godot/doc/classes/Transform3D.xml

284 lines
16 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform3D" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
A 3×4 matrix representing a 3D transformation.
</brief_description>
<description>
2024-01-15 11:10:52 +00:00
The [Transform3D] built-in [Variant] type is a 3×4 matrix representing a transformation in 3D space. It contains a [Basis], which on its own can represent rotation, scale, and shear. Additionally, combined with its own [member origin], the transform can also represent a translation.
For a general introduction, see the [url=$DOCS_URL/tutorials/math/matrices_and_transforms.html]Matrices and transforms[/url] tutorial.
2024-01-15 11:10:52 +00:00
[b]Note:[/b] Godot uses a [url=https://en.wikipedia.org/wiki/Right-hand_rule]right-handed coordinate system[/url], which is a common standard. For directions, the convention for built-in types like [Camera3D] is for -Z to point forward (+X is right, +Y is up, and +Z is back). Other objects may use different direction conventions. For more information, see the [url=$DOCS_URL/tutorials/assets_pipeline/importing_scenes.html#d-asset-direction-conventions]Importing 3D Scenes[/url] tutorial.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<constructors>
<constructor name="Transform3D">
<return type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Constructs a [Transform3D] identical to the [constant IDENTITY].
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="from" type="Transform3D" />
<description>
2020-05-03 08:27:36 +00:00
Constructs a [Transform3D] as a copy of the given [Transform3D].
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="basis" type="Basis" />
<param index="1" name="origin" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Constructs a [Transform3D] from a [Basis] and [Vector3].
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="from" type="Projection" />
<description>
2024-01-15 11:10:52 +00:00
Constructs a [Transform3D] from a [Projection]. Because [Transform3D] is a 3×4 matrix and [Projection] is a 4×4 matrix, this operation trims the last row of the projection matrix ([code]from.x.w[/code], [code]from.y.w[/code], [code]from.z.w[/code], and [code]from.w.w[/code] are not included in the new transform).
</description>
</constructor>
<constructor name="Transform3D">
<return type="Transform3D" />
<param index="0" name="x_axis" type="Vector3" />
<param index="1" name="y_axis" type="Vector3" />
<param index="2" name="z_axis" type="Vector3" />
<param index="3" name="origin" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Constructs a [Transform3D] from four [Vector3] values (also called matrix columns).
The first three arguments are the [member basis]'s axes ([member Basis.x], [member Basis.y], and [member Basis.z]).
</description>
</constructor>
</constructors>
<methods>
<method name="affine_inverse" qualifiers="const">
<return type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Returns the inverted version of this transform. Unlike [method inverse], this method works with almost any [member basis], including non-uniform ones, but is slower. See also [method Basis.inverse].
[b]Note:[/b] For this method to return correctly, the transform's [member basis] needs to have a determinant that is not exactly [code]0[/code] (see [method Basis.determinant]).
</description>
</method>
<method name="interpolate_with" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="xform" type="Transform3D" />
<param index="1" name="weight" type="float" />
<description>
2024-01-15 11:10:52 +00:00
Returns the result of the linear interpolation between this transform and [param xform] by the given [param weight].
The [param weight] should be between [code]0.0[/code] and [code]1.0[/code] (inclusive). Values outside this range are allowed and can be used to perform [i]extrapolation[/i] instead.
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Returns the inverted version of this transform. See also [method Basis.inverse].
[b]Note:[/b] For this method to return correctly, the transform's [member basis] needs to be [i]orthonormal[/i] (see [method Basis.orthonormalized]). That means, the basis should only represent a rotation. If it does not, use [method affine_inverse] instead.
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="xform" type="Transform3D" />
2019-11-08 07:33:48 +00:00
<description>
Returns [code]true[/code] if this transform and [param xform] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
<method name="is_finite" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this transform is finite, by calling [method @GlobalScope.is_finite] on each component.
</description>
</method>
<method name="looking_at" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="target" type="Vector3" />
<param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
<param index="2" name="use_model_front" type="bool" default="false" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform rotated so that the forward axis (-Z) points towards the [param target] position.
The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting transform is orthonormalized. The existing rotation, scale, and skew information from the original transform is discarded. The [param target] and [param up] vectors cannot be zero, cannot be parallel to each other, and are defined in global/parent space.
If [param use_model_front] is [code]true[/code], the +Z axis (asset front) is treated as forward (implies +X is left) and points toward the [param target] position. By default, the -Z axis (camera forward) is treated as forward (implies +X is right).
</description>
</method>
<method name="orthonormalized" qualifiers="const">
<return type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform with its [member basis] orthonormalized. An orthonormal basis is both [i]orthogonal[/i] (the axes are perpendicular to each other) and [i]normalized[/i] (the axes have a length of [code]1[/code]), which also means it can only represent rotation. See also [method Basis.orthonormalized].
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform rotated around the given [param axis] by the given [param angle] (in radians).
The [param axis] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="rotated_local" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform rotated around the given [param axis] by the given [param angle] (in radians).
The [param axis] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="scale" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform scaled by the given [param scale] factor.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="scaled_local" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="scale" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform scaled by the given [param scale] factor.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="translated" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="offset" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform translated by the given [param offset].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local" qualifiers="const">
<return type="Transform3D" />
<param index="0" name="offset" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Returns a copy of this transform translated by the given [param offset].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="" default="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)">
The [Basis] of this transform. It is composed by 3 axes ([member Basis.x], [member Basis.y], and [member Basis.z]). Together, these represent the transform's rotation, scale, and shear.
</member>
<member name="origin" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
2024-01-15 11:10:52 +00:00
The translation offset of this transform. In 3D space, this can be seen as the position.
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)">
2024-01-15 11:10:52 +00:00
A transform with no translation, no rotation, and its scale being [code]1[/code]. Its [member basis] is equal to [constant Basis.IDENTITY].
When multiplied by another [Variant] such as [AABB] or another [Transform3D], no transformation occurs.
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_X" value="Transform3D(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)">
2024-01-15 11:10:52 +00:00
[Transform3D] with mirroring applied perpendicular to the YZ plane. Its [member basis] is equal to [constant Basis.FLIP_X].
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_Y" value="Transform3D(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0)">
2024-01-15 11:10:52 +00:00
[Transform3D] with mirroring applied perpendicular to the XZ plane. Its [member basis] is equal to [constant Basis.FLIP_Y].
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_Z" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0)">
2024-01-15 11:10:52 +00:00
[Transform3D] with mirroring applied perpendicular to the XY plane. Its [member basis] is equal to [constant Basis.FLIP_Z].
2018-08-20 22:35:30 +00:00
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Returns [code]true[/code] if the components of both transforms are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="AABB" />
<param index="0" name="right" type="AABB" />
<description>
2024-01-15 11:10:52 +00:00
Transforms (multiplies) the [AABB] by this transformation matrix.
</description>
</operator>
<operator name="operator *">
<return type="PackedVector3Array" />
<param index="0" name="right" type="PackedVector3Array" />
<description>
2024-01-15 11:10:52 +00:00
Transforms (multiplies) every [Vector3] element of the given [PackedVector3Array] by this transformation matrix.
On larger arrays, this operation is much faster than transforming each [Vector3] individually.
</description>
</operator>
2022-07-30 22:32:03 +00:00
<operator name="operator *">
<return type="Plane" />
<param index="0" name="right" type="Plane" />
2022-07-30 22:32:03 +00:00
<description>
2024-01-15 11:10:52 +00:00
Transforms (multiplies) the [Plane] by this transformation matrix.
2022-07-30 22:32:03 +00:00
</description>
</operator>
<operator name="operator *">
<return type="Transform3D" />
<param index="0" name="right" type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Transforms (multiplies) this transform by the [param right] transform.
This is the operation performed between parent and child [Node3D]s.
[b]Note:[/b] If you need to only modify one attribute of this transform, consider using one of the following methods, instead:
- For translation, see [method translated] or [method translated_local].
- For rotation, see [method rotated] or [method rotated_local].
- For scale, see [method scaled] or [method scaled_local].
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
2024-01-15 11:10:52 +00:00
Transforms (multiplies) the [Vector3] by this transformation matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform3D" />
<param index="0" name="right" type="float" />
<description>
Multiplies all components of the [Transform3D] by the given [float], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
</description>
</operator>
<operator name="operator *">
<return type="Transform3D" />
<param index="0" name="right" type="int" />
<description>
Multiplies all components of the [Transform3D] by the given [int], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
</description>
</operator>
<operator name="operator /">
<return type="Transform3D" />
<param index="0" name="right" type="float" />
<description>
Divides all components of the [Transform3D] by the given [float], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
</description>
</operator>
<operator name="operator /">
<return type="Transform3D" />
<param index="0" name="right" type="int" />
<description>
Divides all components of the [Transform3D] by the given [int], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Transform3D" />
<description>
2024-01-15 11:10:52 +00:00
Returns [code]true[/code] if the components of both transforms are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
</operators>
</class>