* Works from RenderinServer
* Accurately tells when on or off-scren, its no longer approximate.
* VisibilityEnabler also simplified to use the process mode instead.
This commit adds the following properties to GeometryInstance3D: `visibility_range_begin`,
`visibility_range_begin_margin`, `visibility_range_end`, `visibility_range_end_margin`.
Together they define a range in which the GeometryInstance3D will be visible from the camera,
taking hysteresis into account for state changes. A begin or end value of 0 will be ignored,
so the visibility range can be open-ended in both directions.
This commit also adds the `visibility_parent` property to 'Node3D'.
Which defines the visibility parents of the node and its subtree (until
another parent is defined).
Visual instances with a visibility parent will only be visible when the parent, and all of its
ancestors recursively, are hidden because they are closer to the camera than their respective
`visibility_range_begin` thresholds.
Combining visibility ranges and visibility parents users can set-up a quick HLOD system
that shows high detail meshes when close (i.e buildings, trees) and merged low detail meshes
for far away groups (i.e. cities, woods).
* GIProbe is now VoxelGI
* BakedLightmap is now LightmapGI
As godot adds more ways to provide GI (as an example, SDFGI in 4.0), the different techniques (which have different pros/cons) need to be properly named to avoid confusion.
-Mesh2D now works
-MultiMesh2D now works
-Polygon2D now works
-Added hooks for processing 2D particles
-Skeleton2D now works
2D particles still not working, but stuff needed for it is now implemented.
-Enable the trails and set the length in seconds
-Provide a mesh with a skeleton and a skin
-Or, alternatively use one of the built-in TubeTrailMesh/RibbonTrailMesh
-Works deterministically
-Fixed particle collisions (were broken)
-Not working in 2D yet (that will happen next)
Added an occlusion culling system with support for static occluder meshes.
It can be enabled via `Project Settings > Rendering > Occlusion Culling > Use Occlusion Culling`.
Occluders are defined via the new `Occluder3D` resource and instanced using the new
`OccluderInstance3D` node. The occluders can also be automatically baked from a
scene using the built-in editor plugin.
- Based on C++11's `atomic`
- Reworked `SafeRefCount` (based on the rewrite by @hpvb)
- Replaced free atomic functions by the new `SafeNumeric<T>`
- Replaced wrong cases of `volatile bool` by the new `SafeFlag`
- Platform-specific implementations no longer needed
Co-authored-by: Hein-Pieter van Braam-Stewart <hp@tmm.cx>
-Rendering server now uses a split RID allocate/initialize internally, this allows generating RIDs immediately but initialization to happen later on the proper thread (as rendering APIs generally requiere to call on the right thread).
-RenderingServerWrapMT is no more, multithreading is done in RenderingServerDefault.
-Some functions like texture or mesh creation, when renderer supports it, can register and return immediately (so no waiting for server API to flush, and saving staging and command buffer memory).
-3D physics server changed to be made multithread friendly.
-Added PhysicsServer3DWrapMT to use 3D physics server from multiple threads.
-Disablet Bullet (too much effort to make multithread friendly, this needs to be fixed eventually).
-Always use temporal reproject, it just loos way better than any other filter.
-By always using termporal reproject, the shadowmap reduction can be done away with, massively improving performance.
-Disadvantage of temporal reproject is update latency so..
-Made sure a gaussian filter runs in XY after fog, this allows to keep stability and lower latency.
-When importing, a vertex-only version of the mesh is created.
-This version is used when rendering shadows, and improves performance by reducing bandwidth
-It's automatic, but can optionally be used by users, in case they want to make special versions of geometry for shadow casting.
-All shadow rendering is done with raster now (no compute)
-All shadow rendering is done by rendering directly to the shadow atlas
-Improved how buffer clearing is done to optimize the above.
-Ability to set shadows as 16 bits.
-SDFGI direct light is done over many frames
-SDFGI Changed settings for rays/frame
-SDFGI Misc optimizations
-SDFGI Bug fix on probe scroll
-GIProbe was not working, got it to work again
-GIProbe dynamic objects were not working, fixed
-Added a half size GI option.
Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
-Happens on import by default for all models
-Just works (tm)
-Biasing can be later adjusted per node or per viewport (as well as globally)
-Disabled AABB.get_support test because its broken