Mipmap LOD bias can be useful to improve the appearance of distant
textures without increasing anisotropic filtering (or in situations
where anisotropic filtering is not effective).
`fsr_mipmap_bias` was renamed to `texture_mipmap_bias` accordingly.
The property hint now allows for greater precision as well.
* Moved preprocessor to Shader and ShaderInclude
* Clean up RenderingServer side
* Preprocessor is separate from parser now, but it emits tokens with include location hints.
* Improved ShaderEditor validation code
* Added include file code completion
* Added notification for all files affected by a broken include.
`rendering/quality/shadows` is now `rendering/quality/positional_shadow`
to explicitly denote that the settings only affect positional light shadows,
not directional light shadows.
Shadow atlas settings now contain the word "atlas" for easier searching.
Soft shadow quality settings were renamed to contain the word "filter".
This makes the settings appear when searching for "filter" in the
project settings dialog, like in Godot 3.x.
Initial TAA support based on the implementation in Spartan Engine.
Motion vectors are correctly generated for camera and mesh movement, but there is no support for other things like particles or skeleton deformations.
This method can be used to get the graphics API version currently in
use (such as Vulkan). It can be used by projects for troubleshooting
or statistical purposes.
3 options are available:
- Light and Sky (default)
- Light Only (new)
- Sky Only (equivalent to `use_in_sky_only = true`)
Co-authored by: clayjohn <claynjohn@gmail.com>
This can be used to fade lights and their shadows in the distance,
similar to Decal nodes. This can bring significant performance
improvements, especially for lights with shadows enabled and when
using higher-than-default shadow quality settings.
While lights can be smoothly faded out over distance, shadows are
currently "all or nothing" since per-light shadow color is no longer
customizable in the Vulkan renderer. This may result in noticeable
pop-in when leaving the shadow cutoff distance, but depending on the
scene, it may not always be that noticeable.
This provides a significant speedup for a small quality loss.
The quality loss is generally more noticeable during a project's
early stages of development (e.g. in level blockouts)
than it is in a finished project.
- Enable Read Sky Light to get proper outdoors lighting out of the box.
- Set bounce feedback to 0.5 by default to get a better quality result.
- Higher values may cause infinite feedback with bright surfaces.
- Increase the number of frames to converge to improve quality
at the cost of latency. Most scenes are fairly static after all.
- Use 75% Y scale by default as most scenes are not highly vertical.
- Reorder the Y scale enum to go from the lowest Y scale to the highest.
Also rename the "Disabled" setting to "100%" for clarity.
This provides more flexibility between performance and quality
adjustments, especially when using SDFGI for small-scale levels
(which can be useful for procedurally generated scenes).
On the only platform where PVRTC is supported (iOS),
ETC2 generally supersedes PVRTC in every possible way. The increased
memory usage is not really a problem thanks to modern iOS' devices
processing power being higher than its Android counterparts.
Applying overlay materials into multi-surface meshes currently
requires adding a next pass material to all the surfaces, which
might be cumbersome when the material is to be applied to a range
of different geometries. This also makes it not trivial to use
AnimationPlayer to control the material in case of visual effects.
The material_override property is not an option as it works
replacing the active material for the surfaces, not adding a new pass.
This commit adds the material_overlay property to GeometryInstance3D
(and therefore MeshInstance3D), having the same reach as
material_override (that is, all surfaces) but adding a new material
pass on top of the active materials, instead of replacing them.