godot/servers/rendering/renderer_rd/renderer_storage_rd.h

2034 lines
67 KiB
C++
Raw Normal View History

/*************************************************************************/
2020-12-04 18:26:24 +00:00
/* renderer_storage_rd.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2020-12-04 18:26:24 +00:00
#ifndef RENDERING_SERVER_STORAGE_RD_H
#define RENDERING_SERVER_STORAGE_RD_H
#include "core/templates/rid_owner.h"
2020-12-04 18:26:24 +00:00
#include "servers/rendering/renderer_compositor.h"
#include "servers/rendering/renderer_rd/effects_rd.h"
#include "servers/rendering/renderer_rd/shader_compiler_rd.h"
#include "servers/rendering/renderer_rd/shaders/canvas_sdf.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/giprobe_sdf.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/particles.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/particles_copy.glsl.gen.h"
#include "servers/rendering/renderer_scene_render.h"
#include "servers/rendering/rendering_device.h"
2020-12-04 18:26:24 +00:00
class RendererStorageRD : public RendererStorage {
public:
static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) {
p_array[0] = p_mtx.basis.elements[0][0];
p_array[1] = p_mtx.basis.elements[1][0];
p_array[2] = p_mtx.basis.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.basis.elements[0][1];
p_array[5] = p_mtx.basis.elements[1][1];
p_array[6] = p_mtx.basis.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.basis.elements[0][2];
p_array[9] = p_mtx.basis.elements[1][2];
p_array[10] = p_mtx.basis.elements[2][2];
p_array[11] = 0;
p_array[12] = p_mtx.origin.x;
p_array[13] = p_mtx.origin.y;
p_array[14] = p_mtx.origin.z;
p_array[15] = 1;
}
static _FORCE_INLINE_ void store_basis_3x4(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_transform_3x3(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
p_array[i * 4 + j] = p_mtx.matrix[i][j];
}
}
}
static _FORCE_INLINE_ void store_soft_shadow_kernel(const float *p_kernel, float *p_array) {
for (int i = 0; i < 128; i++) {
p_array[i] = p_kernel[i];
}
}
enum ShaderType {
SHADER_TYPE_2D,
SHADER_TYPE_3D,
SHADER_TYPE_PARTICLES,
2019-09-15 09:58:38 +00:00
SHADER_TYPE_SKY,
SHADER_TYPE_MAX
};
struct ShaderData {
virtual void set_code(const String &p_Code) = 0;
virtual void set_default_texture_param(const StringName &p_name, RID p_texture) = 0;
virtual void get_param_list(List<PropertyInfo> *p_param_list) const = 0;
virtual void get_instance_param_list(List<InstanceShaderParam> *p_param_list) const = 0;
virtual bool is_param_texture(const StringName &p_param) const = 0;
virtual bool is_animated() const = 0;
virtual bool casts_shadows() const = 0;
virtual Variant get_default_parameter(const StringName &p_parameter) const = 0;
virtual ~ShaderData() {}
};
typedef ShaderData *(*ShaderDataRequestFunction)();
struct MaterialData {
void update_uniform_buffer(const Map<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Map<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color);
void update_textures(const Map<StringName, Variant> &p_parameters, const Map<StringName, RID> &p_default_textures, const Vector<ShaderCompilerRD::GeneratedCode::Texture> &p_texture_uniforms, RID *p_textures, bool p_use_linear_color);
virtual void set_render_priority(int p_priority) = 0;
virtual void set_next_pass(RID p_pass) = 0;
virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) = 0;
virtual ~MaterialData();
private:
2020-12-04 18:26:24 +00:00
friend class RendererStorageRD;
RID self;
List<RID>::Element *global_buffer_E = nullptr;
List<RID>::Element *global_texture_E = nullptr;
uint64_t global_textures_pass = 0;
Map<StringName, uint64_t> used_global_textures;
};
typedef MaterialData *(*MaterialDataRequestFunction)(ShaderData *);
enum DefaultRDTexture {
DEFAULT_RD_TEXTURE_WHITE,
DEFAULT_RD_TEXTURE_BLACK,
DEFAULT_RD_TEXTURE_NORMAL,
DEFAULT_RD_TEXTURE_ANISO,
DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER,
2019-08-26 20:43:58 +00:00
DEFAULT_RD_TEXTURE_CUBEMAP_BLACK,
DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK,
DEFAULT_RD_TEXTURE_CUBEMAP_WHITE,
DEFAULT_RD_TEXTURE_3D_WHITE,
DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE,
DEFAULT_RD_TEXTURE_2D_UINT,
DEFAULT_RD_TEXTURE_MAX
};
enum DefaultRDBuffer {
DEFAULT_RD_BUFFER_VERTEX,
DEFAULT_RD_BUFFER_NORMAL,
DEFAULT_RD_BUFFER_TANGENT,
DEFAULT_RD_BUFFER_COLOR,
DEFAULT_RD_BUFFER_TEX_UV,
DEFAULT_RD_BUFFER_TEX_UV2,
DEFAULT_RD_BUFFER_CUSTOM0,
DEFAULT_RD_BUFFER_CUSTOM1,
DEFAULT_RD_BUFFER_CUSTOM2,
DEFAULT_RD_BUFFER_CUSTOM3,
DEFAULT_RD_BUFFER_BONES,
DEFAULT_RD_BUFFER_WEIGHTS,
DEFAULT_RD_BUFFER_MAX,
};
private:
/* CANVAS TEXTURE API (2D) */
struct CanvasTexture {
RID diffuse;
RID normalmap;
RID specular;
Color specular_color = Color(1, 1, 1, 1);
float shininess = 1.0;
RS::CanvasItemTextureFilter texture_filter = RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT;
RS::CanvasItemTextureRepeat texture_repeat = RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT;
RID uniform_sets[RS::CANVAS_ITEM_TEXTURE_FILTER_MAX][RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX];
Size2i size_cache = Size2i(1, 1);
bool use_normal_cache = false;
bool use_specular_cache = false;
bool cleared_cache = true;
void clear_sets();
~CanvasTexture();
};
RID_PtrOwner<CanvasTexture> canvas_texture_owner;
/* TEXTURE API */
struct Texture {
enum Type {
TYPE_2D,
TYPE_LAYERED,
TYPE_3D
};
Type type;
RS::TextureLayeredType layered_type = RS::TEXTURE_LAYERED_2D_ARRAY;
RenderingDevice::TextureType rd_type;
RID rd_texture;
RID rd_texture_srgb;
RenderingDevice::DataFormat rd_format;
RenderingDevice::DataFormat rd_format_srgb;
RD::TextureView rd_view;
Image::Format format;
Image::Format validated_format;
int width;
int height;
int depth;
int layers;
int mipmaps;
int height_2d;
int width_2d;
struct BufferSlice3D {
Size2i size;
uint32_t offset = 0;
uint32_t buffer_size = 0;
};
Vector<BufferSlice3D> buffer_slices_3d;
uint32_t buffer_size_3d = 0;
bool is_render_target;
bool is_proxy;
Ref<Image> image_cache_2d;
String path;
RID proxy_to;
Vector<RID> proxies;
Set<RID> lightmap_users;
RS::TextureDetectCallback detect_3d_callback = nullptr;
void *detect_3d_callback_ud = nullptr;
RS::TextureDetectCallback detect_normal_callback = nullptr;
void *detect_normal_callback_ud = nullptr;
RS::TextureDetectRoughnessCallback detect_roughness_callback = nullptr;
void *detect_roughness_callback_ud = nullptr;
CanvasTexture *canvas_texture = nullptr;
};
struct TextureToRDFormat {
RD::DataFormat format;
RD::DataFormat format_srgb;
RD::TextureSwizzle swizzle_r;
RD::TextureSwizzle swizzle_g;
RD::TextureSwizzle swizzle_b;
RD::TextureSwizzle swizzle_a;
TextureToRDFormat() {
format = RD::DATA_FORMAT_MAX;
format_srgb = RD::DATA_FORMAT_MAX;
swizzle_r = RD::TEXTURE_SWIZZLE_R;
swizzle_g = RD::TEXTURE_SWIZZLE_G;
swizzle_b = RD::TEXTURE_SWIZZLE_B;
swizzle_a = RD::TEXTURE_SWIZZLE_A;
}
};
//textures can be created from threads, so this RID_Owner is thread safe
mutable RID_Owner<Texture, true> texture_owner;
Ref<Image> _validate_texture_format(const Ref<Image> &p_image, TextureToRDFormat &r_format);
RID default_rd_textures[DEFAULT_RD_TEXTURE_MAX];
RID default_rd_samplers[RS::CANVAS_ITEM_TEXTURE_FILTER_MAX][RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX];
RID default_rd_storage_buffer;
/* DECAL ATLAS */
struct DecalAtlas {
struct Texture {
int panorama_to_dp_users;
int users;
Rect2 uv_rect;
};
struct SortItem {
RID texture;
Size2i pixel_size;
Size2i size;
Point2i pos;
bool operator<(const SortItem &p_item) const {
//sort larger to smaller
if (size.height == p_item.size.height) {
return size.width > p_item.size.width;
} else {
return size.height > p_item.size.height;
}
}
};
HashMap<RID, Texture> textures;
bool dirty = true;
int mipmaps = 5;
RID texture;
RID texture_srgb;
struct MipMap {
RID fb;
RID texture;
Size2i size;
};
Vector<MipMap> texture_mipmaps;
Size2i size;
} decal_atlas;
void _update_decal_atlas();
/* SHADER */
struct Material;
struct Shader {
ShaderData *data;
String code;
ShaderType type;
Map<StringName, RID> default_texture_parameter;
Set<Material *> owners;
};
ShaderDataRequestFunction shader_data_request_func[SHADER_TYPE_MAX];
mutable RID_Owner<Shader> shader_owner;
/* Material */
struct Material {
RID self;
MaterialData *data;
Shader *shader;
//shortcut to shader data and type
ShaderType shader_type;
bool update_requested;
bool uniform_dirty;
bool texture_dirty;
Material *update_next;
Map<StringName, Variant> params;
int32_t priority;
RID next_pass;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
MaterialDataRequestFunction material_data_request_func[SHADER_TYPE_MAX];
mutable RID_Owner<Material> material_owner;
Material *material_update_list;
void _material_queue_update(Material *material, bool p_uniform, bool p_texture);
void _update_queued_materials();
/* Mesh */
struct Mesh {
struct Surface {
RS::PrimitiveType primitive = RS::PRIMITIVE_POINTS;
uint32_t format = 0;
RID vertex_buffer;
RID attribute_buffer;
RID skin_buffer;
uint32_t vertex_count = 0;
// A different pipeline needs to be allocated
// depending on the inputs available in the
// material.
// There are never that many geometry/material
// combinations, so a simple array is the most
// cache-efficient structure.
struct Version {
uint32_t input_mask = 0;
RD::VertexFormatID vertex_format = 0;
RID vertex_array;
};
SpinLock version_lock; //needed to access versions
Version *versions = nullptr; //allocated on demand
uint32_t version_count = 0;
RID index_buffer;
RID index_array;
uint32_t index_count = 0;
struct LOD {
float edge_length = 0.0;
RID index_buffer;
RID index_array;
};
LOD *lods = nullptr;
uint32_t lod_count = 0;
AABB aabb;
Vector<AABB> bone_aabbs;
RID blend_shape_buffer;
RID material;
uint32_t render_index = 0;
uint64_t render_pass = 0;
uint32_t multimesh_render_index = 0;
uint64_t multimesh_render_pass = 0;
uint32_t particles_render_index = 0;
uint64_t particles_render_pass = 0;
};
uint32_t blend_shape_count = 0;
RS::BlendShapeMode blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED;
Surface **surfaces = nullptr;
uint32_t surface_count = 0;
Vector<AABB> bone_aabbs;
AABB aabb;
AABB custom_aabb;
Vector<RID> material_cache;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
mutable RID_Owner<Mesh> mesh_owner;
void _mesh_surface_generate_version_for_input_mask(Mesh::Surface *s, uint32_t p_input_mask);
RID mesh_default_rd_buffers[DEFAULT_RD_BUFFER_MAX];
/* MultiMesh */
struct MultiMesh {
RID mesh;
int instances = 0;
RS::MultimeshTransformFormat xform_format = RS::MULTIMESH_TRANSFORM_3D;
bool uses_colors = false;
bool uses_custom_data = false;
int visible_instances = -1;
AABB aabb;
bool aabb_dirty = false;
bool buffer_set = false;
uint32_t stride_cache = 0;
uint32_t color_offset_cache = 0;
uint32_t custom_data_offset_cache = 0;
Vector<float> data_cache; //used if individual setting is used
bool *data_cache_dirty_regions = nullptr;
uint32_t data_cache_used_dirty_regions = 0;
RID buffer; //storage buffer
RID uniform_set_3d;
bool dirty = false;
MultiMesh *dirty_list = nullptr;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
mutable RID_Owner<MultiMesh> multimesh_owner;
MultiMesh *multimesh_dirty_list = nullptr;
_FORCE_INLINE_ void _multimesh_make_local(MultiMesh *multimesh) const;
_FORCE_INLINE_ void _multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb);
_FORCE_INLINE_ void _multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb);
_FORCE_INLINE_ void _multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances);
void _update_dirty_multimeshes();
2019-09-23 21:53:05 +00:00
/* PARTICLES */
struct ParticleData {
float xform[16];
float velocity[3];
uint32_t active;
float color[4];
float custom[3];
float lifetime;
uint32_t pad[3];
};
struct ParticlesFrameParams {
enum {
MAX_ATTRACTORS = 32,
MAX_COLLIDERS = 32,
MAX_3D_TEXTURES = 7
};
enum AttractorType {
ATTRACTOR_TYPE_SPHERE,
ATTRACTOR_TYPE_BOX,
ATTRACTOR_TYPE_VECTOR_FIELD,
};
struct Attractor {
float transform[16];
float extents[3]; //exents or radius
uint32_t type;
uint32_t texture_index; //texture index for vector field
float strength;
float attenuation;
float directionality;
};
enum CollisionType {
COLLISION_TYPE_SPHERE,
COLLISION_TYPE_BOX,
COLLISION_TYPE_SDF,
COLLISION_TYPE_HEIGHT_FIELD
};
struct Collider {
float transform[16];
float extents[3]; //exents or radius
uint32_t type;
uint32_t texture_index; //texture index for vector field
float scale;
uint32_t pad[2];
};
uint32_t emitting;
float system_phase;
float prev_system_phase;
uint32_t cycle;
float explosiveness;
float randomness;
float time;
float delta;
uint32_t random_seed;
uint32_t attractor_count;
uint32_t collider_count;
float particle_size;
float emission_transform[16];
Attractor attractors[MAX_ATTRACTORS];
Collider colliders[MAX_COLLIDERS];
};
struct ParticleEmissionBufferData {
};
struct ParticleEmissionBuffer {
struct Data {
float xform[16];
float velocity[3];
uint32_t flags;
float color[4];
float custom[4];
};
int32_t particle_count;
int32_t particle_max;
uint32_t pad1;
uint32_t pad2;
Data data[1]; //its 2020 and empty arrays are still non standard in C++
};
struct Particles {
bool inactive;
float inactive_time;
bool emitting;
bool one_shot;
int amount;
float lifetime;
float pre_process_time;
float explosiveness;
float randomness;
bool restart_request;
AABB custom_aabb;
bool use_local_coords;
RID process_material;
RS::ParticlesDrawOrder draw_order;
Vector<RID> draw_passes;
RID particle_buffer;
RID particle_instance_buffer;
RID frame_params_buffer;
RID particles_material_uniform_set;
RID particles_copy_uniform_set;
RID particles_transforms_buffer_uniform_set;
RID collision_textures_uniform_set;
RID collision_3d_textures[ParticlesFrameParams::MAX_3D_TEXTURES];
uint32_t collision_3d_textures_used = 0;
RID collision_heightmap_texture;
RID particles_sort_buffer;
RID particles_sort_uniform_set;
bool dirty = false;
Particles *update_list = nullptr;
RID sub_emitter;
float phase;
float prev_phase;
uint64_t prev_ticks;
uint32_t random_seed;
uint32_t cycle_number;
float speed_scale;
int fixed_fps;
bool fractional_delta;
float frame_remainder;
float collision_base_size;
bool clear;
bool force_sub_emit = false;
Transform emission_transform;
Vector<uint8_t> emission_buffer_data;
ParticleEmissionBuffer *emission_buffer = nullptr;
RID emission_storage_buffer;
2020-12-04 18:26:24 +00:00
Set<RendererSceneRender::InstanceBase *> collisions;
Particles() :
inactive(true),
inactive_time(0.0),
emitting(false),
one_shot(false),
amount(0),
lifetime(1.0),
pre_process_time(0.0),
explosiveness(0.0),
randomness(0.0),
restart_request(false),
custom_aabb(AABB(Vector3(-4, -4, -4), Vector3(8, 8, 8))),
use_local_coords(true),
draw_order(RS::PARTICLES_DRAW_ORDER_INDEX),
prev_ticks(0),
random_seed(0),
cycle_number(0),
speed_scale(1.0),
fixed_fps(0),
fractional_delta(false),
frame_remainder(0),
collision_base_size(0.01),
clear(true) {
}
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
ParticlesFrameParams frame_params;
};
void _particles_process(Particles *p_particles, float p_delta);
void _particles_allocate_emission_buffer(Particles *particles);
void _particles_free_data(Particles *particles);
struct ParticlesShader {
struct PushConstant {
float lifetime;
uint32_t clear;
uint32_t total_particles;
uint32_t trail_size;
uint32_t use_fractional_delta;
uint32_t sub_emitter_mode;
uint32_t can_emit;
uint32_t pad;
};
ParticlesShaderRD shader;
ShaderCompilerRD compiler;
RID default_shader;
RID default_material;
RID default_shader_rd;
RID base_uniform_set;
struct CopyPushConstant {
float sort_direction[3];
uint32_t total_particles;
};
enum {
COPY_MODE_FILL_INSTANCES,
COPY_MODE_FILL_SORT_BUFFER,
COPY_MODE_FILL_INSTANCES_WITH_SORT_BUFFER,
COPY_MODE_MAX,
};
ParticlesCopyShaderRD copy_shader;
RID copy_shader_version;
RID copy_pipelines[COPY_MODE_MAX];
} particles_shader;
Particles *particle_update_list = nullptr;
struct ParticlesShaderData : public ShaderData {
bool valid;
RID version;
2020-12-04 18:26:24 +00:00
//PipelineCacheRD pipelines[SKY_VERSION_MAX];
Map<StringName, ShaderLanguage::ShaderNode::Uniform> uniforms;
Vector<ShaderCompilerRD::GeneratedCode::Texture> texture_uniforms;
Vector<uint32_t> ubo_offsets;
uint32_t ubo_size;
String path;
String code;
Map<StringName, RID> default_texture_params;
RID pipeline;
bool uses_time;
virtual void set_code(const String &p_Code);
virtual void set_default_texture_param(const StringName &p_name, RID p_texture);
virtual void get_param_list(List<PropertyInfo> *p_param_list) const;
2020-12-04 18:26:24 +00:00
virtual void get_instance_param_list(List<RendererStorage::InstanceShaderParam> *p_param_list) const;
virtual bool is_param_texture(const StringName &p_param) const;
virtual bool is_animated() const;
virtual bool casts_shadows() const;
virtual Variant get_default_parameter(const StringName &p_parameter) const;
ParticlesShaderData();
virtual ~ParticlesShaderData();
};
ShaderData *_create_particles_shader_func();
2020-12-04 18:26:24 +00:00
static RendererStorageRD::ShaderData *_create_particles_shader_funcs() {
return base_singleton->_create_particles_shader_func();
}
struct ParticlesMaterialData : public MaterialData {
uint64_t last_frame;
ParticlesShaderData *shader_data;
RID uniform_buffer;
RID uniform_set;
Vector<RID> texture_cache;
Vector<uint8_t> ubo_data;
bool uniform_set_updated;
virtual void set_render_priority(int p_priority) {}
virtual void set_next_pass(RID p_pass) {}
virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty);
virtual ~ParticlesMaterialData();
};
MaterialData *_create_particles_material_func(ParticlesShaderData *p_shader);
2020-12-04 18:26:24 +00:00
static RendererStorageRD::MaterialData *_create_particles_material_funcs(ShaderData *p_shader) {
return base_singleton->_create_particles_material_func(static_cast<ParticlesShaderData *>(p_shader));
}
void update_particles();
mutable RID_Owner<Particles> particles_owner;
/* Particles Collision */
struct ParticlesCollision {
RS::ParticlesCollisionType type = RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT;
uint32_t cull_mask = 0xFFFFFFFF;
float radius = 1.0;
Vector3 extents = Vector3(1, 1, 1);
float attractor_strength = 1.0;
float attractor_attenuation = 1.0;
float attractor_directionality = 0.0;
RID field_texture;
RID heightfield_texture;
RID heightfield_fb;
Size2i heightfield_fb_size;
RS::ParticlesCollisionHeightfieldResolution heightfield_resolution = RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_1024;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
mutable RID_Owner<ParticlesCollision> particles_collision_owner;
2019-09-23 21:53:05 +00:00
/* Skeleton */
struct Skeleton {
bool use_2d = false;
int size = 0;
Vector<float> data;
RID buffer;
bool dirty = false;
Skeleton *dirty_list = nullptr;
Transform2D base_transform_2d;
RID uniform_set_3d;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
2019-09-23 21:53:05 +00:00
};
mutable RID_Owner<Skeleton> skeleton_owner;
_FORCE_INLINE_ void _skeleton_make_dirty(Skeleton *skeleton);
Skeleton *skeleton_dirty_list = nullptr;
void _update_dirty_skeletons();
/* LIGHT */
struct Light {
RS::LightType type;
float param[RS::LIGHT_PARAM_MAX];
Color color = Color(1, 1, 1, 1);
Color shadow_color;
RID projector;
bool shadow = false;
bool negative = false;
bool reverse_cull = false;
RS::LightBakeMode bake_mode = RS::LIGHT_BAKE_DYNAMIC;
uint32_t max_sdfgi_cascade = 2;
uint32_t cull_mask = 0xFFFFFFFF;
RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
RS::LightDirectionalShadowDepthRangeMode directional_range_mode = RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE;
bool directional_blend_splits = false;
bool directional_sky_only = false;
uint64_t version = 0;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
mutable RID_Owner<Light> light_owner;
/* REFLECTION PROBE */
struct ReflectionProbe {
RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE;
int resolution = 256;
float intensity = 1.0;
RS::ReflectionProbeAmbientMode ambient_mode = RS::REFLECTION_PROBE_AMBIENT_ENVIRONMENT;
Color ambient_color;
float ambient_color_energy = 1.0;
float max_distance = 0;
Vector3 extents = Vector3(1, 1, 1);
Vector3 origin_offset;
bool interior = false;
bool box_projection = false;
bool enable_shadows = false;
uint32_t cull_mask = (1 << 20) - 1;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
mutable RID_Owner<ReflectionProbe> reflection_probe_owner;
/* DECAL */
struct Decal {
Vector3 extents = Vector3(1, 1, 1);
RID textures[RS::DECAL_TEXTURE_MAX];
float emission_energy = 1.0;
float albedo_mix = 1.0;
Color modulate = Color(1, 1, 1, 1);
uint32_t cull_mask = (1 << 20) - 1;
float upper_fade = 0.3;
float lower_fade = 0.3;
bool distance_fade = false;
float distance_fade_begin = 10;
float distance_fade_length = 1;
float normal_fade = 0.0;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
mutable RID_Owner<Decal> decal_owner;
2019-10-03 20:39:08 +00:00
/* GI PROBE */
struct GIProbe {
RID octree_buffer;
RID data_buffer;
RID sdf_texture;
2019-10-03 20:39:08 +00:00
uint32_t octree_buffer_size = 0;
uint32_t data_buffer_size = 0;
Vector<int> level_counts;
2019-10-03 20:39:08 +00:00
int cell_count = 0;
Transform to_cell_xform;
AABB bounds;
Vector3i octree_size;
float dynamic_range = 4.0;
float energy = 1.0;
float ao = 0.0;
2019-11-04 21:17:53 +00:00
float ao_size = 0.5;
2019-10-03 20:39:08 +00:00
float bias = 1.4;
float normal_bias = 0.0;
float propagation = 0.7;
bool interior = false;
bool use_two_bounces = false;
float anisotropy_strength = 0.5;
uint32_t version = 1;
uint32_t data_version = 1;
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
2019-10-03 20:39:08 +00:00
};
GiprobeSdfShaderRD giprobe_sdf_shader;
RID giprobe_sdf_shader_version;
RID giprobe_sdf_shader_version_shader;
RID giprobe_sdf_shader_pipeline;
2019-10-03 20:39:08 +00:00
mutable RID_Owner<GIProbe> gi_probe_owner;
/* REFLECTION PROBE */
struct Lightmap {
RID light_texture;
bool uses_spherical_harmonics = false;
bool interior = false;
AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
int32_t array_index = -1; //unassigned
PackedVector3Array points;
PackedColorArray point_sh;
PackedInt32Array tetrahedra;
PackedInt32Array bsp_tree;
struct BSP {
static const int32_t EMPTY_LEAF = INT32_MIN;
float plane[4];
int32_t over = EMPTY_LEAF, under = EMPTY_LEAF;
};
2020-12-04 18:26:24 +00:00
RendererStorage::InstanceDependency instance_dependency;
};
bool using_lightmap_array; //high end uses this
/* for high end */
Vector<RID> lightmap_textures;
uint64_t lightmap_array_version = 0;
mutable RID_Owner<Lightmap> lightmap_owner;
float lightmap_probe_capture_update_speed = 4;
/* RENDER TARGET */
struct RenderTarget {
Size2i size;
RID framebuffer;
RID color;
//used for retrieving from CPU
RD::DataFormat color_format = RD::DATA_FORMAT_R4G4_UNORM_PACK8;
RD::DataFormat color_format_srgb = RD::DATA_FORMAT_R4G4_UNORM_PACK8;
Image::Format image_format = Image::FORMAT_L8;
bool flags[RENDER_TARGET_FLAG_MAX];
RID backbuffer; //used for effects
RID backbuffer_fb;
RID backbuffer_mipmap0;
struct BackbufferMipmap {
RID mipmap;
RID mipmap_copy;
};
Vector<BackbufferMipmap> backbuffer_mipmaps;
RID framebuffer_uniform_set;
RID backbuffer_uniform_set;
RID sdf_buffer_write;
RID sdf_buffer_write_fb;
RID sdf_buffer_process[2];
RID sdf_buffer_read;
RID sdf_buffer_process_uniform_sets[2];
RS::ViewportSDFOversize sdf_oversize = RS::VIEWPORT_SDF_OVERSIZE_120_PERCENT;
RS::ViewportSDFScale sdf_scale = RS::VIEWPORT_SDF_SCALE_50_PERCENT;
Size2i process_size;
//texture generated for this owner (nor RD).
RID texture;
bool was_used;
//clear request
bool clear_requested;
Color clear_color;
};
mutable RID_Owner<RenderTarget> render_target_owner;
void _clear_render_target(RenderTarget *rt);
void _update_render_target(RenderTarget *rt);
void _create_render_target_backbuffer(RenderTarget *rt);
void _render_target_allocate_sdf(RenderTarget *rt);
void _render_target_clear_sdf(RenderTarget *rt);
Rect2i _render_target_get_sdf_rect(const RenderTarget *rt) const;
struct RenderTargetSDF {
enum {
SHADER_LOAD,
SHADER_LOAD_SHRINK,
SHADER_PROCESS,
SHADER_PROCESS_OPTIMIZED,
SHADER_STORE,
SHADER_STORE_SHRINK,
SHADER_MAX
};
struct PushConstant {
int32_t size[2];
int32_t stride;
int32_t shift;
int32_t base_size[2];
int32_t pad[2];
};
CanvasSdfShaderRD shader;
RID shader_version;
RID pipelines[SHADER_MAX];
} rt_sdf;
/* GLOBAL SHADER VARIABLES */
struct GlobalVariables {
enum {
BUFFER_DIRTY_REGION_SIZE = 1024
};
struct Variable {
Set<RID> texture_materials; // materials using this
RS::GlobalVariableType type;
Variant value;
Variant override;
int32_t buffer_index; //for vectors
int32_t buffer_elements; //for vectors
};
HashMap<StringName, Variable> variables;
struct Value {
float x;
float y;
float z;
float w;
};
struct ValueInt {
int32_t x;
int32_t y;
int32_t z;
int32_t w;
};
struct ValueUInt {
uint32_t x;
uint32_t y;
uint32_t z;
uint32_t w;
};
struct ValueUsage {
uint32_t elements = 0;
};
List<RID> materials_using_buffer;
List<RID> materials_using_texture;
RID buffer;
Value *buffer_values;
ValueUsage *buffer_usage;
bool *buffer_dirty_regions;
uint32_t buffer_dirty_region_count = 0;
uint32_t buffer_size;
bool must_update_texture_materials = false;
bool must_update_buffer_materials = false;
HashMap<RID, int32_t> instance_buffer_pos;
} global_variables;
int32_t _global_variable_allocate(uint32_t p_elements);
void _global_variable_store_in_buffer(int32_t p_index, RS::GlobalVariableType p_type, const Variant &p_value);
void _global_variable_mark_buffer_dirty(int32_t p_index, int32_t p_elements);
void _update_global_variables();
/* EFFECTS */
2020-12-04 18:26:24 +00:00
EffectsRD effects;
public:
/* TEXTURE API */
virtual RID texture_2d_create(const Ref<Image> &p_image);
virtual RID texture_2d_layered_create(const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type);
virtual RID texture_3d_create(Image::Format p_format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_data); //all slices, then all the mipmaps, must be coherent
virtual RID texture_proxy_create(RID p_base);
virtual void _texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer, bool p_immediate);
virtual void texture_2d_update_immediate(RID p_texture, const Ref<Image> &p_image, int p_layer = 0); //mostly used for video and streaming
virtual void texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer = 0);
virtual void texture_3d_update(RID p_texture, const Vector<Ref<Image>> &p_data);
virtual void texture_proxy_update(RID p_texture, RID p_proxy_to);
//these two APIs can be used together or in combination with the others.
virtual RID texture_2d_placeholder_create();
virtual RID texture_2d_layered_placeholder_create(RenderingServer::TextureLayeredType p_layered_type);
virtual RID texture_3d_placeholder_create();
virtual Ref<Image> texture_2d_get(RID p_texture) const;
virtual Ref<Image> texture_2d_layer_get(RID p_texture, int p_layer) const;
virtual Vector<Ref<Image>> texture_3d_get(RID p_texture) const;
virtual void texture_replace(RID p_texture, RID p_by_texture);
virtual void texture_set_size_override(RID p_texture, int p_width, int p_height);
virtual void texture_set_path(RID p_texture, const String &p_path);
virtual String texture_get_path(RID p_texture) const;
virtual void texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata);
virtual void texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata);
virtual void texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata);
virtual void texture_debug_usage(List<RS::TextureInfo> *r_info);
virtual void texture_set_proxy(RID p_proxy, RID p_base);
virtual void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable);
virtual Size2 texture_size_with_proxy(RID p_proxy);
virtual void texture_add_to_decal_atlas(RID p_texture, bool p_panorama_to_dp = false);
virtual void texture_remove_from_decal_atlas(RID p_texture, bool p_panorama_to_dp = false);
RID decal_atlas_get_texture() const;
RID decal_atlas_get_texture_srgb() const;
_FORCE_INLINE_ Rect2 decal_atlas_get_texture_rect(RID p_texture) {
DecalAtlas::Texture *t = decal_atlas.textures.getptr(p_texture);
if (!t) {
return Rect2();
}
return t->uv_rect;
}
//internal usage
_FORCE_INLINE_ RID texture_get_rd_texture(RID p_texture, bool p_srgb = false) {
if (p_texture.is_null()) {
return RID();
}
Texture *tex = texture_owner.getornull(p_texture);
if (!tex) {
return RID();
}
return (p_srgb && tex->rd_texture_srgb.is_valid()) ? tex->rd_texture_srgb : tex->rd_texture;
}
_FORCE_INLINE_ Size2i texture_2d_get_size(RID p_texture) {
if (p_texture.is_null()) {
return Size2i();
}
Texture *tex = texture_owner.getornull(p_texture);
if (!tex) {
return Size2i();
}
return Size2i(tex->width_2d, tex->height_2d);
}
_FORCE_INLINE_ RID texture_rd_get_default(DefaultRDTexture p_texture) {
return default_rd_textures[p_texture];
}
_FORCE_INLINE_ RID sampler_rd_get_default(RS::CanvasItemTextureFilter p_filter, RS::CanvasItemTextureRepeat p_repeat) {
return default_rd_samplers[p_filter][p_repeat];
}
/* CANVAS TEXTURE API */
virtual RID canvas_texture_create();
virtual void canvas_texture_set_channel(RID p_canvas_texture, RS::CanvasTextureChannel p_channel, RID p_texture);
virtual void canvas_texture_set_shading_parameters(RID p_canvas_texture, const Color &p_specular_color, float p_shininess);
virtual void canvas_texture_set_texture_filter(RID p_canvas_texture, RS::CanvasItemTextureFilter p_filter);
virtual void canvas_texture_set_texture_repeat(RID p_canvas_texture, RS::CanvasItemTextureRepeat p_repeat);
bool canvas_texture_get_uniform_set(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, RID p_base_shader, int p_base_set, RID &r_uniform_set, Size2i &r_size, Color &r_specular_shininess, bool &r_use_normal, bool &r_use_specular);
/* SHADER API */
RID shader_create();
void shader_set_code(RID p_shader, const String &p_code);
String shader_get_code(RID p_shader) const;
void shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const;
void shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture);
RID shader_get_default_texture_param(RID p_shader, const StringName &p_name) const;
Variant shader_get_param_default(RID p_shader, const StringName &p_param) const;
void shader_set_data_request_function(ShaderType p_shader_type, ShaderDataRequestFunction p_function);
/* COMMON MATERIAL API */
RID material_create();
void material_set_shader(RID p_material, RID p_shader);
void material_set_param(RID p_material, const StringName &p_param, const Variant &p_value);
Variant material_get_param(RID p_material, const StringName &p_param) const;
void material_set_next_pass(RID p_material, RID p_next_material);
void material_set_render_priority(RID p_material, int priority);
bool material_is_animated(RID p_material);
bool material_casts_shadows(RID p_material);
void material_get_instance_shader_parameters(RID p_material, List<InstanceShaderParam> *r_parameters);
2020-12-04 18:26:24 +00:00
void material_update_dependency(RID p_material, InstanceBaseDependency *p_instance);
void material_force_update_textures(RID p_material, ShaderType p_shader_type);
void material_set_data_request_function(ShaderType p_shader_type, MaterialDataRequestFunction p_function);
_FORCE_INLINE_ MaterialData *material_get_data(RID p_material, ShaderType p_shader_type) {
Material *material = material_owner.getornull(p_material);
if (!material || material->shader_type != p_shader_type) {
2020-04-01 23:20:12 +00:00
return nullptr;
} else {
return material->data;
}
}
/* MESH API */
virtual RID mesh_create();
/// Return stride
virtual void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface);
virtual int mesh_get_blend_shape_count(RID p_mesh) const;
virtual void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode);
virtual RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const;
virtual void mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data);
virtual void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material);
virtual RID mesh_surface_get_material(RID p_mesh, int p_surface) const;
virtual RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const;
virtual int mesh_get_surface_count(RID p_mesh) const;
virtual void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb);
virtual AABB mesh_get_custom_aabb(RID p_mesh) const;
virtual AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID());
virtual void mesh_clear(RID p_mesh);
_FORCE_INLINE_ const RID *mesh_get_surface_count_and_materials(RID p_mesh, uint32_t &r_surface_count) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
2020-04-01 23:20:12 +00:00
ERR_FAIL_COND_V(!mesh, nullptr);
r_surface_count = mesh->surface_count;
if (r_surface_count == 0) {
2020-04-01 23:20:12 +00:00
return nullptr;
}
if (mesh->material_cache.empty()) {
mesh->material_cache.resize(mesh->surface_count);
for (uint32_t i = 0; i < r_surface_count; i++) {
mesh->material_cache.write[i] = mesh->surfaces[i]->material;
}
}
return mesh->material_cache.ptr();
}
_FORCE_INLINE_ RS::PrimitiveType mesh_surface_get_primitive(RID p_mesh, uint32_t p_surface_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RS::PRIMITIVE_MAX);
ERR_FAIL_UNSIGNED_INDEX_V(p_surface_index, mesh->surface_count, RS::PRIMITIVE_MAX);
return mesh->surfaces[p_surface_index]->primitive;
}
_FORCE_INLINE_ void mesh_surface_get_arrays_and_format(RID p_mesh, uint32_t p_surface_index, uint32_t p_input_mask, RID &r_vertex_array_rd, RID &r_index_array_rd, RD::VertexFormatID &r_vertex_format) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_UNSIGNED_INDEX(p_surface_index, mesh->surface_count);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
r_index_array_rd = s->index_array;
s->version_lock.lock();
//there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way
for (uint32_t i = 0; i < s->version_count; i++) {
if (s->versions[i].input_mask != p_input_mask) {
continue;
}
//we have this version, hooray
r_vertex_format = s->versions[i].vertex_format;
r_vertex_array_rd = s->versions[i].vertex_array;
s->version_lock.unlock();
return;
}
uint32_t version = s->version_count; //gets added at the end
_mesh_surface_generate_version_for_input_mask(s, p_input_mask);
r_vertex_format = s->versions[version].vertex_format;
r_vertex_array_rd = s->versions[version].vertex_array;
s->version_lock.unlock();
}
_FORCE_INLINE_ RID mesh_get_default_rd_buffer(DefaultRDBuffer p_buffer) {
ERR_FAIL_INDEX_V(p_buffer, DEFAULT_RD_BUFFER_MAX, RID());
return mesh_default_rd_buffers[p_buffer];
}
_FORCE_INLINE_ uint32_t mesh_surface_get_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->render_pass != p_render_pass) {
(*r_index)++;
s->render_pass = p_render_pass;
s->render_index = *r_index;
}
return s->render_index;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_multimesh_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->multimesh_render_pass != p_render_pass) {
(*r_index)++;
s->multimesh_render_pass = p_render_pass;
s->multimesh_render_index = *r_index;
}
return s->multimesh_render_index;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_particles_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->particles_render_pass != p_render_pass) {
(*r_index)++;
s->particles_render_pass = p_render_pass;
s->particles_render_index = *r_index;
}
return s->particles_render_index;
}
/* MULTIMESH API */
RID multimesh_create();
void multimesh_allocate(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false);
int multimesh_get_instance_count(RID p_multimesh) const;
void multimesh_set_mesh(RID p_multimesh, RID p_mesh);
void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform);
void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform);
void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color);
void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color);
RID multimesh_get_mesh(RID p_multimesh) const;
Transform multimesh_instance_get_transform(RID p_multimesh, int p_index) const;
Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const;
Color multimesh_instance_get_color(RID p_multimesh, int p_index) const;
Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const;
void multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer);
Vector<float> multimesh_get_buffer(RID p_multimesh) const;
void multimesh_set_visible_instances(RID p_multimesh, int p_visible);
int multimesh_get_visible_instances(RID p_multimesh) const;
AABB multimesh_get_aabb(RID p_multimesh) const;
_FORCE_INLINE_ RS::MultimeshTransformFormat multimesh_get_transform_format(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->xform_format;
}
_FORCE_INLINE_ bool multimesh_uses_colors(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->uses_colors;
}
_FORCE_INLINE_ bool multimesh_uses_custom_data(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
return multimesh->uses_custom_data;
}
_FORCE_INLINE_ uint32_t multimesh_get_instances_to_draw(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (multimesh->visible_instances >= 0) {
return multimesh->visible_instances;
}
return multimesh->instances;
}
_FORCE_INLINE_ RID multimesh_get_3d_uniform_set(RID p_multimesh, RID p_shader, uint32_t p_set) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
if (!multimesh->uniform_set_3d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(multimesh->buffer);
uniforms.push_back(u);
multimesh->uniform_set_3d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return multimesh->uniform_set_3d;
}
/* IMMEDIATE API */
RID immediate_create() { return RID(); }
void immediate_begin(RID p_immediate, RS::PrimitiveType p_rimitive, RID p_texture = RID()) {}
void immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {}
void immediate_normal(RID p_immediate, const Vector3 &p_normal) {}
void immediate_tangent(RID p_immediate, const Plane &p_tangent) {}
void immediate_color(RID p_immediate, const Color &p_color) {}
void immediate_uv(RID p_immediate, const Vector2 &tex_uv) {}
void immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {}
void immediate_end(RID p_immediate) {}
void immediate_clear(RID p_immediate) {}
void immediate_set_material(RID p_immediate, RID p_material) {}
RID immediate_get_material(RID p_immediate) const { return RID(); }
AABB immediate_get_aabb(RID p_immediate) const { return AABB(); }
/* SKELETON API */
2019-09-23 21:53:05 +00:00
RID skeleton_create();
void skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton = false);
void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform);
void skeleton_set_world_transform(RID p_skeleton, bool p_enable, const Transform &p_world_transform);
int skeleton_get_bone_count(RID p_skeleton) const;
void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform);
Transform skeleton_bone_get_transform(RID p_skeleton, int p_bone) const;
void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform);
Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const;
_FORCE_INLINE_ RID skeleton_get_3d_uniform_set(RID p_skeleton, RID p_shader, uint32_t p_set) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
2019-09-25 19:44:44 +00:00
ERR_FAIL_COND_V(!skeleton, RID());
ERR_FAIL_COND_V(skeleton->size == 0, RID());
2019-09-23 21:53:05 +00:00
if (skeleton->use_2d) {
return RID();
}
if (!skeleton->uniform_set_3d.is_valid()) {
Vector<RD::Uniform> uniforms;
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
2019-09-23 21:53:05 +00:00
u.binding = 0;
u.ids.push_back(skeleton->buffer);
uniforms.push_back(u);
skeleton->uniform_set_3d = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
2019-09-23 21:53:05 +00:00
return skeleton->uniform_set_3d;
}
/* Light API */
RID light_create(RS::LightType p_type);
RID directional_light_create() { return light_create(RS::LIGHT_DIRECTIONAL); }
RID omni_light_create() { return light_create(RS::LIGHT_OMNI); }
RID spot_light_create() { return light_create(RS::LIGHT_SPOT); }
void light_set_color(RID p_light, const Color &p_color);
void light_set_param(RID p_light, RS::LightParam p_param, float p_value);
void light_set_shadow(RID p_light, bool p_enabled);
void light_set_shadow_color(RID p_light, const Color &p_color);
void light_set_projector(RID p_light, RID p_texture);
void light_set_negative(RID p_light, bool p_enable);
void light_set_cull_mask(RID p_light, uint32_t p_mask);
void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled);
void light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode);
void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade);
void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode);
void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode);
void light_directional_set_blend_splits(RID p_light, bool p_enable);
bool light_directional_get_blend_splits(RID p_light) const;
void light_directional_set_sky_only(RID p_light, bool p_sky_only);
bool light_directional_is_sky_only(RID p_light) const;
void light_directional_set_shadow_depth_range_mode(RID p_light, RS::LightDirectionalShadowDepthRangeMode p_range_mode);
RS::LightDirectionalShadowDepthRangeMode light_directional_get_shadow_depth_range_mode(RID p_light) const;
RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light);
RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light);
_FORCE_INLINE_ RS::LightType light_get_type(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->type;
}
AABB light_get_aabb(RID p_light) const;
_FORCE_INLINE_ float light_get_param(RID p_light, RS::LightParam p_param) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->param[p_param];
}
_FORCE_INLINE_ RID light_get_projector(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RID());
return light->projector;
}
_FORCE_INLINE_ Color light_get_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->color;
}
_FORCE_INLINE_ Color light_get_shadow_color(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->shadow_color;
}
_FORCE_INLINE_ uint32_t light_get_cull_mask(RID p_light) {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->cull_mask;
}
_FORCE_INLINE_ bool light_has_shadow(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->shadow;
}
_FORCE_INLINE_ bool light_is_negative(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL);
return light->negative;
}
_FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
}
2020-08-13 01:21:01 +00:00
_FORCE_INLINE_ float light_get_shadow_volumetric_fog_fade(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
return light->param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE];
}
RS::LightBakeMode light_get_bake_mode(RID p_light);
uint32_t light_get_max_sdfgi_cascade(RID p_light);
uint64_t light_get_version(RID p_light) const;
/* PROBE API */
RID reflection_probe_create();
void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode);
void reflection_probe_set_intensity(RID p_probe, float p_intensity);
void reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode);
void reflection_probe_set_ambient_color(RID p_probe, const Color &p_color);
void reflection_probe_set_ambient_energy(RID p_probe, float p_energy);
void reflection_probe_set_max_distance(RID p_probe, float p_distance);
void reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents);
void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset);
void reflection_probe_set_as_interior(RID p_probe, bool p_enable);
void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable);
void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable);
void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers);
void reflection_probe_set_resolution(RID p_probe, int p_resolution);
AABB reflection_probe_get_aabb(RID p_probe) const;
RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const;
uint32_t reflection_probe_get_cull_mask(RID p_probe) const;
Vector3 reflection_probe_get_extents(RID p_probe) const;
Vector3 reflection_probe_get_origin_offset(RID p_probe) const;
float reflection_probe_get_origin_max_distance(RID p_probe) const;
int reflection_probe_get_resolution(RID p_probe) const;
bool reflection_probe_renders_shadows(RID p_probe) const;
float reflection_probe_get_intensity(RID p_probe) const;
bool reflection_probe_is_interior(RID p_probe) const;
bool reflection_probe_is_box_projection(RID p_probe) const;
RS::ReflectionProbeAmbientMode reflection_probe_get_ambient_mode(RID p_probe) const;
Color reflection_probe_get_ambient_color(RID p_probe) const;
float reflection_probe_get_ambient_color_energy(RID p_probe) const;
2020-12-04 18:26:24 +00:00
void base_update_dependency(RID p_base, InstanceBaseDependency *p_instance);
void skeleton_update_dependency(RID p_skeleton, InstanceBaseDependency *p_instance);
/* DECAL API */
virtual RID decal_create();
virtual void decal_set_extents(RID p_decal, const Vector3 &p_extents);
virtual void decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture);
virtual void decal_set_emission_energy(RID p_decal, float p_energy);
virtual void decal_set_albedo_mix(RID p_decal, float p_mix);
virtual void decal_set_modulate(RID p_decal, const Color &p_modulate);
virtual void decal_set_cull_mask(RID p_decal, uint32_t p_layers);
virtual void decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length);
virtual void decal_set_fade(RID p_decal, float p_above, float p_below);
virtual void decal_set_normal_fade(RID p_decal, float p_fade);
_FORCE_INLINE_ Vector3 decal_get_extents(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->extents;
}
_FORCE_INLINE_ RID decal_get_texture(RID p_decal, RS::DecalTexture p_texture) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->textures[p_texture];
}
_FORCE_INLINE_ Color decal_get_modulate(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->modulate;
}
_FORCE_INLINE_ float decal_get_emission_energy(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->emission_energy;
}
_FORCE_INLINE_ float decal_get_albedo_mix(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->albedo_mix;
}
_FORCE_INLINE_ uint32_t decal_get_cull_mask(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->cull_mask;
}
_FORCE_INLINE_ float decal_get_upper_fade(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->upper_fade;
}
_FORCE_INLINE_ float decal_get_lower_fade(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->lower_fade;
}
_FORCE_INLINE_ float decal_get_normal_fade(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->normal_fade;
}
_FORCE_INLINE_ bool decal_is_distance_fade_enabled(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->distance_fade;
}
_FORCE_INLINE_ float decal_get_distance_fade_begin(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->distance_fade_begin;
}
_FORCE_INLINE_ float decal_get_distance_fade_length(RID p_decal) {
const Decal *decal = decal_owner.getornull(p_decal);
return decal->distance_fade_length;
}
virtual AABB decal_get_aabb(RID p_decal) const;
/* GI PROBE API */
2019-10-03 20:39:08 +00:00
RID gi_probe_create();
void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts);
2019-10-03 20:39:08 +00:00
AABB gi_probe_get_bounds(RID p_gi_probe) const;
Vector3i gi_probe_get_octree_size(RID p_gi_probe) const;
Vector<uint8_t> gi_probe_get_octree_cells(RID p_gi_probe) const;
Vector<uint8_t> gi_probe_get_data_cells(RID p_gi_probe) const;
Vector<uint8_t> gi_probe_get_distance_field(RID p_gi_probe) const;
Vector<int> gi_probe_get_level_counts(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range);
float gi_probe_get_dynamic_range(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_propagation(RID p_gi_probe, float p_range);
float gi_probe_get_propagation(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_energy(RID p_gi_probe, float p_energy);
float gi_probe_get_energy(RID p_gi_probe) const;
void gi_probe_set_ao(RID p_gi_probe, float p_ao);
float gi_probe_get_ao(RID p_gi_probe) const;
2019-11-04 21:17:53 +00:00
void gi_probe_set_ao_size(RID p_gi_probe, float p_strength);
float gi_probe_get_ao_size(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_bias(RID p_gi_probe, float p_bias);
float gi_probe_get_bias(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_normal_bias(RID p_gi_probe, float p_range);
float gi_probe_get_normal_bias(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_interior(RID p_gi_probe, bool p_enable);
bool gi_probe_is_interior(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable);
bool gi_probe_is_using_two_bounces(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength);
float gi_probe_get_anisotropy_strength(RID p_gi_probe) const;
2019-10-03 20:39:08 +00:00
uint32_t gi_probe_get_version(RID p_probe);
uint32_t gi_probe_get_data_version(RID p_probe);
2019-10-03 20:39:08 +00:00
RID gi_probe_get_octree_buffer(RID p_gi_probe) const;
RID gi_probe_get_data_buffer(RID p_gi_probe) const;
RID gi_probe_get_sdf_texture(RID p_gi_probe);
/* LIGHTMAP CAPTURE */
virtual RID lightmap_create();
virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics);
virtual void lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds);
virtual void lightmap_set_probe_interior(RID p_lightmap, bool p_interior);
virtual void lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree);
virtual PackedVector3Array lightmap_get_probe_capture_points(RID p_lightmap) const;
virtual PackedColorArray lightmap_get_probe_capture_sh(RID p_lightmap) const;
virtual PackedInt32Array lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const;
virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const;
virtual AABB lightmap_get_aabb(RID p_lightmap) const;
virtual bool lightmap_is_interior(RID p_lightmap) const;
virtual void lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh);
virtual void lightmap_set_probe_capture_update_speed(float p_speed);
_FORCE_INLINE_ float lightmap_get_probe_capture_update_speed() const {
return lightmap_probe_capture_update_speed;
}
_FORCE_INLINE_ int32_t lightmap_get_array_index(RID p_lightmap) const {
ERR_FAIL_COND_V(!using_lightmap_array, -1); //only for arrays
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
return lm->array_index;
}
_FORCE_INLINE_ bool lightmap_uses_spherical_harmonics(RID p_lightmap) const {
ERR_FAIL_COND_V(!using_lightmap_array, false); //only for arrays
const Lightmap *lm = lightmap_owner.getornull(p_lightmap);
return lm->uses_spherical_harmonics;
}
_FORCE_INLINE_ uint64_t lightmap_array_get_version() const {
ERR_FAIL_COND_V(!using_lightmap_array, 0); //only for arrays
return lightmap_array_version;
}
_FORCE_INLINE_ int lightmap_array_get_size() const {
ERR_FAIL_COND_V(!using_lightmap_array, 0); //only for arrays
return lightmap_textures.size();
}
_FORCE_INLINE_ const Vector<RID> &lightmap_array_get_textures() const {
ERR_FAIL_COND_V(!using_lightmap_array, lightmap_textures); //only for arrays
return lightmap_textures;
}
/* PARTICLES */
RID particles_create();
void particles_set_emitting(RID p_particles, bool p_emitting);
void particles_set_amount(RID p_particles, int p_amount);
void particles_set_lifetime(RID p_particles, float p_lifetime);
void particles_set_one_shot(RID p_particles, bool p_one_shot);
void particles_set_pre_process_time(RID p_particles, float p_time);
void particles_set_explosiveness_ratio(RID p_particles, float p_ratio);
void particles_set_randomness_ratio(RID p_particles, float p_ratio);
void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb);
void particles_set_speed_scale(RID p_particles, float p_scale);
void particles_set_use_local_coordinates(RID p_particles, bool p_enable);
void particles_set_process_material(RID p_particles, RID p_material);
void particles_set_fixed_fps(RID p_particles, int p_fps);
void particles_set_fractional_delta(RID p_particles, bool p_enable);
void particles_set_collision_base_size(RID p_particles, float p_size);
void particles_restart(RID p_particles);
void particles_emit(RID p_particles, const Transform &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags);
void particles_set_subemitter(RID p_particles, RID p_subemitter_particles);
void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order);
void particles_set_draw_passes(RID p_particles, int p_count);
void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh);
void particles_request_process(RID p_particles);
AABB particles_get_current_aabb(RID p_particles);
AABB particles_get_aabb(RID p_particles) const;
void particles_set_emission_transform(RID p_particles, const Transform &p_transform);
bool particles_get_emitting(RID p_particles);
int particles_get_draw_passes(RID p_particles) const;
RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const;
void particles_set_view_axis(RID p_particles, const Vector3 &p_axis);
virtual bool particles_is_inactive(RID p_particles) const;
_FORCE_INLINE_ uint32_t particles_get_amount(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->amount;
}
_FORCE_INLINE_ uint32_t particles_is_using_local_coords(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->use_local_coords;
}
_FORCE_INLINE_ RID particles_get_instance_buffer_uniform_set(RID p_particles, RID p_shader, uint32_t p_set) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RID());
if (particles->particles_transforms_buffer_uniform_set.is_null()) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(particles->particle_instance_buffer);
uniforms.push_back(u);
}
particles->particles_transforms_buffer_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return particles->particles_transforms_buffer_uniform_set;
}
2020-12-04 18:26:24 +00:00
virtual void particles_add_collision(RID p_particles, InstanceBaseDependency *p_instance);
virtual void particles_remove_collision(RID p_particles, InstanceBaseDependency *p_instance);
/* PARTICLES COLLISION */
virtual RID particles_collision_create();
virtual void particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type);
virtual void particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask);
virtual void particles_collision_set_sphere_radius(RID p_particles_collision, float p_radius); //for spheres
virtual void particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents); //for non-spheres
virtual void particles_collision_set_attractor_strength(RID p_particles_collision, float p_strength);
virtual void particles_collision_set_attractor_directionality(RID p_particles_collision, float p_directionality);
virtual void particles_collision_set_attractor_attenuation(RID p_particles_collision, float p_curve);
virtual void particles_collision_set_field_texture(RID p_particles_collision, RID p_texture); //for SDF and vector field, heightfield is dynamic
virtual void particles_collision_height_field_update(RID p_particles_collision); //for SDF and vector field
virtual void particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution); //for SDF and vector field
virtual AABB particles_collision_get_aabb(RID p_particles_collision) const;
virtual Vector3 particles_collision_get_extents(RID p_particles_collision) const;
virtual bool particles_collision_is_heightfield(RID p_particles_collision) const;
RID particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const;
/* GLOBAL VARIABLES API */
virtual void global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value);
virtual void global_variable_remove(const StringName &p_name);
virtual Vector<StringName> global_variable_get_list() const;
virtual void global_variable_set(const StringName &p_name, const Variant &p_value);
virtual void global_variable_set_override(const StringName &p_name, const Variant &p_value);
virtual Variant global_variable_get(const StringName &p_name) const;
virtual RS::GlobalVariableType global_variable_get_type(const StringName &p_name) const;
RS::GlobalVariableType global_variable_get_type_internal(const StringName &p_name) const;
virtual void global_variables_load_settings(bool p_load_textures = true);
virtual void global_variables_clear();
virtual int32_t global_variables_instance_allocate(RID p_instance);
virtual void global_variables_instance_free(RID p_instance);
virtual void global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value);
RID global_variables_get_storage_buffer() const;
/* RENDER TARGET API */
RID render_target_create();
void render_target_set_position(RID p_render_target, int p_x, int p_y);
void render_target_set_size(RID p_render_target, int p_width, int p_height);
RID render_target_get_texture(RID p_render_target);
void render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id);
void render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value);
bool render_target_was_used(RID p_render_target);
void render_target_set_as_unused(RID p_render_target);
void render_target_copy_to_back_buffer(RID p_render_target, const Rect2i &p_region, bool p_gen_mipmaps);
void render_target_clear_back_buffer(RID p_render_target, const Rect2i &p_region, const Color &p_color);
void render_target_gen_back_buffer_mipmaps(RID p_render_target, const Rect2i &p_region);
RID render_target_get_back_buffer_uniform_set(RID p_render_target, RID p_base_shader);
virtual void render_target_request_clear(RID p_render_target, const Color &p_clear_color);
virtual bool render_target_is_clear_requested(RID p_render_target);
virtual Color render_target_get_clear_request_color(RID p_render_target);
virtual void render_target_disable_clear_request(RID p_render_target);
virtual void render_target_do_clear_request(RID p_render_target);
virtual void render_target_set_sdf_size_and_scale(RID p_render_target, RS::ViewportSDFOversize p_size, RS::ViewportSDFScale p_scale);
RID render_target_get_sdf_texture(RID p_render_target);
RID render_target_get_sdf_framebuffer(RID p_render_target);
void render_target_sdf_process(RID p_render_target);
virtual Rect2i render_target_get_sdf_rect(RID p_render_target) const;
Size2 render_target_get_size(RID p_render_target);
RID render_target_get_rd_framebuffer(RID p_render_target);
RID render_target_get_rd_texture(RID p_render_target);
RID render_target_get_rd_backbuffer(RID p_render_target);
RID render_target_get_rd_backbuffer_framebuffer(RID p_render_target);
RID render_target_get_framebuffer_uniform_set(RID p_render_target);
RID render_target_get_backbuffer_uniform_set(RID p_render_target);
void render_target_set_framebuffer_uniform_set(RID p_render_target, RID p_uniform_set);
void render_target_set_backbuffer_uniform_set(RID p_render_target, RID p_uniform_set);
RS::InstanceType get_base_type(RID p_rid) const;
bool free(RID p_rid);
bool has_os_feature(const String &p_feature) const;
void update_dirty_resources();
void set_debug_generate_wireframes(bool p_generate) {}
void render_info_begin_capture() {}
void render_info_end_capture() {}
int get_captured_render_info(RS::RenderInfo p_info) { return 0; }
int get_render_info(RS::RenderInfo p_info) { return 0; }
String get_video_adapter_name() const { return String(); }
String get_video_adapter_vendor() const { return String(); }
virtual void capture_timestamps_begin();
virtual void capture_timestamp(const String &p_name);
virtual uint32_t get_captured_timestamps_count() const;
virtual uint64_t get_captured_timestamps_frame() const;
virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
virtual String get_captured_timestamp_name(uint32_t p_index) const;
RID get_default_rd_storage_buffer() { return default_rd_storage_buffer; }
2020-12-04 18:26:24 +00:00
static RendererStorageRD *base_singleton;
2020-12-04 18:26:24 +00:00
EffectsRD *get_effects();
2020-12-04 18:26:24 +00:00
RendererStorageRD();
~RendererStorageRD();
};
#endif // RASTERIZER_STORAGE_RD_H