Previously, only forward basis distance from the camera was used.
This means that unnecessarily high LOD levels were used for objects located to the side of the camera.
The distance from the camera origin is now used, independently of direction.
The flag INSTANCE_DATA_FLAG_MULTIMESH is used for both multimesh and particles instances, this commit adds a new INSTANCE_DATA_FLAG_PARTICLES flag to discriminate between them.
This flag will also be used in the future to properly support TAA in particles.
This allows light sources to be specified in physical light units in addition to the regular energy multiplier. In order to avoid loss of precision at high values, brightness values are premultiplied by an exposure normalization value.
In support of Physical Light Units this PR also renames CameraEffects to CameraAttributes.
At this time, it works best in the Vulkan Renderers as they support using multiple samplers with the same texture.
In GLES3 this feature really only allows you to use the screen texture without mipmaps if you want to save the cost of generating them.
`shader_uniform` is now consistenly used across both per-shader
and per-instance shader uniform methods. This makes methods easier
to find in the class reference when looking for them.
This is consistent with the BaseMaterial3D filtering options.
It can be used for high-quality pixel art textures that remain sharp
when viewed at oblique angles, but prevents them from becoming grainy
thanks to mipmaps.
Implement built-in classes Vector4, Vector4i and Projection.
* Two versions of Vector4 (float and integer).
* A Projection class, which is a 4x4 matrix specialized in projection types.
These types have been requested for a long time, but given they were very corner case they were not added before.
Because in Godot 4, reimplementing parts of the rendering engine is now possible, access to these types (heavily used by the rendering code) becomes a necessity.
**Q**: Why Projection and not Matrix4?
**A**: Godot does not use Matrix2, Matrix3, Matrix4x3, etc. naming convention because, within the engine, these types always have a *purpose*. As such, Godot names them: Transform2D, Transform3D or Basis. In this case, this 4x4 matrix is _always_ used as a _Projection_, hence the naming.
* Moved preprocessor to Shader and ShaderInclude
* Clean up RenderingServer side
* Preprocessor is separate from parser now, but it emits tokens with include location hints.
* Improved ShaderEditor validation code
* Added include file code completion
* Added notification for all files affected by a broken include.
This has several benefits:
- Transparency sorting issues inherent to alpha blending no longer occur.
- Alpha hash materials can now cast shadows (also works with
GeometryInstance3D Transparency's property for alpha hash materials).
- Higher performance.
Initial TAA support based on the implementation in Spartan Engine.
Motion vectors are correctly generated for camera and mesh movement, but there is no support for other things like particles or skeleton deformations.
* Map is unnecessary and inefficient in almost every case.
* Replaced by the new HashMap.
* Renamed Map to RBMap and Set to RBSet for cases that still make sense
(order matters) but use is discouraged.
There were very few cases where replacing by HashMap was undesired because
keeping the key order was intended.
I tried to keep those (as RBMap) as much as possible, but might have missed
some. Review appreciated!
Didn't commit all the changes where it wants to initialize a struct
with `{}`. Should be reviewed in a separate PR.
Option `IgnoreArrays` enabled for now to be conservative, can be
disabled to see if it proposes more useful changes.
Also fixed manually a handful of other missing initializations / moved
some from constructors.
The validation layers were complaining that we use DEFAULT_RD_TEXTURE_WHITE (which is RGBA8) in places where it's sampled as a depth texture. This commit adds the new default texture DEFAULT_RD_TEXTURE_DEPTH and uses it where needed.
* Changed syntax usage for RD::Uniform to create faster with a single RID
* Converted render pass setup to use this in clustered renderer to test.
This is the first step into creating a proper uniform set cache system to simplify large parts of the codebase.
- Add 2D and 3D in timestamp names when needed to avoid ambiguity.
- Use present tense in all render timestamp names.
- Add a space after ">" (begin) and "<" (end) symbols.
- Remove redundant "End" in render timestamp names (indicated by "<").
Applying overlay materials into multi-surface meshes currently
requires adding a next pass material to all the surfaces, which
might be cumbersome when the material is to be applied to a range
of different geometries. This also makes it not trivial to use
AnimationPlayer to control the material in case of visual effects.
The material_override property is not an option as it works
replacing the active material for the surfaces, not adding a new pass.
This commit adds the material_overlay property to GeometryInstance3D
(and therefore MeshInstance3D), having the same reach as
material_override (that is, all surfaces) but adding a new material
pass on top of the active materials, instead of replacing them.
The built-in ALPHA in spatial shaders comes pre-set with a per-instance
transparency value. Multiply by it if you want to keep it.
The transparency value of any given GeometryInstance3D is affected by:
- Its new "transparency" property.
- Its own visiblity range when the new "visibility_range_fade_mode"
property is set to "Self".
- Its parent visibility range when the parent's fade mode is
set to "Dependencies".
The "Self" mode will fade-out the instance when reaching the visibility
range limits, while the "Dependencies" mode will fade-in its
dependencies.
Per-instance transparency is only implemented in the forward clustered
renderer, support for mobile should be added in the future.
Co-authored-by: reduz <reduzio@gmail.com>