
2019-08-18 22:40:52 +00:00
2020-05-01 12:34:23 +00:00
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
2019-10-03 20:39:08 +00:00
2020-05-01 12:34:23 +00:00
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
//find arbitrary tangent and bitangent, then build a matrix
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
mat3 normal_mat = mat3(tangent, bitangent, normal);
2019-10-03 20:39:08 +00:00
2020-05-01 12:34:23 +00:00
vec4 amb_accum = vec4(0.0);
vec4 spec_accum = vec4(0.0);
gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
2019-10-03 20:39:08 +00:00
2020-05-01 12:34:23 +00:00
uint index2 = instances.data[instance_index].gi_offset >> 16;
2019-09-09 20:50:51 +00:00
2020-05-01 12:34:23 +00:00
if (index2 != 0xFFFF) {
gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
}
2019-10-03 20:39:08 +00:00
2020-05-01 12:34:23 +00:00
if (amb_accum.a > 0.0) {
amb_accum.rgb /= amb_accum.a;
}
2019-10-03 20:39:08 +00:00
2020-05-01 12:34:23 +00:00
if (spec_accum.a > 0.0) {
spec_accum.rgb /= spec_accum.a;
2019-10-03 20:39:08 +00:00
}
2020-05-01 12:34:23 +00:00
specular_light = spec_accum.rgb;
ambient_light = amb_accum.rgb;
2019-10-03 20:39:08 +00:00
}
2020-06-25 13:33:28 +00:00
#else
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
ivec2 coord;
if (scene_data.gi_upscale_for_msaa) {
/*
//find the closest depth to upscale from, based on neighbours
ivec2 base_coord = ivec2(gl_FragCoord.xy);
float z_dist = gl_FragCoord.z;
ivec2 closest_coord = base_coord;
float closest_z_dist = abs(texelFetch(sampler2D(depth_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord,0).r-z_dist);
for(int i=0;i<4;i++) {
const ivec2 neighbours[4]=ivec2[](ivec2(-1,0),ivec2(1,0),ivec2(0,-1),ivec2(0,1));
ivec2 neighbour_coord = base_coord + neighbours[i];
float neighbour_z_dist = abs(texelFetch(sampler2D(depth_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord,0).r-z_dist);
if (neighbour_z_dist < closest_z_dist) {
closest_z_dist = neighbour_z_dist;
closest_coord = neighbour_coord;
}
}
*/
ivec2 base_coord = ivec2(gl_FragCoord.xy);
ivec2 closest_coord = base_coord;
float closest_ang = dot(normal, texelFetch(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0).xyz * 2.0 - 1.0);
for (int i = 0; i < 4; i++) {
const ivec2 neighbours[4] = ivec2[](ivec2(-1, 0), ivec2(1, 0), ivec2(0, -1), ivec2(0, 1));
ivec2 neighbour_coord = base_coord + neighbours[i];
float neighbour_ang = dot(normal, texelFetch(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0).xyz * 2.0 - 1.0);
if (neighbour_ang > closest_ang) {
closest_ang = neighbour_ang;
closest_coord = neighbour_coord;
}
}
coord = closest_coord;
} else {
coord = ivec2(gl_FragCoord.xy);
}
vec4 buffer_ambient = texelFetch(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0);
vec4 buffer_reflection = texelFetch(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0);
ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
}
2019-10-03 20:39:08 +00:00
#endif
2020-01-21 17:24:22 +00:00
2019-09-07 01:51:27 +00:00
{ // process reflections
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
2020-01-21 17:24:22 +00:00
uint reflection_probe_count = cluster_cell.z >> CLUSTER_COUNTER_SHIFT;
uint reflection_probe_pointer = cluster_cell.z & CLUSTER_POINTER_MASK;
2019-08-18 22:40:52 +00:00
2019-09-09 20:50:51 +00:00
for (uint i = 0; i < reflection_probe_count; i++) {
2020-01-21 17:24:22 +00:00
uint ref_index = cluster_data.indices[reflection_probe_pointer + i];
2019-11-05 11:01:00 +00:00
reflection_process(ref_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
2019-09-07 01:51:27 +00:00
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#if !defined(USE_LIGHTMAP)
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
}
2019-09-09 20:50:51 +00:00
2019-08-18 22:40:52 +00:00
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
2019-08-20 20:54:03 +00:00
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
2019-08-18 22:40:52 +00:00
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#endif
}
2019-09-07 17:38:17 +00:00
{ //directional light
for (uint i = 0; i < scene_data.directional_light_count; i++) {
2019-11-05 11:01:00 +00:00
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
2019-09-07 17:38:17 +00:00
continue; //not masked
}
2020-04-08 01:51:52 +00:00
vec3 shadow_attenuation = vec3(1.0);
#ifdef LIGHT_TRANSMITTANCE_USED
float transmittance_z = transmittance_depth;
#endif
2019-09-07 17:38:17 +00:00
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
vec4 pssm_coord;
2020-04-08 01:51:52 +00:00
vec3 shadow_color = vec3(0.0);
vec3 light_dir = directional_lights.data[i].direction;
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
2019-09-07 17:38:17 +00:00
2020-04-09 18:11:15 +00:00
float shadow = 0.0;
2019-09-07 17:38:17 +00:00
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
2020-04-10 09:30:36 +00:00
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2020-04-08 01:51:52 +00:00
shadow_color = directional_lights.data[i].shadow_color1.rgb;
2020-04-09 18:11:15 +00:00
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
2020-08-13 01:21:01 +00:00
shadow_z *= directional_lights.data[i].shadow_z_range.x;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x;
2020-04-08 01:51:52 +00:00
transmittance_z = z - shadow_z;
}
#endif
2019-09-07 17:38:17 +00:00
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
2020-04-10 09:30:36 +00:00
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2020-04-08 01:51:52 +00:00
shadow_color = directional_lights.data[i].shadow_color2.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
2020-08-13 01:21:01 +00:00
shadow_z *= directional_lights.data[i].shadow_z_range.y;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y;
2020-04-08 01:51:52 +00:00
transmittance_z = z - shadow_z;
}
#endif
2019-09-07 17:38:17 +00:00
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
2020-04-10 09:30:36 +00:00
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2020-04-08 01:51:52 +00:00
shadow_color = directional_lights.data[i].shadow_color3.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
2020-08-13 01:21:01 +00:00
shadow_z *= directional_lights.data[i].shadow_z_range.z;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z;
2020-04-08 01:51:52 +00:00
transmittance_z = z - shadow_z;
}
#endif
2019-09-07 17:38:17 +00:00
} else {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
2020-04-10 09:30:36 +00:00
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2020-04-08 01:51:52 +00:00
shadow_color = directional_lights.data[i].shadow_color4.rgb;
2020-04-09 18:11:15 +00:00
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_TRANSMITTANCE_USED
{
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
2020-08-13 01:21:01 +00:00
shadow_z *= directional_lights.data[i].shadow_z_range.w;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w;
2020-04-08 01:51:52 +00:00
transmittance_z = z - shadow_z;
}
#endif
2019-09-07 17:38:17 +00:00
}
if (directional_lights.data[i].blend_splits) {
2020-04-08 01:51:52 +00:00
vec3 shadow_color_blend = vec3(0.0);
2019-09-07 17:38:17 +00:00
float pssm_blend;
2020-04-09 18:11:15 +00:00
float shadow2;
2019-09-07 17:38:17 +00:00
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
2020-04-10 09:30:36 +00:00
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2019-09-07 17:38:17 +00:00
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
2020-04-08 01:51:52 +00:00
shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
2019-09-07 17:38:17 +00:00
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
2020-04-10 09:30:36 +00:00
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2019-09-07 17:38:17 +00:00
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
2020-04-09 18:11:15 +00:00
2020-04-08 01:51:52 +00:00
shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
2019-09-07 17:38:17 +00:00
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
2020-04-08 01:51:52 +00:00
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
2020-04-09 18:11:15 +00:00
pssm_coord /= pssm_coord.w;
if (directional_lights.data[i].softshadow_angle > 0) {
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
2020-04-10 09:30:36 +00:00
shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
2020-04-09 18:11:15 +00:00
} else {
2020-04-10 09:30:36 +00:00
shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
2020-04-09 18:11:15 +00:00
}
2019-09-07 17:38:17 +00:00
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
2020-04-08 01:51:52 +00:00
shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
2019-09-07 17:38:17 +00:00
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
2020-04-09 18:11:15 +00:00
pssm_blend = sqrt(pssm_blend);
2019-09-07 17:38:17 +00:00
2019-11-05 11:01:00 +00:00
shadow = mix(shadow, shadow2, pssm_blend);
2020-04-08 01:51:52 +00:00
shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
2019-09-07 17:38:17 +00:00
}
2019-11-05 11:01:00 +00:00
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
2019-09-07 17:38:17 +00:00
2020-04-08 01:51:52 +00:00
shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
#undef BIAS_FUNC
2019-09-07 17:38:17 +00:00
}
2020-04-09 18:11:15 +00:00
light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].size, directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
transmittance_z,
2019-09-07 17:38:17 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
rim, rim_tint,
2019-09-07 17:38:17 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
clearcoat, clearcoat_gloss,
2019-09-07 17:38:17 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
binormal, tangent, anisotropy,
2019-09-07 17:38:17 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
alpha,
2019-09-07 17:38:17 +00:00
#endif
2019-11-05 11:01:00 +00:00
diffuse_light,
specular_light);
2019-09-07 17:38:17 +00:00
}
}
2019-08-18 22:40:52 +00:00
2019-09-07 01:51:27 +00:00
{ //omni lights
2020-01-21 17:24:22 +00:00
uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
2019-09-07 01:51:27 +00:00
for (uint i = 0; i < omni_light_count; i++) {
2020-01-21 17:24:22 +00:00
uint light_index = cluster_data.indices[omni_light_pointer + i];
2019-09-07 01:51:27 +00:00
2020-02-11 13:01:43 +00:00
if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
2020-01-21 17:24:22 +00:00
continue; //not masked
2019-09-07 01:51:27 +00:00
}
2020-04-14 20:05:45 +00:00
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
rim,
rim_tint,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
clearcoat, clearcoat_gloss,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
tangent, binormal, anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
alpha,
2019-09-07 01:51:27 +00:00
#endif
2019-11-05 11:01:00 +00:00
diffuse_light, specular_light);
2019-09-07 01:51:27 +00:00
}
}
{ //spot lights
2020-01-21 17:24:22 +00:00
uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
2019-09-07 01:51:27 +00:00
for (uint i = 0; i < spot_light_count; i++) {
2020-01-21 17:24:22 +00:00
uint light_index = cluster_data.indices[spot_light_pointer + i];
2019-09-07 01:51:27 +00:00
2020-02-11 13:01:43 +00:00
if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
2020-01-21 17:24:22 +00:00
continue; //not masked
2019-09-07 01:51:27 +00:00
}
2020-04-14 20:05:45 +00:00
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
2020-04-08 01:51:52 +00:00
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
transmittance_color,
transmittance_depth,
transmittance_curve,
transmittance_boost,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_RIM_USED
2019-11-05 11:01:00 +00:00
rim,
rim_tint,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_CLEARCOAT_USED
2019-11-05 11:01:00 +00:00
clearcoat, clearcoat_gloss,
2019-09-07 01:51:27 +00:00
#endif
#ifdef LIGHT_ANISOTROPY_USED
2019-11-05 11:01:00 +00:00
tangent, binormal, anisotropy,
2019-09-07 01:51:27 +00:00
#endif
#ifdef USE_SHADOW_TO_OPACITY
2019-11-05 11:01:00 +00:00
alpha,
2019-09-07 01:51:27 +00:00
#endif
2019-11-05 11:01:00 +00:00
diffuse_light, specular_light);
2019-09-07 01:51:27 +00:00
}
}
2019-08-18 22:40:52 +00:00
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // USE_SHADOW_TO_OPACITY
2019-09-15 04:01:52 +00:00
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
2019-08-18 22:40:52 +00:00
#ifdef MODE_RENDER_DEPTH
2019-10-11 02:14:56 +00:00
2020-06-25 13:33:28 +00:00
#ifdef MODE_RENDER_SDF
{
vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
uint albedo16 = 0x1; //solid flag
albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
uint facing_bits = 0;
const vec3 aniso_dir[6] = vec3[](
vec3(1, 0, 0),
vec3(0, 1, 0),
vec3(0, 0, 1),
vec3(-1, 0, 0),
vec3(0, -1, 0),
vec3(0, 0, -1));
2020-06-28 12:10:51 +00:00
vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
float closest_dist = -1e20;
2020-06-25 13:33:28 +00:00
for (uint i = 0; i < 6; i++) {
2020-06-28 12:10:51 +00:00
float d = dot(cam_normal, aniso_dir[i]);
if (d > closest_dist) {
closest_dist = d;
facing_bits = (1 << i);
2020-06-25 13:33:28 +00:00
}
}
imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
if (length(emission) > 0.001) {
float lumas[6];
vec3 light_total = vec3(0);
for (int i = 0; i < 6; i++) {
float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
vec3 light = emission * strength;
light_total += light;
lumas[i] = max(light.r, max(light.g, light.b));
}
float luma_total = max(light_total.r, max(light_total.g, light_total.b));
uint light_aniso = 0;
for (int i = 0; i < 6; i++) {
light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
}
//compress to RGBE9995 to save space
const float pow2to9 = 512.0f;
const float B = 15.0f;
const float N = 9.0f;
const float LN2 = 0.6931471805599453094172321215;
float cRed = clamp(light_total.r, 0.0, 65408.0);
float cGreen = clamp(light_total.g, 0.0, 65408.0);
float cBlue = clamp(light_total.b, 0.0, 65408.0);
float cMax = max(cRed, max(cGreen, cBlue));
float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
float exps = expp + 1.0f;
if (0.0 <= sMax && sMax < pow2to9) {
exps = expp;
}
float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
//store as 8985 to have 2 extra neighbour bits
uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
}
}
#endif
2019-10-11 02:14:56 +00:00
#ifdef MODE_RENDER_MATERIAL
albedo_output_buffer.rgb = albedo;
albedo_output_buffer.a = alpha;
normal_output_buffer.rgb = normal * 0.5 + 0.5;
normal_output_buffer.a = 0.0;
depth_output_buffer.r = -vertex.z;
#if defined(AO_USED)
orm_output_buffer.r = ao;
#else
orm_output_buffer.r = 0.0;
#endif
orm_output_buffer.g = roughness;
orm_output_buffer.b = metallic;
orm_output_buffer.a = sss_strength;
emission_output_buffer.rgb = emission;
emission_output_buffer.a = 0.0;
#endif
2020-06-25 13:33:28 +00:00
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
#ifdef MODE_RENDER_GIPROBE
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
uint index2 = instances.data[instance_index].gi_offset >> 16;
giprobe_buffer.x = index1 & 0xFF;
giprobe_buffer.y = index2 & 0xFF;
} else {
giprobe_buffer.x = 0xFF;
giprobe_buffer.y = 0xFF;
}
#endif
2020-01-25 10:18:55 +00:00
#endif //MODE_RENDER_NORMAL
2019-08-18 22:40:52 +00:00
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
2019-08-20 20:54:03 +00:00
specular_light *= scene_data.reflection_multiplier;
2019-08-18 22:40:52 +00:00
ambient_light *= albedo; //ambient must be multiplied by albedo at the end
2020-01-25 10:18:55 +00:00
//ambient occlusion
2019-08-26 20:43:58 +00:00
#if defined(AO_USED)
2020-01-25 10:18:55 +00:00
if (scene_data.ssao_enabled && scene_data.ssao_ao_affect > 0.0) {
2020-02-11 13:01:43 +00:00
float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
ao = mix(ao, min(ao, ssao), scene_data.ssao_ao_affect);
ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
2020-01-25 10:18:55 +00:00
}
2020-02-11 13:01:43 +00:00
ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
2019-08-18 22:40:52 +00:00
ao_light_affect = mix(1.0, ao, ao_light_affect);
2020-02-11 13:01:43 +00:00
specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
2020-01-25 10:18:55 +00:00
#else
if (scene_data.ssao_enabled) {
2020-02-11 13:01:43 +00:00
float ao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
float ao_light_affect = mix(1.0, ao, scene_data.ssao_light_affect);
specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
2020-01-25 10:18:55 +00:00
}
#endif // AO_USED
2019-08-18 22:40:52 +00:00
// base color remapping
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
ambient_light *= 1.0 - metallic;
#ifdef MODE_MULTIPLE_RENDER_TARGETS
2019-09-15 04:01:52 +00:00
#ifdef MODE_UNSHADED
2019-08-18 22:40:52 +00:00
diffuse_buffer = vec4(albedo.rgb, 0.0);
specular_buffer = vec4(0.0);
#else
2020-04-04 02:42:26 +00:00
#ifdef SSS_MODE_SKIN
sss_strength = -sss_strength;
#endif
2019-08-20 20:54:03 +00:00
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
2019-08-18 22:40:52 +00:00
specular_buffer = vec4(specular_light, metallic);
#endif
2020-10-15 19:59:08 +00:00
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (scene_data.fog_enabled) {
vec4 fog = fog_process(vertex);
2020-08-13 01:21:01 +00:00
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
2020-08-14 01:07:49 +00:00
}
2020-10-15 19:59:08 +00:00
if (scene_data.volumetric_fog_enabled) {
vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
2020-08-14 01:07:49 +00:00
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
2020-08-13 01:21:01 +00:00
}
2019-08-18 22:40:52 +00:00
#else //MODE_MULTIPLE_RENDER_TARGETS
2019-09-15 04:01:52 +00:00
#ifdef MODE_UNSHADED
2019-08-18 22:40:52 +00:00
frag_color = vec4(albedo, alpha);
#else
2019-08-26 20:43:58 +00:00
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
2020-08-13 01:21:01 +00:00
//frag_color = vec4(1.0);
2019-08-18 22:40:52 +00:00
#endif //USE_NO_SHADING
2020-10-15 19:59:08 +00:00
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (scene_data.fog_enabled) {
vec4 fog = fog_process(vertex);
2020-08-13 01:21:01 +00:00
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
}
2020-10-15 19:59:08 +00:00
if (scene_data.volumetric_fog_enabled) {
vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
2020-08-14 01:07:49 +00:00
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
}
2019-08-18 22:40:52 +00:00
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH
}