Otherwise we end up fetching values from the current OS instance
when running doctool, so they would change based on the system or
even simply due to changes to the system clipboard.
Can be used via scripting as `Geometry.triangulate_delaunay_2d(points)`
The interface is the same as in `Triangulate` library, returning indices
into triangulated points.
Clipper 6.4.2 is used internally to perform polypaths clipping, as well
as inflating/deflating polypaths. The following methods were added:
```
Geometry.merge_polygons_2d(poly_a, poly_b) # union
Geometry.clip_polygons_2d(poly_a, poly_b) # difference
Geometry.intersect_polygons_2d(poly_a, poly_b) # intersection
Geometry.exclude_polygons_2d(poly_a, poly_b) # xor
Geometry.clip_polyline_with_polygon_2d(poly_a, poly_b)
Geometry.intersect_polyline_with_polygon_2d(poly_a, poly_b)
Geometry.offset_polygon_2d(polygon, delta) # inflate/deflate
Geometry.offset_polyline_2d(polyline, delta) # returns polygons
// This one helps to implement CSG-like behaviour:
Geometry.transform_points_2d(points, transform)
```
All the methods return an array of polygons/polylines. The resulting
polygons could possibly be holes which could be checked with
`Geometry.is_polygon_clockwise()` which was exposed to scripting as well.
It seems to stay compatible with formatting done by clang-format 6.0 and 7.0,
so contributors can keep using those versions for now (they will not undo those
changes).
Network peers get_var/put_var
File get_var/store_var
GDScript/Mono/VisualScript bytes2var/var2bytes
Add MultiplayerAPI.allow_object_decoding member which deprecates PacketPeer.allow_object_decoding.
Break ABI compatibaility (API compatibility for GDNative).
This allows more consistency in the manner we include core headers,
where previously there would be a mix of absolute, relative and
include path-dependent includes.
Initialized the PID to -2, which will be the value returns in blocking-
mode where the PID is not available. (-1 was already taken to signify an
execution failure).
OS::execute will now properly return a non-OK error code when it fails
to execute the target file.
The documentation was rewritten to be very clear about the differences
between blocking and non-blocking mode.
Fixes#19056.
Adds following functions to the Engine singleton:
get_author_info - names of Godot authors
get_copyright_info - detailed source copyright get_license_info
get_donor_info - donor names
get_license_info - full text of licenses used, indexed by license names
get_license_text - the text of the Godot Expat license
Starting from April 2018 Apple no longer accepts apps that do not
support iPhone X. For games this mainly means respecting the safe area,
unobstructed by notch and virtual home button. UI controls must be
placed within the safe area so that users can interact with them.
This commit:
- Adds OS::get_window_safe_area method that returns unobscured area of
the window, where interactive controls should be rendered.
- Reorganizes how launch screens are exported - the previous way was
incorrect and modern iPhones did not pick up the correct screens and
because of that used a non-native resolution to render the game.
- Adds launch screen options for iPhone X.
- Makes launch screens optional in the export template. If not
specified, a white screen will be used.
- Adds App Store icon (1024x1024) export option as it now has to be
bundled with the app instead of being provided in iTunes Connect.
- Fixes crash when launching games in iOS Simulator. It happened because
controllerWasConnected callback came before the engine was
initialized. Now in such case the controllers will be queued up and
registered after initialization is done.
- Fixes issue with the virtual keyboard where for some reason
autocorrection panel would intersect with the keyboard itself and not
allow you to use the top row of the keyboard. This is fixed by
disabling autocorrection altogether.
Closes#17358. Fixes#17428. Fixes#17331.
Add new class _TimerSync to manage timestep calculations.
The new class handles the decisions about simulation progression
previously handled by main::iteration(). It is fed the current timer
ticks and determines how many physics updates are to be run and what
the delta argument to the _process() functions should be.
The new class tries to keep the number of physics updates per frame as
constant as possible from frame to frame. Ideally, it would be N steps
every render frame, but even with perfectly regular rendering, the
general case is that N or N+1 steps are required per frame, for some
fixed N. The best guess for N is stored in typical_physics_steps.
When determining the number of steps to take, no restrictions are
imposed between the choice of typical_physics_steps and
typical_physics_steps+1 steps. Should more or less steps than that be
required, the accumulated remaining time (as before, stored in
time_accum) needs to surpass its boundaries by some minimal threshold.
Once surpassed, typical_physics_steps is updated to allow the new step
count for future updates.
Care is taken that the modified calculation of the number of physics
steps is not observable from game code that only checks the delta
parameters to the _process and _physics_process functions; in addition
to modifying the number of steps, the _process argument is modified as
well to stay in expected bounds. Extra care is taken that the accumulated
steps still sum up to roughly the real elapsed time, up to a maximum
tolerated difference.
To allow the hysteresis code to work correctly on higher refresh
monitors, the number of typical physics steps is not only recorded and
kept consistent for single render frames, but for groups of them.
Currently, up to 12 frames are grouped that way.
The engine parameter physics_jitter_fix controls both the maximum
tolerated difference between wall clock time and summed up _process
arguments and the threshold for changing typical_physics_steps. It is
given in units of the real physics frame slice 1/physics_fps. Set
physics_jitter_fix to 0 to disable the effects of the new code here.
It starts to be effective against the random physics jitter at around
0.02 to 0.05. at values greater than 1 it starts having ill effects on
the engine's ability to react sensibly to dropped frames and framerate
changes.
Notable potentially breaking changes:
- PROPERTY_USAGE_NOEDITOR is now PROPERTY_USAGE_STORAGE | PROPERTY_USAGE_NETWORK, without PROPERTY_USAGE_INTERNAL
- Some properties were renamed, and sometimes even shadowed by new ones
- New getter methods (some virtual) were added
Using `misc/scripts/fix_headers.py` on all Godot files.
Some missing header guards were added, and the header inclusion order
was fixed in the Bullet module.
On mobile platforms virtual keyboards take up significant amount of
screen space and UI containing a text box may need to be adjusted
after the keyboard appears to keep the text box visible to user. This
commit adds a way to obtain virtual keyabord height so that controls
are aware of how much they need to move.
Rename user facing methods and variables as well as the corresponding
C++ methods according to the folloming changes:
* pos -> position
* rot -> rotation
* loc -> location
C++ variables are left as is.
Currently we rely on some undefined behavior when Object->cast_to() gets
called with a Null pointer. This used to work fine with GCC < 6 but
newer versions of GCC remove all codepaths in which the this pointer is
Null. However, the non-static cast_to() was supposed to be null safe.
This patch makes cast_to() Null safe and removes the now redundant Null
checks where they existed.
It is explained in this article: https://www.viva64.com/en/b/0226/
- Fixes some single-dash leftovers that were missed in the previous commit
- Reorder the help output for clarity, and document missing options
- Drop obsolete options: --noop, --pack, --editor-scene, --level, --import, --import-script, --no-quit
- Improve error message on malformed arguments and do not display help on error
- Always use long form of arguments when starting a new Godot process from C++, for clarity and easy grepping
- Cleanup obsolete code here and there