Reordering an item from after a copybackbuffer to before would result in the wrong thing being rendered into the backbuffer.
This PR puts in a check to prevent reordering over such a boundary.
Move definition of rendering/quality/filters/anisotropic_filter_level to
servers/visual_server.cpp, since both GLES2 and GLES3 now use it
rasterizer_storage_gles3.cpp: Remove a spurious variable write (the
value gets overwritten soon after)
- Fix Embree runtime when using MinGW (patch by @RandomShaper).
- Fix baking of lightmaps on GridMaps.
- Fix some GLSL errors.
- Fix overflow in the number of shader variants (GLES2).
Completely re-write the lightmap generation code:
- Follow the general lightmapper code structure from 4.0.
- Use proper path tracing to compute the global illumination.
- Use atlassing to merge all lightmaps into a single texture (done by @RandomShaper)
- Use OpenImageDenoiser to improve the generated lightmaps.
- Take into account alpha transparency in material textures.
- Allow baking environment lighting.
- Add bicubic lightmap filtering.
There is some minor compatibility breakage in some properties and methods
in BakedLightmap, but lightmaps generated in previous engine versions
should work fine out of the box.
The scene importer has been changed to generate `.unwrap_cache` files
next to the imported scene files. These files *SHOULD* be added to any
version control system as they guarantee there won't be differences when
re-importing the scene from other OSes or engine versions.
This work started as a Google Summer of Code project; Was later funded by IMVU for a good amount of progress;
Was then finished and polished by me on my free time.
Co-authored-by: Pedro J. Estébanez <pedrojrulez@gmail.com>
nanosleep returns 0 or -1 not the error code.
The error code "EINTR" (if encountered) is placed in errno, in which case nanosleep can be safely recalled with the remaining time.
This is required, so that nanosleep continues if the calling thread is interrupted by a signal.
See manpage nanosleep(2) for additional details.
(cherry picked from commit 1107c7f327)
Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
(cherry picked from commit b5334d14f7)
Ninepatch code has a check to prevent use of zero sized textures. This didn't deal properly with animated textures, which use a proxy (link to another texture).
This PR uses a generalised method of getting textures, with built in support for proxy textures and protection against infinite loops.
These were only put in for the betas, in order to test hypotheses for stalling on Macs. It seems that most of the problems in the Mac editor have been solved by fixing the excessive redraw_requests.
As a result no one has reported any results from these options, but in future we will be able to refer users to try the beta versions, so there is no need to include them in the stable release. Indeed they are only likely to cause confusion.
The root cause of the issue is that OpenGL ES 2 does not support the `textureCubeLod` function.
There are (optional) extensions to support this, but they don't appear to be exposed with the ES2 renderer (even though the hardware needed to support LOD features are certainly available.)
The existing shim in `drivers/gles2/shaders/cubemap_filter.glsl` just creates a macro:
```
#define textureCubeLod(img, coord, lod) textureCube(img, coord)
```
But the third parameter of `textureCube` is actually a mip bias, not an absolute mip level.
(And it doesn't seem to work regardless.)
In this specific case, the `cubemap_filter` should only sample from the first level of the "source" panorama cubemap.
In lieu of a method to force a lod level of zero, I've chosen to comment out the switchover from a 2D equirectangular panorama to the cubemap version of the same image, therefore always sampling roughness values from the 2D equirectangular panorama.
This may cause additional artifacts or issues across the seam, but at least it prevents the glaringly obvious black areas.
---
This same issue (no fragment texture LOD support) has rather large repercussions elsewhere too; it means materials with larger cubemap density (i.e. planar or distant objects) will be far rougher than expected.
Since GLES 3 appears to properly support fragment `texture*Lod` functions, switching to the GLES 3 backend would solve this problem.
---
Root cause discovered with help from @KaadmY.
Image::resize_to_po2() now takes an optional p_interpolation parameter
that it passes directly to resize() with default value INTERPOLATE_BILINEAR.
GLES2: call resize_to_po2() with interpolate argument
Call resize_to_po2() in GLES2 rasterizer storage with either
INTERPOLATE_BILINEAR or INTERPOLATE_NEAREST depending on TEXTURE_FLAG_FILTER.
This avoids filtering issues with non power of two pixel art textures.
See #44379
Although the minimum size of ninepatches is set to the sum of the margins in normal use (through gdscript etc) it turns out that it is possible to programmatically create ninepatches that are small than this minimum - in particular zero size is used in sliders to not draw items.
This PR deals with zero sized ninepatches by not drawing anything, and has some basic protection for ninepatches smaller than the margins. Whether these occur in the wild is not clear but is put in for completeness.
When using the ALSA driver, corruption would occur if `snd_pcm_writei`
was unable to consume the entire sound buffer. This would occur
frequently on the Raspberry Pi 3 which uses the `snd_bcm2835` audio
driver.
This bug resulted from incorrect pointer math on line 187, resulting in
the sample source pointer being advanced by `total * ad->channels` bytes
instead of `total * ad->channels` samples. In my opinion, the best fix
is to change `*src` to type `int16_t`, since that is the sample type in
use.
Fixes#43927.
(cherry picked from commit 25b2f82ccf)
See #43689.
Also 'fixed' some spelling for behavior in publicly visible strings.
(Sorry en_GB, en_CA, en_AU, and more... Silicon Valley won the tech spelling
war.)
(cherry picked from commit a655de89e3)
Lights with bake mode set to "All" were behaving erratically because of a
faulty check in the renderer. This should be the correct way to check if
a geometry instance is using baked light.
For fixing a previous issue state.canvas_texscreen_used was reset to false at the start of each render_joined_item. This was causing a later shader that used SCREEN_TEXTURE to force recapturing the back buffer immediately prior to use, which we don't want.
This PR preserves the state across joined items, and also prevents joining of items that copy the back buffer as this may be problematic.
It turns out that the original issue that needed the line is now fixed, and the later issue is also fixed by removing it.
While adding more debug checks to legacy renderer, I closed 2 types of vulnerabilities:
* TYPE_PRIMITIVE would previously read from uninitialized data if only specifying a single color
* Other legacy draw operations would fail in debug AFTER accessing out of bounds memory rather than before
Many calls to glBufferSubData are wrapped in a safe version which checks for out of bounds and exits the draw function if this is detected.
Large FVF allows batching of many custom shaders, but should not join items which have shaders that utilize BUILTINs which would change for each item, because these will not be sent individually, and all joined items would wrongly use the values from the first joined item.
Polys that have no texture assigned contain no UVs in the poly command. These were previously not blanked, leading to random values if read from a custom shader.
This PR just blanks them.
In some situations where polygons were scaled, existing software skinning was producing incorrect results.
The transform inverse needed to use an affine inverse rather than a cheaper inverse to account for this scaling.
This adds support for custom shaders for polys, and properly handles modulate in the case of large FVF and modulate FVF.
It also fixes poly vertex colors not being sent to OpenGL.
Antialiased polys work by drawing a smoothed line around the poly after the main drawing. Batching draws polys as a series of triangles with no concept of 'edge', and when 2 polys are joined it becomes impractical to back calculate the edges from the triangles.
For this reason batching is disabled for antialiased polys in this PR.
As a result of the GLES specifications being vague about best practice for how buffers should be used dynamically, different GPUs / platforms appear to have different preferences.
Mac in particular seems to have a number of problems in this area, and none of the rendering team uses Macs. So far we have relied on guesswork to choose the best usage, but in an attempt to pin this down, this PR begins to introduce manual selection of options for users to test their configurations.
Lines are batched using the simplest fvf 'BatchVertex', however when used in an item with a custom shader material, it may attempt to translate to large_fvf without the required extra channels. To prevent this a special case in flushing is made to deal with lines.
In small batches using hardware transform, vertices would be drawn in incorrect positions due to the item transform being applied twice - once in the transform uniform, and once from the transform passed as a vertex attribute.
This PR alters the shader to ignore uniform transforms when using large FVF.