We aim to make the C# API reflection-free, mainly for concerns about
performance, and to be able to target NativeAOT in refletion-free mode,
which reduces the binary size.
One of the main usages of reflection still left was the dynamic
invokation of callable delegates, and for some time I wasn't sure
I would find an alternative solution that I'd be happy with.
The new solution uses trampoline functions to invoke the delegates:
```
static void Trampoline(object delegateObj, NativeVariantPtrArgs args, out godot_variant ret)
{
if (args.Count != 1)
throw new ArgumentException($"Callable expected 1 arguments but received {args.Count}.");
string res = ((Func<int, string>)delegateObj)(
VariantConversionCallbacks.GetToManagedCallback<int>()(args[0])
);
ret = VariantConversionCallbacks.GetToVariantCallback<string>()(res);
}
Callable.CreateWithUnsafeTrampoline((int num) => "Foo" + num, &Trampoline);
```
Of course, this is too much boilerplate for user code. To improve this,
the `Callable.From` methods were added. These are overloads that take
`Action` and `Func` delegates, which covers the most common use cases:
lambdas and method groups:
```
// Lambda
Callable.From((int num) => "Foo" + num);
// Method group
string AppendNum(int num) => "Foo" + num;
Callable.From(AppendNum);
```
Unfortunately, due to limitations in the C# language, implicit
conversions from delegates to `Callable` are not supported.
`Callable.From` does not support custom delegates. These should be
uncommon, but the Godot C# API actually uses them for event signals.
As such, the bindings generator was updated to generate trampoline
functions for event signals. It was also optimized to use `Action`
instead of a custom delegate for parameterless signals, which removes
the need for the trampoline functions for those signals.
The change to reflection-free invokation removes one of the last needs
for `ConvertVariantToManagedObjectOfType`. The only remaining usage is
from calling script constructors with parameters from the engine
(`CreateManagedForGodotObjectScriptInstance`). Once that one is made
reflection-free, `ConvertVariantToManagedObjectOfType` can be removed.
- Creates a `Godot.Offline.Config` file to configurate NuGet with
Godot's fallback folder. This is easier because now we can assume we can
override the entire file since user config will likely be in the default
`NuGet.Config` file or an additional `*.config` file.
- Ensure the NuGet fallback folder is created at the same time it is
added to the NuGet configuration so future builds don't fail.
- Add `GodotSharp` and `GodotSharpEditor` packages to the fallback folder.
- Add `.nupkg.metadata` file to packages in fallback folder.
- Refer to `Godot.SourceGenerators` using the specific non-floating version
since floating versions don't seem to work with fallbackPackageFolders.
When the C# bindings generator finds a type without meta assume the type
refers to the 64-bit version of the type:
- `float` is converted to `double`
- `int` is converted to `long`
- Replace `IndexOutOfRangeException` with `ArgumentOutOfRangeException`
- Replace `Exception` with a more specific exception
- Add the parameter name to argument exception
- Update documentation for methods that throw exceptions
- Use `StringBuilder` to build exception messages
- Ensure exception messages end with a period
- Remove event as a valid target of `SignalAttribute`
- Stop adding the `[Signal]` attribute to events in bindings_generator
- Make bindings_generator use the `EventHandler` suffix to be consistent with the C# source generator
- Remove obsolete comment about the signal's delegate name
- MustBeVariant attribute can be used to enforce that generic types must
be a marshable from/to Variant.
- Also renames all diagnostic ids to be valid unicode identifiers.
This new version does not support the following type arguments:
- Generic types
- Array of Godot Object (Godot.Object[]) or derived types
The new implementation uses delegate pointers to call the Variant
conversion methods. We do type checking only once in the static
constructor to get the conversion delegates.
Now, we no longer need to do type checking every time, and we no
longer have to box value types.
This is the best implementation I could come up with, as C# generics
don't support anything similar to C++ template specializations.
- Array and Dictionary now store `Variant` instead of `System.Object`.
- Removed generic Array and Dictionary.
They cause too much issues, heavily relying on reflection and
very limited by the lack of a generic specialization.
- Removed support for non-Godot collections.
Support for them also relied heavily on reflection for marshaling.
Support for them will likely be re-introduced in the future, but
it will have to rely on source generators instead of reflection.
- Reduced our use of reflection.
The remaining usages will be moved to source generators soon.
The only usage that I'm not sure yet how to replace is dynamic
invocation of delegates.
Changed the signal declaration signal to:
```
// The following generates a MySignal event
[Signal] public delegate void MySignalEventHandler(int param);
```
In the past, the Godot editor distributed the API assemblies and
copied them to project directories for projects to reference them.
This changed with the move to .NET 5/6. Godot no longer copies the
assemblies to project directories. However, the project Sdk still
tried to reference them from the same location.
From now on, the GodotSharp API is distributed as a NuGet package,
which the Sdk can reference.
Added an option to `build_assemblies.py` to copy all Godot NuGet
packages to an existing local NuGet source. This will be needed
during development, while packages are not published to a remote
NuGet repository.
This option also makes sure to remove packages of the same version
installed (~/.nuget/packages). Very useful during development, when
packages change, to make sure the package being used by a project is
the same we just built and not one from a previous build.
A local NuGet source can be created like this:
```
mkdir ~/MyLocalNuGetSource && \
dotnet nuget add source ~/MyLocalNuGetSource/ -n MyLocalNuGetSource
```
Previously, we added source generators for invoking/accessing methods,
properties and fields in scripts. This freed us from the overhead of
reflection. However, the generated code still used our dynamic
marshaling functions, which do runtime type checking and box value
types.
This commit changes the bindings and source generators to include
'static' marshaling. Based on the types known at compile time, now
we generate the appropriate marshaling call for each type.
The editor no longer needs to create temporary instances to get the
default values. The initializer values of the exported properties are
still evaluated at runtime. For example, in the following example,
`GetInitialValue()` will be called when first looks for default values:
```
[Export] int MyValue = GetInitialValue();
```
Exporting fields with a non-supported type now results in a compiler
error rather than a runtime error when the script is used.
This base implementation is still very barebones but it defines the path
for how exporting will work (at least when embedding the .NET runtime).
Many manual steps are still needed, which should be automatized in the
future. For example, in addition to the API assemblies, now you also
need to copy the GodotPlugins assembly to each game project.
This replaces the way we invoke methods and set/get properties.
This first iteration rids us of runtime type checking in those
cases, as it's now done at compile time.
Later it will also stop needing the use of reflection. After that,
we will only depend on reflection for generic Godot Array and
Dictionary. We're stuck with reflection in generic collections
for now as C# doesn't support generic/template specialization.
This is only the initial implementation. Further iterations are
coming, specially once we switch to the native extension system
which completely changes the way members are accessed/invoked.
For example, with the native extension system we will likely need
to create `UnmanagedCallersOnly` invoke wrapper methods and return
function pointers to the engine.
Other kind of members, like event signals will be receiving the
same treatment in the future.
We're targeting .NET 5 for now to make development easier while
.NET 6 is not yet released.
TEMPORARY REGRESSIONS
---------------------
Assembly unloading is not implemented yet. As such, many Godot
resources are leaked at exit. This will be re-implemented later
together with assembly hot-reloading.
Bump `Godot.NET.Sdk` to version 4.0.0-dev6.
Bump `Godot.SourceGenerators` to version 4.0.0-dev3.
Use floating version 4.0.*-* for package references in Sdk.
The following two bugs were fixed:
- For classes without namespace we were still generating `namespace {`
without a namespace identifier, causing a syntax error.
- For classes with nested namespaces we were generating only the innermost
part of the namespace was being generated, e.g.: for `Foo.Bar` we were
generating `namespace Bar {` instead of `namespace Foo.Bar {`.
This wasn't causing any build error, but because of the wrong namespace
Godot wasn't able to find the class associated with the script.