Previously the `p_reversed` parameter didn't influence the order
in a correct way.
Also script overridden _notification functions were not called in
the correct order.
To fix this some `notification` functions had to add a `p_reversed`
parameter.
This made it necessary to adjust cpp-bindings.
Co-authored-by: David Snopek <dsnopek@gmail.com>
- Do not reload scripts from non-collectible assemblies
- Do not load GodotTools as collectible
- Do not attempt to reload the same project assembly forever
This applies our existing style guide, and adds a new rule to that style
guide for modular components such as platform ports and modules:
Includes from the platform port or module ("local" includes) should be listed
first in their own block using relative paths, before Godot's "core" includes
which use "absolute" (project folder relative) paths, and finally thirdparty
includes.
Includes in `#ifdef`s come after their relevant section, i.e. the overall
structure is:
- Local includes
* Conditional local includes
- Core includes
* Conditional core includes
- Thirdparty includes
* Conditional thirdparty includes
The bindings generator doesn't require the C# runtime in order to generate
the glue, and when it the glue generation runs, it exits immediately
afterwards, so we can skip this initialization when the `--generate-mono-glue`
flag is passed in.
Fixes issue 75152
* Works for binary and text files.
* Makes EditorQuickOpen work with custom resources again.
* Information is cached and easily accessible.
Properly fixes#66179. Supersedes #66215 and supersedes #62417
**WARNING**: This required breaking backwards binary compatibility (.res and .scn files). Files saved after this PR is merged will no longer open in any earlier versions of Godot.
* Overrides no longer happen for set/get.
* They must be checked with a new function: `ProjectSettings::get_setting_with_override()`.
* GLOBAL_DEF/GLOBAL_GET updated to use this
This change solves many problems:
* General confusion about getting the actual or overriden setting.
* Feature tags available after settings are loaded were being ignored, they are now considered.
* Hacks required for the Project Settings editor to work.
Fixes#64100. Fixes#64014. Fixes#61908.
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.
It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).
We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).
Also fixed "cf." Frenchism - it's meant as "refer to / see".
- Renamed `ConvertToX` to `ConvertToNativeX`.
- Renamed `ConvertToXObject` to `ConvertToX`.
- Renamed `ConvertToXManaged` to `ConvertToX`.
- Fix `Signal` name in bindings generator and csharp script.
Non-exhaustive list of case-sensitive renames:
GDExtension -> GDNative
GDNATIVE -> GDEXTENSION
gdextension -> gdnative
ExtensionExtension ->Extension (for where there was GDNativeExtension)
EXTENSION_EXTENSION ->EXTENSION (for where there was GDNATIVE_EXTENSION)
gdnlib -> gdextension
gdn_interface -> gde_interface
gdni -> gde_interface
We use collectible AssemblyLoadContexts as that's the only way to allow
reloading assemblies after building. However, collectible assemblies
have some restrictions:
- https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/collectible-assemblies#restrictions-on-collectible-assemblies
Those restrictions can cause issues with third-party code, such as some
mocking libraries.
In order to work around this problem, we're going to load assemblies
as collectible only in Godot editor, and not when running games.
These issues will still exist in the editor, but this will be enough
for some users.
- Use `long` and `double` types since signals currently only support 64-bit types.
- Fix bug for checking if the type name is a class registered in ClassDB.
Scripts that are instantiated at some point will always be recreated
if they ever become placeholders to prevent non-tool scripts
instantiated manually by users to become placeholders, if they
do become placeholders due to errors that prevent instantiation
(such as a missing parameterless constructor) these scripts
will also be recreated replacing the temporary placeholder.
If a script is marked as a tool but becomes a non-tool script
in a rebuild, the script will become a placeholder and will
no longer be considered applicable to be replaced by an instance
since the user explicitly removed the Tool attribute.
Since the list of signals in `CSharpScript::event_signals` retrieved
from calling `ScriptManagerBridge.UpdateScriptClassInfo` already
includes the signals from base scripts there is no need to iterate the
hierarchy again on `CSharpInstance::connect_event_signals`.
- Moves interop functions to UnmanagedCallbacks struct that
contains the function pointers and is passed to C#.
- Implements UnmanagedCallbacksGenerator, a C# source generator that
generates the UnmanagedCallbacks struct in C# and the body for the
NativeFuncs methods (their implementation just calls the function
pointer in the UnmanagedCallbacks). The generated methods are needed
because .NET pins byref parameters of native calls, even if they are
'ref struct's, which don't need pinning. The generated methods use
`Unsafe.AsPointer` so that we can benefit from byref parameters
without suffering overhead of pinning.
Co-authored-by: Raul Santos <raulsntos@gmail.com>
The setting is initially assigned the name of the Godot project,
but it's kept freezed to prevent issues when renaming the Godot
project.
The user can always rename the C# project and solution manually and
change the setting to the new name.
Changed the signal declaration signal to:
```
// The following generates a MySignal event
[Signal] public delegate void MySignalEventHandler(int param);
```
Previously, for each scripts class instance that was created from code
rather than by the engine, we were constructing, configuring and
assigning a new CSharpScript.
This has changed now and we make sure there's only one CSharpScript
associated to each type.
The editor no longer needs to create temporary instances to get the
default values. The initializer values of the exported properties are
still evaluated at runtime. For example, in the following example,
`GetInitialValue()` will be called when first looks for default values:
```
[Export] int MyValue = GetInitialValue();
```
Exporting fields with a non-supported type now results in a compiler
error rather than a runtime error when the script is used.
This base implementation is still very barebones but it defines the path
for how exporting will work (at least when embedding the .NET runtime).
Many manual steps are still needed, which should be automatized in the
future. For example, in addition to the API assemblies, now you also
need to copy the GodotPlugins assembly to each game project.
Finalizers are longer guaranteed to be called on exit now that
we switched to .NET Core. This results in native instances leaking.
The only solution I can think of so far is to keep a list of all
instances alive to dispose when the AssemblyLoadContext.Unloading
event is raised.
We're targeting .NET 5 for now to make development easier while
.NET 6 is not yet released.
TEMPORARY REGRESSIONS
---------------------
Assembly unloading is not implemented yet. As such, many Godot
resources are leaked at exit. This will be re-implemented later
together with assembly hot-reloading.
The main focus here was to remove the majority of code that relied on
Mono's embedding APIs, specially the reflection APIs. The embedding
APIs we still use are the bare minimum we need for things to work.
A lot of code was moved to C#. We no longer deal with any managed
objects (`MonoObject*`, and such) in native code, and all marshaling
is done in C#.
The reason for restructuring the code and move away from embedding APIs
is that once we move to .NET Core, we will be limited by the much more
minimal .NET hosting.
PERFORMANCE REGRESSIONS
-----------------------
Some parts of the code were written with little to no concern about
performance. This includes code that calls into script methods and
accesses script fields, properties and events.
The reason for this is that all of that will be moved to source
generators, so any work prior to that would be a waste of time.
DISABLED FEATURES
-----------------
Some code was removed as it no longer makes sense (or won't make sense
in the future).
Other parts were commented out with `#if 0`s and TODO warnings because
it doesn't make much sense to work on them yet as those parts will
change heavily when we switch to .NET Core but also when we start
introducing source generators.
As such, the following features were disabled temporarily:
- Assembly-reloading (will be done with ALCs in .NET Core).
- Properties/fields exports and script method listing (will be
handled by source generators in the future).
- Exception logging in the editor and stack info for errors.
- Exporting games.
- Building of C# projects. We no longer copy the Godot API assemblies
to the project directory, so MSBuild won't be able to find them. The
idea is to turn them into NuGet packages in the future, which could
also be obtained from local NuGet sources during development.
We will be progressively moving most code to C#.
The plan is to only use Mono's embedding APIs to set things at launch.
This will make it much easier to later support CoreCLR too which
doesn't have rich embedding APIs.
Additionally the code in C# is more maintainable and makes it easier
to implement new features, e.g.: runtime codegen which we could use to
avoid using reflection for marshaling everytime a field, property or
method is accessed.
SOME NOTES ON INTEROP
We make the same assumptions as GDNative about the size of the Godot
structures we use. We take it a bit further by also assuming the layout
of fields in some cases, which is riskier but let's us squeeze out some
performance by avoiding unnecessary managed to native calls.
Code that deals with native structs is less safe than before as there's
no RAII and copy constructors in C#. It's like using the GDNative C API
directly. One has to take special care to free values they own.
Perhaps we could use roslyn analyzers to check this, but I don't know
any that uses attributes to determine what's owned or borrowed.
As to why we maily use pointers for native structs instead of ref/out:
- AFAIK (and confirmed with a benchmark) ref/out are pinned
during P/Invoke calls and that has a cost.
- Native struct fields can't be ref/out in the first place.
- A `using` local can't be passed as ref/out, only `in`. Calling a
method or property on an `in` value makes a silent copy, so we want
to avoid `in`.
REGARDING THE BUILD SYSTEM
There's no longer a `mono_glue=yes/no` SCons options. We no longer
need to build with `mono_glue=no`, generate the glue and then build
again with `mono_glue=yes`. We build only once and generate the glue
(which is in C# now).
However, SCons no longer builds the C# projects for us. Instead one
must run `build_assemblies.py`, e.g.:
```sh
%godot_src_root%/modules/mono/build_scripts/build_assemblies.py \
--godot-output-dir=%godot_src_root%/bin \
--godot-target=release_debug`
```
We could turn this into a custom build target, but I don't know how
to do that with SCons (it's possible with Meson).
OTHER NOTES
Most of the moved code doesn't follow the C# naming convention and
still has the word Mono in the names despite no longer dealing with
Mono's embedding APIs. This is just temporary while transitioning,
to make it easier to understand what was moved where.
The function tried to rearrange properties but that lead to problems with duplication or deleted properties. Implemented the logic that that function did inside the get_property_list both for tool scripts and non-tool scripts.
- RPC configurations are now dictionaries.
- Script.get_rpc_methods renamed to Script.get_rpc_config.
- Node.rpc[_id] and Callable.rpc now return an Error.
- Refactor MultiplayerAPI to allow extension.
- New MultiplayerAPI.rpc method with Array argument (for scripts).
- Move the default MultiplayerAPI implementation to a module.
Implement built-in classes Vector4, Vector4i and Projection.
* Two versions of Vector4 (float and integer).
* A Projection class, which is a 4x4 matrix specialized in projection types.
These types have been requested for a long time, but given they were very corner case they were not added before.
Because in Godot 4, reimplementing parts of the rendering engine is now possible, access to these types (heavily used by the rendering code) becomes a necessity.
**Q**: Why Projection and not Matrix4?
**A**: Godot does not use Matrix2, Matrix3, Matrix4x3, etc. naming convention because, within the engine, these types always have a *purpose*. As such, Godot names them: Transform2D, Transform3D or Basis. In this case, this 4x4 matrix is _always_ used as a _Projection_, hence the naming.
- Add support for explicit values in properties using `PROPERTY_HINT_FLAGS`
that works the same way it does for enums.
- Fix enums and flags in VisualScriptEditor (it wasn't considering the
explicit value).
- Use `PROPERTY_HINT_FLAGS` for C# enums with the FlagsAttribute instead
of `PROPERTY_HINT_ENUM`.
* Map is unnecessary and inefficient in almost every case.
* Replaced by the new HashMap.
* Renamed Map to RBMap and Set to RBSet for cases that still make sense
(order matters) but use is discouraged.
There were very few cases where replacing by HashMap was undesired because
keeping the key order was intended.
I tried to keep those (as RBMap) as much as possible, but might have missed
some. Review appreciated!
Adds a new, cleaned up, HashMap implementation.
* Uses Robin Hood Hashing (https://en.wikipedia.org/wiki/Hash_table#Robin_Hood_hashing).
* Keeps elements in a double linked list for simpler, ordered, iteration.
* Allows keeping iterators for later use in removal (Unlike Map<>, it does not do much
for performance vs keeping the key, but helps replace old code).
* Uses a more modern C++ iterator API, deprecates the old one.
* Supports custom allocator (in case there is a wish to use a paged one).
This class aims to unify all the associative template usage and replace it by this one:
* Map<> (whereas key order does not matter, which is 99% of cases)
* HashMap<>
* OrderedHashMap<>
* OAHashMap<>
These typedefs don't save much typing compared to the full `Ref<Resource>`
and `Ref<RefCounted>`, yet they sometimes introduce confusion among
new contributors.
* Very old macros from the time Godot was created.
* Limited arguments to 5 (then later changed to 8) in many places.
* They were replaced by C++11 Variadic Templates.
* Renamed methods that take argument pointers to have a "p" suffix. This was used in some places and not in others, so made it standard.
* Also added a dereference check for Variant*. Helped catch a couple of bugs.
When reloading C# classes and keep their properties values they are
retrieved and stored in a state list.
Retrieving the properties was only getting the fields of the C# class
and not inherited fields so those properties values were lost on reload.
Now we also try to find the field in the parent classes.
Ensures that the `get_property_list` and `get_script_property_list`
methods push the script properties to the end of the given list, this
prevents the script property from appearing after the script variables.
Sets `AlignOperands` to `DontAlign`.
`clang-format` developers seem to mostly care about space-based indentation and
every other version of clang-format breaks the bad mismatch of tabs and spaces
that it seems to use for operand alignment. So it's better without, so that it
respects our two-tabs `ContinuationIndentWidth`.