In order to properly support the resource sharing paradigm, Occluders are split into Instances and Resources in the VisualServer. Instances are owned by a Scenario, and Resources are global. OccluderShape resources can now correctly be shared by multiple OccluderInstances.
Adds fixed timestep interpolation to the visual server.
Switchable on and off with project setting.
This version does not add new API for set_transform etc, when nodes have the interpolated flag set they will always use interpolation.
Using codespell 2.2-dev from current git.
Added `misc/scripts/codespell.sh` to make it easier to run it once in a
while and update the skip and ignore lists.
(cherry picked from commit 1bdb82c64e)
When editor continuous redraws is switched off, the editor only redraws when a redraw_request was issued by an element in the scene. This works well in most situations, but when scenes have dynamic content they will continuously issue redraw_requests.
This can be fine on high power desktops but can be an annoyance on lower power machines.
This PR splits redraw requests into high and low priority requests, defaulting to high priority. Requests due to e.g. shaders using TIME are assigned low priority.
An extra editor setting is used to record the user preference and an extra option is added to the editor spinner menu, to allow the user to select between 3 modes:
* Continuous
* Update all changes
* Update vital changes
Due to an optimization to prevent processing except when camera rooms changed, the ticking synchronization and updating of previous and current lists could get out of sync for affected objects, leading to missing gameplay notifications.
This PR adds new paths to properly support and synchronize objects in this "room based" path.
Refactors the BVH to make it more generic and customizable. Instead of hard coding the system of pairable_mask and pairable_type into the BVH, this information is no longer stored internally, and instead the BVH uses callbacks both for determining whether pairs of objects can pair with each other, and for filtering cull / intersection tests.
In addition, instead of hard coding the number of trees, the BVH now supports up to 32 trees, and each object can supply a tree collision mask to determine which trees it can collide against.
This enables the BVH to scale to either the two or 3 trees needed in physics, and the single tree used without pairing in Godot 4 render tree.
The gameplay monitor wasn't being unloaded correctly in between levels. This meant that exit signals were not being sent, and entered signals for the new level were being missed.
This PR sends appropriate exit signals on unloading, and clear the data.
The line width of thick lines was being applied on both sides of the line, resulting in a line that was twice as thick as requested.
This PR fixes this embarrassing oversight.
In rare circumstances, changing the geometry data attached to an instance, there was the opporunity for the lighting_dirty flag to get out of sync, which could lead to access to a stale light RID, and warnings or worse.
This PR fixes the problem by ensuring the lighting is always updated on the instance when first adding GeometryData.
This PR adds a define BVH_EXPAND_LEAF_AABBS which is set, which stores expanded AABBs in the tree instead of exact AABBs.
This makes the logic less error prone when considering reciprocal collisions in the pairing, as all collision detect is now taking place between expanded AABB against expanded AABB, rather than expanded AABB against exact AABB.
The flip side of this is that the intersection tests will now be less exact when expanded margins are set.
All margins are now user customizable via project settings, and take account of collision pairing density to adjust the margin dynamically.
Applying overlay materials into multi-surface meshes currently
requires adding a next pass material to all the surfaces, which
might be cumbersome when the material is to be applied to a range
of different geometries. This also makes it not trivial to use
AnimationPlayer to control the material in case of visual effects.
The material_override property is not an option as it works
replacing the active material for the surfaces, not adding a new pass.
This commit adds the material_overlay property to GeometryInstance
(and therefore MeshInstance), having the same reach as
material_override (that is, all surfaces) but adding a new material
pass on top of the active materials, instead of replacing them.
Implemented in rasterizer of both GLES2 and GLES3.
Previously a crude metric was used to decide on the roaming expansion margin, but it created unexpected results in some scenarios. Instead this setting is exposed to the user via the RoomManager, allowing them to tailor it to the world size, room sizes, roaming objects sizes and the speeds of movement.
Async. compilation via ubershader is currently available in the scene and particles shaders only.
Bonus:
- Use `#if defined()` syntax for not true conditionals, so they don't unnecessarily take a bit in the version flagset.
- Remove unused `ENABLE_CLIP_ALPHA` from scene shader.
- Remove unused `PARTICLES_COPY` from the particles shader.
- Remove unused uniform related code.
- Shader language/compiler: use ordered hash maps for deterministic code generation (needed for caching).
Changes the Path2D drawing to use POLYLINE instead of thick lines.
Add a path to translate thick lines (that are not using anti-aliasing) to draw as polygons instead. This should be faster because polygons can be batched.
Sets `AlignOperands` to `DontAlign`.
`clang-format` developers seem to mostly care about space-based indentation and
every other version of clang-format breaks the bad mismatch of tabs and spaces
that it seems to use for operand alignment. So it's better without, so that it
respects our two-tabs `ContinuationIndentWidth`.
Change the existing DEV_ASSERT function to be switched on and off by the DEV_ENABLED define. DEV_ASSERT breaks into the debugger as soon as hit.
Add error macros DEV_CHECK and DEV_CHECK_ONCE to add an alternative check that ERR_PRINT when a condition fails, again only enabled in DEV_ENABLED builds.
Sphere occluders are now tested for self occlusion. Spheres that are behind another sphere in the current view are superfluous so can be removed, cutting down on the runtime calculations.
AABBs are now maintained for Occluders as well as individual spheres, meaning a bunch of occluder spheres can be frustum rejected as a block.
Add framework for supporting geometrical occluders within rooms, and add support for sphere occluders.
Includes gizmos for editing.
They also work outside the portal system.
This is only available on the GLES3 backend.
This can be useful for advanced shaders, but it should generally
not be enabled otherwise as full precision has a performance cost.
For general-purpose rendering, the built-in debanding filter should
be used to reduce banding instead.
Small bug in the logic, the roaming objects only should be set to done when they have been marked as visible, rather than the first time they are examined. This is because they can be seen in a room through multiple portals, and each needs to be tested until there is either a visible result or all the portals in are visited.
This backports the high quality glow mode from the `master` branch.
Previously, during downsample, every second row was ignored.
Now, when high-quality is used, we sample two rows at once to ensure
that no pixel is missed. It is slower, but looks much better and has
a much high stability while moving.
High quality also takes an additional horizontal sample the width of the
horizontal blur matches the height of the vertical blur.
Fixed a bug in the complex PVS generation which was causing recursive loop.
Move some of the settings out of RoomManager into Project Settings.
Allow PVS generation method to be selected from Project Settings, and control PVS logging.
Fixes a bug whereby it read from the primary PVS in the gameplay monitor, using the size from the secondary PVS. This would read out of bounds and crash.
Removed debug code to update the gameplay monitor from the preview camera - this is no longer required.
Temporarily revert to the simple PVS generation method, because I've noticed a bug in the complex version, and the simple version is safer while I fix this.
The existing tracing routine for building the PVS was rather simple compared to the main portal tracing, and could not correctly cope with paths that went through multiple portals from room A to B, and as a result would sometimes miss room entries in the PVS resulting in too many culled rooms in these circumstances.
This PR adds an improved function that can cope with entering a room multiple times during a trace. As a result it has to take care of portal directions (to prevent going back on itself) in a similar, but not identical way to the main portal tracing routine, and internal rooms, to prevent recursive loops.
In some situations looking out from an internal room it was possible to look back into the portal into the internal room.
This PR fixes this by keeping a single item 'stack' record of the last external room, and preventing recursing into this room. This also makes tracing significantly more efficient out of internal rooms, as there is no need to trace the external room multiple times.
This PR makes the 'convert rooms' button permanently on the toolbar and accessible whichever node is selected, so you can convert rooms without having to select the RoomManager first.
It also adds a togglable item 'view portal culling' to the 'View' menu which is a simple way of setting the RoomManager 'active' setting without the RoomManager being the selected node.
Both of these have keyboard shortcuts, which should make it much faster to reconvert rooms and edit.
In addition there the string in the 'Perspective' Listbox is modified to show [portals active] when portal culling is operational, for visual feedback. This is updated when you change modes, and when the rooms are invalidated.
When using the preview camera feature it turns out as well as culling the game objects, this also culls the editor gizmos from the preview camera, which makes the editor hard to use in this mode.
To get around this problem we simply disable frustum culling for GLOBAL portal_mode objects when in preview camera mode. This could be a bit slower in an editor scene with lots of gizmos but is the simplest way of solving the problem.
Portal margins were not being correctly sent to the PortalRenderer from the SceneTree, so all margins were being used as default (1.0). This PR fixes this.
It turned out the new autolinking feature was linking portals AFTER the static meshes had been added to rooms in the PortalRenderer. This meant that large meshes weren't being sprawled across these portals. The fix involves doing the autolinking BEFORE adding the static meshes.
Fixes a bug in the warning for portals being in the wrong direction, they should have only been checkout for outgoing portals. This was resulting in erroneous warnings.
Also the room conversion logs are refined to be more compact and informative.
A warning icon is also added in the gizmo for portals where autolink fails.
This is an older, easier to implement variant of CAS as a pure
fragment shader. It doesn't support upscaling, but we won't make
use of it (at least for now).
The sharpening intensity can be adjusted on a per-Viewport basis.
For the root viewport, it can be adjusted in the Project Settings.
Since `textureLodOffset()` isn't available in GLES2, there is no
way to support contrast-adaptive sharpening in GLES2.
It turns out the calculation of the bounding rect for canvas items has a nasty bug. When a transform is applied (especially in a custom draw), in the renderer this extra matrix is applied to all later commands in the canvas item. However in the calculation of the bound, the transform is only applied to the first command following the transform.
This PR fixes this inconsistency.