godot/servers/rendering/rendering_server_scene.cpp

2952 lines
99 KiB
C++
Raw Normal View History

/*************************************************************************/
/* rendering_server_scene.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "rendering_server_scene.h"
2020-01-21 20:32:27 +00:00
#include "core/os/os.h"
#include "rendering_server_globals.h"
#include "rendering_server_raster.h"
2020-01-21 20:32:27 +00:00
#include <new>
2020-01-21 20:32:27 +00:00
/* CAMERA API */
RID RenderingServerScene::camera_create() {
Camera *camera = memnew(Camera);
return camera_owner.make_rid(camera);
}
void RenderingServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::PERSPECTIVE;
camera->fov = p_fovy_degrees;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void RenderingServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::ORTHOGONAL;
camera->size = p_size;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void RenderingServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::FRUSTUM;
camera->size = p_size;
camera->offset = p_offset;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void RenderingServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->transform = p_transform.orthonormalized();
}
void RenderingServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->visible_layers = p_layers;
}
void RenderingServerScene::camera_set_environment(RID p_camera, RID p_env) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->env = p_env;
}
void RenderingServerScene::camera_set_camera_effects(RID p_camera, RID p_fx) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->effects = p_fx;
}
void RenderingServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
camera->vaspect = p_enable;
}
/* SCENARIO API */
void *RenderingServerScene::_instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) {
//RenderingServerScene *self = (RenderingServerScene*)p_self;
Instance *A = p_A;
Instance *B = p_B;
//instance indices are designed so greater always contains lesser
if (A->base_type > B->base_type) {
SWAP(A, B); //lesser always first
}
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
InstanceLightData::PairInfo pinfo;
pinfo.geometry = A;
pinfo.L = geom->lighting.push_back(B);
List<InstanceLightData::PairInfo>::Element *E = light->geometries.push_back(pinfo);
if (geom->can_cast_shadows) {
light->shadow_dirty = true;
}
geom->lighting_dirty = true;
2016-11-19 16:23:37 +00:00
return E; //this element should make freeing faster
} else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData::PairInfo pinfo;
pinfo.geometry = A;
2016-11-19 16:23:37 +00:00
pinfo.L = geom->reflection_probes.push_back(B);
List<InstanceReflectionProbeData::PairInfo>::Element *E = reflection_probe->geometries.push_back(pinfo);
geom->reflection_dirty = true;
2016-11-19 16:23:37 +00:00
return E; //this element should make freeing faster
} else if (B->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
InstanceLightmapCaptureData::PairInfo pinfo;
pinfo.geometry = A;
pinfo.L = geom->lightmap_captures.push_back(B);
List<InstanceLightmapCaptureData::PairInfo>::Element *E = lightmap_capture->geometries.push_back(pinfo);
((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
return E; //this element should make freeing faster
} else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
2016-12-20 03:21:07 +00:00
InstanceGIProbeData::PairInfo pinfo;
pinfo.geometry = A;
2016-12-20 03:21:07 +00:00
pinfo.L = geom->gi_probes.push_back(B);
List<InstanceGIProbeData::PairInfo>::Element *E;
if (A->dynamic_gi) {
E = gi_probe->dynamic_geometries.push_back(pinfo);
} else {
E = gi_probe->geometries.push_back(pinfo);
}
2016-12-20 03:21:07 +00:00
geom->gi_probes_dirty = true;
2016-12-20 03:21:07 +00:00
return E; //this element should make freeing faster
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
2016-12-20 03:21:07 +00:00
return gi_probe->lights.insert(A);
}
2020-04-01 23:20:12 +00:00
return nullptr;
}
void RenderingServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *udata) {
//RenderingServerScene *self = (RenderingServerScene*)p_self;
Instance *A = p_A;
Instance *B = p_B;
//instance indices are designed so greater always contains lesser
if (A->base_type > B->base_type) {
SWAP(A, B); //lesser always first
}
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
List<InstanceLightData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightData::PairInfo>::Element *>(udata);
geom->lighting.erase(E->get().L);
light->geometries.erase(E);
if (geom->can_cast_shadows) {
light->shadow_dirty = true;
}
geom->lighting_dirty = true;
} else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
2016-11-19 16:23:37 +00:00
List<InstanceReflectionProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceReflectionProbeData::PairInfo>::Element *>(udata);
2016-11-19 16:23:37 +00:00
geom->reflection_probes.erase(E->get().L);
reflection_probe->geometries.erase(E);
geom->reflection_dirty = true;
} else if (B->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
List<InstanceLightmapCaptureData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapCaptureData::PairInfo>::Element *>(udata);
geom->lightmap_captures.erase(E->get().L);
lightmap_capture->geometries.erase(E);
((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
2016-11-19 16:23:37 +00:00
} else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
2016-12-20 03:21:07 +00:00
List<InstanceGIProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceGIProbeData::PairInfo>::Element *>(udata);
2016-12-20 03:21:07 +00:00
geom->gi_probes.erase(E->get().L);
if (A->dynamic_gi) {
gi_probe->dynamic_geometries.erase(E);
} else {
gi_probe->geometries.erase(E);
}
2016-12-20 03:21:07 +00:00
geom->gi_probes_dirty = true;
2016-12-20 03:21:07 +00:00
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
Set<Instance *>::Element *E = reinterpret_cast<Set<Instance *>::Element *>(udata);
2016-12-20 03:21:07 +00:00
gi_probe->lights.erase(E);
}
}
RID RenderingServerScene::scenario_create() {
Scenario *scenario = memnew(Scenario);
ERR_FAIL_COND_V(!scenario, RID());
RID scenario_rid = scenario_owner.make_rid(scenario);
scenario->self = scenario_rid;
scenario->octree.set_pair_callback(_instance_pair, this);
scenario->octree.set_unpair_callback(_instance_unpair, this);
scenario->reflection_probe_shadow_atlas = RSG::scene_render->shadow_atlas_create();
RSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4);
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4);
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4);
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8);
scenario->reflection_atlas = RSG::scene_render->reflection_atlas_create();
return scenario_rid;
}
void RenderingServerScene::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->debug = p_debug_mode;
}
void RenderingServerScene::scenario_set_environment(RID p_scenario, RID p_environment) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->environment = p_environment;
}
void RenderingServerScene::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->camera_effects = p_camera_effects;
}
void RenderingServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->fallback_environment = p_environment;
}
void RenderingServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) {
2019-09-09 20:50:51 +00:00
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
RSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count);
2019-09-09 20:50:51 +00:00
}
/* INSTANCING API */
void RenderingServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) {
if (p_update_aabb)
p_instance->update_aabb = true;
if (p_update_dependencies)
p_instance->update_dependencies = true;
if (p_instance->update_item.in_list())
return;
_instance_update_list.add(&p_instance->update_item);
}
RID RenderingServerScene::instance_create() {
Instance *instance = memnew(Instance);
ERR_FAIL_COND_V(!instance, RID());
RID instance_rid = instance_owner.make_rid(instance);
instance->self = instance_rid;
return instance_rid;
}
void RenderingServerScene::instance_set_base(RID p_instance, RID p_base) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
Scenario *scenario = instance->scenario;
if (instance->base_type != RS::INSTANCE_NONE) {
//free anything related to that base
if (scenario && instance->octree_id) {
scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away
instance->octree_id = 0;
}
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
2019-10-05 13:27:43 +00:00
#ifdef DEBUG_ENABLED
if (light->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
}
#endif
if (instance->scenario && light->D) {
instance->scenario->directional_lights.erase(light->D);
2020-04-01 23:20:12 +00:00
light->D = nullptr;
}
RSG::scene_render->free(light->instance);
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
RSG::scene_render->free(reflection_probe->instance);
2016-11-19 16:23:37 +00:00
if (reflection_probe->update_list.in_list()) {
reflection_probe_render_list.remove(&reflection_probe->update_list);
}
} break;
case RS::INSTANCE_LIGHTMAP_CAPTURE: {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(instance->base_data);
//erase dependencies, since no longer a lightmap
while (lightmap_capture->users.front()) {
instance_set_use_lightmap(lightmap_capture->users.front()->get()->self, RID(), RID());
}
} break;
case RS::INSTANCE_GI_PROBE: {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
2019-10-05 13:27:43 +00:00
#ifdef DEBUG_ENABLED
if (gi_probe->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
}
#endif
#ifdef DEBUG_ENABLED
if (gi_probe->lights.size()) {
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
}
#endif
2016-12-20 03:21:07 +00:00
if (gi_probe->update_element.in_list()) {
gi_probe_update_list.remove(&gi_probe->update_element);
}
if (instance->lightmap_capture) {
Instance *capture = (Instance *)instance->lightmap_capture;
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(capture->base_data);
lightmap_capture->users.erase(instance);
2020-04-01 23:20:12 +00:00
instance->lightmap_capture = nullptr;
instance->lightmap = RID();
}
RSG::scene_render->free(gi_probe->probe_instance);
2016-12-20 03:21:07 +00:00
} break;
default: {
}
}
if (instance->base_data) {
memdelete(instance->base_data);
2020-04-01 23:20:12 +00:00
instance->base_data = nullptr;
}
instance->blend_values.clear();
instance->materials.clear();
}
instance->base_type = RS::INSTANCE_NONE;
instance->base = RID();
if (p_base.is_valid()) {
instance->base_type = RSG::storage->get_base_type(p_base);
ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE);
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = memnew(InstanceLightData);
if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) {
light->D = scenario->directional_lights.push_back(instance);
}
light->instance = RSG::scene_render->light_instance_create(p_base);
instance->base_data = light;
} break;
case RS::INSTANCE_MESH:
case RS::INSTANCE_MULTIMESH:
case RS::INSTANCE_IMMEDIATE:
case RS::INSTANCE_PARTICLES: {
2016-11-22 04:26:56 +00:00
InstanceGeometryData *geom = memnew(InstanceGeometryData);
instance->base_data = geom;
if (instance->base_type == RS::INSTANCE_MESH) {
instance->blend_values.resize(RSG::storage->mesh_get_blend_shape_count(p_base));
}
2016-11-22 04:26:56 +00:00
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData);
reflection_probe->owner = instance;
instance->base_data = reflection_probe;
2016-11-19 16:23:37 +00:00
reflection_probe->instance = RSG::scene_render->reflection_probe_instance_create(p_base);
2016-11-19 16:23:37 +00:00
} break;
case RS::INSTANCE_LIGHTMAP_CAPTURE: {
InstanceLightmapCaptureData *lightmap_capture = memnew(InstanceLightmapCaptureData);
instance->base_data = lightmap_capture;
//lightmap_capture->instance = RSG::scene_render->lightmap_capture_instance_create(p_base);
} break;
case RS::INSTANCE_GI_PROBE: {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData);
instance->base_data = gi_probe;
gi_probe->owner = instance;
2016-12-20 03:21:07 +00:00
if (scenario && !gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
gi_probe->probe_instance = RSG::scene_render->gi_probe_instance_create(p_base);
2016-12-20 03:21:07 +00:00
} break;
default: {
}
}
instance->base = p_base;
//forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it
RSG::storage->base_update_dependency(p_base, instance);
}
_instance_queue_update(instance, true, true);
}
void RenderingServerScene::instance_set_scenario(RID p_instance, RID p_scenario) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->scenario) {
instance->scenario->instances.remove(&instance->scenario_item);
if (instance->octree_id) {
instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away
instance->octree_id = 0;
}
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
2019-10-05 13:27:43 +00:00
#ifdef DEBUG_ENABLED
if (light->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
}
#endif
if (light->D) {
instance->scenario->directional_lights.erase(light->D);
2020-04-01 23:20:12 +00:00
light->D = nullptr;
}
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
2019-09-09 20:50:51 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
RSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance);
2016-11-19 16:23:37 +00:00
} break;
case RS::INSTANCE_GI_PROBE: {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
2019-10-05 13:27:43 +00:00
#ifdef DEBUG_ENABLED
if (gi_probe->geometries.size()) {
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
}
#endif
#ifdef DEBUG_ENABLED
if (gi_probe->lights.size()) {
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
}
#endif
2016-12-20 03:21:07 +00:00
if (gi_probe->update_element.in_list()) {
gi_probe_update_list.remove(&gi_probe->update_element);
}
} break;
default: {
}
}
2020-04-01 23:20:12 +00:00
instance->scenario = nullptr;
}
if (p_scenario.is_valid()) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
instance->scenario = scenario;
scenario->instances.add(&instance->scenario_item);
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) {
light->D = scenario->directional_lights.push_back(instance);
}
} break;
case RS::INSTANCE_GI_PROBE: {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
2016-12-20 03:21:07 +00:00
if (!gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
} break;
default: {
}
}
_instance_queue_update(instance, true, true);
}
}
void RenderingServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->layer_mask = p_mask;
}
void RenderingServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->transform == p_transform)
return; //must be checked to avoid worst evil
#ifdef DEBUG_ENABLED
for (int i = 0; i < 4; i++) {
const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin;
ERR_FAIL_COND(Math::is_inf(v.x));
ERR_FAIL_COND(Math::is_nan(v.x));
ERR_FAIL_COND(Math::is_inf(v.y));
ERR_FAIL_COND(Math::is_nan(v.y));
ERR_FAIL_COND(Math::is_inf(v.z));
ERR_FAIL_COND(Math::is_nan(v.z));
}
#endif
instance->transform = p_transform;
_instance_queue_update(instance, true);
}
void RenderingServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->object_id = p_id;
}
void RenderingServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->update_item.in_list()) {
_update_dirty_instance(instance);
}
ERR_FAIL_INDEX(p_shape, instance->blend_values.size());
instance->blend_values.write[p_shape] = p_weight;
}
void RenderingServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->base_type == RS::INSTANCE_MESH) {
//may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case
instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base)));
}
ERR_FAIL_INDEX(p_surface, instance->materials.size());
instance->materials.write[p_surface] = p_material;
_instance_queue_update(instance, false, true);
}
void RenderingServerScene::instance_set_visible(RID p_instance, bool p_visible) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->visible == p_visible)
return;
instance->visible = p_visible;
switch (instance->base_type) {
case RS::INSTANCE_LIGHT: {
if (RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) {
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHT, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
}
} break;
case RS::INSTANCE_REFLECTION_PROBE: {
if (instance->octree_id && instance->scenario) {
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_REFLECTION_PROBE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
}
} break;
case RS::INSTANCE_LIGHTMAP_CAPTURE: {
if (instance->octree_id && instance->scenario) {
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHTMAP_CAPTURE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
}
} break;
case RS::INSTANCE_GI_PROBE: {
if (instance->octree_id && instance->scenario) {
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_GI_PROBE, p_visible ? (RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT)) : 0);
}
} break;
default: {
}
}
}
inline bool is_geometry_instance(RenderingServer::InstanceType p_type) {
return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE;
}
void RenderingServerScene::instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->lightmap_capture) {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data);
lightmap_capture->users.erase(instance);
instance->lightmap = RID();
2020-04-01 23:20:12 +00:00
instance->lightmap_capture = nullptr;
}
if (p_lightmap_instance.is_valid()) {
Instance *lightmap_instance = instance_owner.getornull(p_lightmap_instance);
ERR_FAIL_COND(!lightmap_instance);
ERR_FAIL_COND(lightmap_instance->base_type != RS::INSTANCE_LIGHTMAP_CAPTURE);
instance->lightmap_capture = lightmap_instance;
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data);
lightmap_capture->users.insert(instance);
instance->lightmap = p_lightmap;
}
}
void RenderingServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
ERR_FAIL_COND(!is_geometry_instance(instance->base_type));
if (p_aabb != AABB()) {
// Set custom AABB
2020-04-01 23:20:12 +00:00
if (instance->custom_aabb == nullptr)
instance->custom_aabb = memnew(AABB);
*instance->custom_aabb = p_aabb;
} else {
// Clear custom AABB
2020-04-01 23:20:12 +00:00
if (instance->custom_aabb != nullptr) {
memdelete(instance->custom_aabb);
2020-04-01 23:20:12 +00:00
instance->custom_aabb = nullptr;
}
}
if (instance->scenario)
_instance_queue_update(instance, true, false);
}
void RenderingServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
if (instance->skeleton == p_skeleton)
2016-11-22 04:26:56 +00:00
return;
instance->skeleton = p_skeleton;
if (p_skeleton.is_valid()) {
//update the dependency now, so if cleared, we remove it
RSG::storage->skeleton_update_dependency(p_skeleton, instance);
2016-11-22 04:26:56 +00:00
}
_instance_queue_update(instance, true, true);
}
void RenderingServerScene::instance_set_exterior(RID p_instance, bool p_enabled) {
}
void RenderingServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->extra_margin = p_margin;
_instance_queue_update(instance, true, false);
}
Vector<ObjectID> RenderingServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
2016-10-29 23:48:09 +00:00
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
2016-10-29 23:48:09 +00:00
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
2016-10-29 23:48:09 +00:00
int culled = 0;
2016-10-29 23:48:09 +00:00
Instance *cull[1024];
culled = scenario->octree.cull_aabb(p_aabb, cull, 1024);
for (int i = 0; i < culled; i++) {
2016-10-29 23:48:09 +00:00
Instance *instance = cull[i];
2016-10-29 23:48:09 +00:00
ERR_CONTINUE(!instance);
if (instance->object_id.is_null())
2016-10-29 23:48:09 +00:00
continue;
instances.push_back(instance->object_id);
2016-10-29 23:48:09 +00:00
}
return instances;
}
Vector<ObjectID> RenderingServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
2016-10-29 23:48:09 +00:00
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
2016-10-29 23:48:09 +00:00
int culled = 0;
2016-10-29 23:48:09 +00:00
Instance *cull[1024];
culled = scenario->octree.cull_segment(p_from, p_from + p_to * 10000, cull, 1024);
2016-10-29 23:48:09 +00:00
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
2016-10-29 23:48:09 +00:00
ERR_CONTINUE(!instance);
if (instance->object_id.is_null())
2016-10-29 23:48:09 +00:00
continue;
instances.push_back(instance->object_id);
2016-10-29 23:48:09 +00:00
}
return instances;
}
Vector<ObjectID> RenderingServerScene::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
2016-10-29 23:48:09 +00:00
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
2016-10-29 23:48:09 +00:00
int culled = 0;
2016-10-29 23:48:09 +00:00
Instance *cull[1024];
culled = scenario->octree.cull_convex(p_convex, cull, 1024);
2016-10-29 23:48:09 +00:00
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
2016-10-29 23:48:09 +00:00
ERR_CONTINUE(!instance);
if (instance->object_id.is_null())
2016-10-29 23:48:09 +00:00
continue;
instances.push_back(instance->object_id);
2016-10-29 23:48:09 +00:00
}
return instances;
}
void RenderingServerScene::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
//ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK));
switch (p_flags) {
case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: {
2017-07-16 02:24:37 +00:00
instance->baked_light = p_enabled;
} break;
case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: {
if (p_enabled == instance->dynamic_gi) {
//bye, redundant
return;
}
if (instance->octree_id != 0) {
//remove from octree, it needs to be re-paired
instance->scenario->octree.erase(instance->octree_id);
instance->octree_id = 0;
_instance_queue_update(instance, true, true);
}
//once out of octree, can be changed
instance->dynamic_gi = p_enabled;
2017-07-16 02:24:37 +00:00
} break;
case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: {
instance->redraw_if_visible = p_enabled;
} break;
default: {
}
}
}
void RenderingServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->cast_shadows = p_shadow_casting_setting;
_instance_queue_update(instance, false, true);
}
void RenderingServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) {
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
instance->material_override = p_material;
_instance_queue_update(instance, false, true);
}
void RenderingServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) {
}
void RenderingServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) {
}
void RenderingServerScene::_update_instance(Instance *p_instance) {
p_instance->version++;
if (p_instance->base_type == RS::INSTANCE_LIGHT) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
RSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform);
light->shadow_dirty = true;
}
if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
2016-11-19 16:23:37 +00:00
RSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);
reflection_probe->reflection_dirty = true;
2016-11-19 16:23:37 +00:00
}
if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
2019-10-03 20:39:08 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data);
RSG::scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform);
2019-10-03 20:39:08 +00:00
}
if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
}
if (p_instance->aabb.has_no_surface()) {
return;
}
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
//make sure lights are updated if it casts shadow
if (geom->can_cast_shadows) {
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
}
if (!p_instance->lightmap_capture && geom->lightmap_captures.size()) {
//affected by lightmap captures, must update capture info!
_update_instance_lightmap_captures(p_instance);
} else {
if (!p_instance->lightmap_capture_data.empty()) {
Fix warnings about set but unused variables [-Wunused-but-set-variable] Fixes the following GCC 5 warnings: ``` drivers/gles2/rasterizer_canvas_gles2.cpp:814:8: warning: variable 'rt_size' set but not used [-Wunused-but-set-variable] drivers/gles2/rasterizer_scene_gles2.cpp:2270:11: warning: variable 'vp_height' set but not used [-Wunused-but-set-variable] drivers/gles2/rasterizer_scene_gles2.cpp:2673:22: warning: variable 'e' set but not used [-Wunused-but-set-variable] drivers/gles2/rasterizer_scene_gles2.cpp:715:7: warning: variable 'no_cull' set but not used [-Wunused-but-set-variable] drivers/gles2/shader_gles2.cpp:693:14: warning: variable 'cc' set but not used [-Wunused-but-set-variable] drivers/gles3/rasterizer_canvas_gles3.cpp:1226:8: warning: variable 'rt_size' set but not used [-Wunused-but-set-variable] drivers/gles3/rasterizer_scene_gles3.cpp:3039:10: warning: variable 'contrib' set but not used [-Wunused-but-set-variable] drivers/gles3/rasterizer_scene_gles3.cpp:4504:32: warning: variable 'vp_height' set but not used [-Wunused-but-set-variable] editor/editor_inspector.cpp:272:9: warning: variable 'guide_color' set but not used [-Wunused-but-set-variable] editor/editor_themes.cpp:1067:14: warning: variable 'alpha3' set but not used [-Wunused-but-set-variable] editor/editor_themes.cpp:263:8: warning: variable 'script_bg_color' set but not used [-Wunused-but-set-variable] editor/plugins/collision_shape_2d_editor_plugin.cpp:326:11: warning: variable 'cpoint' set but not used [-Wunused-but-set-variable] editor/plugins/mesh_editor_plugin.cpp:72:9: warning: variable 'size' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:471:12: warning: variable 'mpos' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:89:8: warning: variable 'basetype_color' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:90:8: warning: variable 'type_color' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:92:8: warning: variable 'string_color' set but not used [-Wunused-but-set-variable] modules/visual_script/visual_script_editor.cpp:2521:7: warning: variable 'seq_connect' set but not used [-Wunused-but-set-variable] platform/android/export/export.cpp:580:12: warning: variable 'styles_count' set but not used [-Wunused-but-set-variable] platform/android/export/export.cpp:584:12: warning: variable 'styles_offset' set but not used [-Wunused-but-set-variable] platform/osx/export/export.cpp:464:9: warning: variable 'zerr' set but not used [-Wunused-but-set-variable] scene/2d/tile_map.cpp:260:10: warning: variable 'tcenter' set but not used [-Wunused-but-set-variable] scene/3d/light.cpp:166:7: warning: variable 'editor_ok' set but not used [-Wunused-but-set-variable] scene/3d/navigation.cpp:566:11: warning: variable 'closest_navmesh' set but not used [-Wunused-but-set-variable] scene/gui/rich_text_label.cpp:869:8: warning: variable 'size' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:705:14: warning: variable 'xform' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:706:8: warning: variable 'ss' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:726:14: warning: variable 'xform' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:727:8: warning: variable 'ss' set but not used [-Wunused-but-set-variable] scene/resources/material.cpp:430:7: warning: variable 'using_world' set but not used [-Wunused-but-set-variable] servers/visual/shader_language.cpp:2026:7: warning: variable 'all_const' set but not used [-Wunused-but-set-variable] servers/visual/visual_server_scene.cpp:1383:28: warning: variable 'z_max_cam' set but not used [-Wunused-but-set-variable] ``` Also fixes two [-Wunused-value] warnings: ``` scene/gui/text_edit.cpp:4405:20: warning: statement has no effect [-Wunused-value] servers/visual/visual_server_scene.cpp:905:48: warning: value computed is not used [-Wunused-value] ``` Some of those are bugs and need further work, they are identified with `// FIXME` comments.
2018-09-27 10:07:59 +00:00
p_instance->lightmap_capture_data.resize(0); //not in use, clear capture data
}
}
}
p_instance->mirror = p_instance->transform.basis.determinant() < 0.0;
2017-11-17 02:09:00 +00:00
AABB new_aabb;
new_aabb = p_instance->transform.xform(p_instance->aabb);
p_instance->transformed_aabb = new_aabb;
if (!p_instance->scenario) {
return;
}
if (p_instance->octree_id == 0) {
uint32_t base_type = 1 << p_instance->base_type;
uint32_t pairable_mask = 0;
bool pairable = false;
if (p_instance->base_type == RS::INSTANCE_LIGHT || p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE) {
pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK : 0;
pairable = true;
}
2016-12-20 03:21:07 +00:00
if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
2016-12-20 03:21:07 +00:00
//lights and geometries
pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT) : 0;
pairable = true;
2016-12-20 03:21:07 +00:00
}
// not inside octree
p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask);
} else {
/*
if (new_aabb==p_instance->data.transformed_aabb)
return;
*/
p_instance->scenario->octree.move(p_instance->octree_id, new_aabb);
}
}
void RenderingServerScene::_update_instance_aabb(Instance *p_instance) {
2017-11-17 02:09:00 +00:00
AABB new_aabb;
ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid());
switch (p_instance->base_type) {
case RenderingServer::INSTANCE_NONE: {
// do nothing
} break;
case RenderingServer::INSTANCE_MESH: {
if (p_instance->custom_aabb)
new_aabb = *p_instance->custom_aabb;
else
new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton);
} break;
2016-11-22 04:26:56 +00:00
case RenderingServer::INSTANCE_MULTIMESH: {
if (p_instance->custom_aabb)
new_aabb = *p_instance->custom_aabb;
else
new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_IMMEDIATE: {
if (p_instance->custom_aabb)
new_aabb = *p_instance->custom_aabb;
else
new_aabb = RSG::storage->immediate_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_PARTICLES: {
if (p_instance->custom_aabb)
new_aabb = *p_instance->custom_aabb;
else
new_aabb = RSG::storage->particles_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_LIGHT: {
new_aabb = RSG::storage->light_get_aabb(p_instance->base);
} break;
case RenderingServer::INSTANCE_REFLECTION_PROBE: {
2016-11-19 16:23:37 +00:00
new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base);
2016-11-19 16:23:37 +00:00
} break;
case RenderingServer::INSTANCE_GI_PROBE: {
2016-12-20 03:21:07 +00:00
new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base);
2016-12-20 03:21:07 +00:00
} break;
case RenderingServer::INSTANCE_LIGHTMAP_CAPTURE: {
new_aabb = RSG::storage->lightmap_capture_get_bounds(p_instance->base);
2016-12-20 03:21:07 +00:00
} break;
default: {
}
}
// <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs
if (p_instance->extra_margin)
new_aabb.grow_by(p_instance->extra_margin);
p_instance->aabb = new_aabb;
}
_FORCE_INLINE_ static void _light_capture_sample_octree(const RasterizerStorage::LightmapCaptureOctree *p_octree, int p_cell_subdiv, const Vector3 &p_pos, const Vector3 &p_dir, float p_level, Vector3 &r_color, float &r_alpha) {
static const Vector3 aniso_normal[6] = {
Vector3(-1, 0, 0),
Vector3(1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, 1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, 1)
};
int size = 1 << (p_cell_subdiv - 1);
int clamp_v = size - 1;
//first of all, clamp
Vector3 pos;
pos.x = CLAMP(p_pos.x, 0, clamp_v);
pos.y = CLAMP(p_pos.y, 0, clamp_v);
pos.z = CLAMP(p_pos.z, 0, clamp_v);
float level = (p_cell_subdiv - 1) - p_level;
int target_level;
float level_filter;
if (level <= 0.0) {
level_filter = 0;
target_level = 0;
} else {
target_level = Math::ceil(level);
level_filter = target_level - level;
}
Vector3 color[2][8];
float alpha[2][8];
zeromem(alpha, sizeof(float) * 2 * 8);
//find cell at given level first
for (int c = 0; c < 2; c++) {
int current_level = MAX(0, target_level - c);
int level_cell_size = (1 << (p_cell_subdiv - 1)) >> current_level;
for (int n = 0; n < 8; n++) {
int x = int(pos.x);
int y = int(pos.y);
int z = int(pos.z);
if (n & 1)
x += level_cell_size;
if (n & 2)
y += level_cell_size;
if (n & 4)
z += level_cell_size;
int ofs_x = 0;
int ofs_y = 0;
int ofs_z = 0;
x = CLAMP(x, 0, clamp_v);
y = CLAMP(y, 0, clamp_v);
z = CLAMP(z, 0, clamp_v);
int half = size / 2;
uint32_t cell = 0;
for (int i = 0; i < current_level; i++) {
const RasterizerStorage::LightmapCaptureOctree *bc = &p_octree[cell];
int child = 0;
if (x >= ofs_x + half) {
child |= 1;
ofs_x += half;
}
if (y >= ofs_y + half) {
child |= 2;
ofs_y += half;
}
if (z >= ofs_z + half) {
child |= 4;
ofs_z += half;
}
cell = bc->children[child];
if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY)
break;
half >>= 1;
}
if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) {
alpha[c][n] = 0;
} else {
alpha[c][n] = p_octree[cell].alpha;
for (int i = 0; i < 6; i++) {
//anisotropic read light
float amount = p_dir.dot(aniso_normal[i]);
if (amount < 0)
amount = 0;
color[c][n].x += p_octree[cell].light[i][0] / 1024.0 * amount;
color[c][n].y += p_octree[cell].light[i][1] / 1024.0 * amount;
color[c][n].z += p_octree[cell].light[i][2] / 1024.0 * amount;
}
}
//print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]);
}
}
float target_level_size = size >> target_level;
Vector3 pos_fract[2];
pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size;
pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size;
pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size;
target_level_size = size >> MAX(0, target_level - 1);
pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size;
pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size;
pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size;
float alpha_interp[2];
Vector3 color_interp[2];
for (int i = 0; i < 2; i++) {
Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x);
Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x);
Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y);
Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x);
Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x);
Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y);
color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z);
float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x);
float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x);
float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y);
float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x);
float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x);
float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y);
alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z);
}
r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter);
r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter);
//print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha));
}
_FORCE_INLINE_ static Color _light_capture_voxel_cone_trace(const RasterizerStorage::LightmapCaptureOctree *p_octree, const Vector3 &p_pos, const Vector3 &p_dir, float p_aperture, int p_cell_subdiv) {
float bias = 0.0; //no need for bias here
float max_distance = (Vector3(1, 1, 1) * (1 << (p_cell_subdiv - 1))).length();
float dist = bias;
float alpha = 0.0;
Vector3 color;
Vector3 scolor;
float salpha;
while (dist < max_distance && alpha < 0.95) {
float diameter = MAX(1.0, 2.0 * p_aperture * dist);
_light_capture_sample_octree(p_octree, p_cell_subdiv, p_pos + dist * p_dir, p_dir, log2(diameter), scolor, salpha);
float a = (1.0 - alpha);
color += scolor * a;
alpha += a * salpha;
dist += diameter * 0.5;
}
return Color(color.x, color.y, color.z, alpha);
}
void RenderingServerScene::_update_instance_lightmap_captures(Instance *p_instance) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
static const Vector3 cone_traces[12] = {
Vector3(0, 0, 1),
Vector3(0.866025, 0, 0.5),
Vector3(0.267617, 0.823639, 0.5),
Vector3(-0.700629, 0.509037, 0.5),
Vector3(-0.700629, -0.509037, 0.5),
Vector3(0.267617, -0.823639, 0.5),
Vector3(0, 0, -1),
Vector3(0.866025, 0, -0.5),
Vector3(0.267617, 0.823639, -0.5),
Vector3(-0.700629, 0.509037, -0.5),
Vector3(-0.700629, -0.509037, -0.5),
Vector3(0.267617, -0.823639, -0.5)
};
float cone_aperture = 0.577; // tan(angle) 60 degrees
if (p_instance->lightmap_capture_data.empty()) {
p_instance->lightmap_capture_data.resize(12);
}
//print_line("update captures for pos: " + p_instance->transform.origin);
for (int i = 0; i < 12; i++)
new (&p_instance->lightmap_capture_data.ptrw()[i]) Color;
//this could use some sort of blending..
for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) {
const Vector<RasterizerStorage::LightmapCaptureOctree> *octree = RSG::storage->lightmap_capture_get_octree_ptr(E->get()->base);
//print_line("octree size: " + itos(octree->size()));
if (octree->size() == 0)
continue;
Transform to_cell_xform = RSG::storage->lightmap_capture_get_octree_cell_transform(E->get()->base);
int cell_subdiv = RSG::storage->lightmap_capture_get_octree_cell_subdiv(E->get()->base);
to_cell_xform = to_cell_xform * E->get()->transform.affine_inverse();
const RasterizerStorage::LightmapCaptureOctree *octree_r = octree->ptr();
Vector3 pos = to_cell_xform.xform(p_instance->transform.origin);
for (int i = 0; i < 12; i++) {
Vector3 dir = to_cell_xform.basis.xform(cone_traces[i]).normalized();
Color capture = _light_capture_voxel_cone_trace(octree_r, pos, dir, cone_aperture, cell_subdiv);
p_instance->lightmap_capture_data.write[i] += capture;
}
}
}
bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
Transform light_transform = p_instance->transform;
light_transform.orthonormalize(); //scale does not count on lights
bool animated_material_found = false;
switch (RSG::storage->light_get_type(p_instance->base)) {
case RS::LIGHT_DIRECTIONAL: {
real_t max_distance = p_cam_projection.get_z_far();
real_t shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera
max_distance = MIN(shadow_max, max_distance);
}
max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001);
real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance);
RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base);
real_t pancake_size = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE);
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) {
//optimize min/max
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2));
//check distance max and min
bool found_items = false;
real_t z_max = -1e20;
real_t z_min = 1e20;
for (int i = 0; i < cull_count; i++) {
Instance *instance = instance_shadow_cull_result[i];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
continue;
}
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
real_t max, min;
instance->transformed_aabb.project_range_in_plane(base, min, max);
if (max > z_max) {
z_max = max;
}
if (min < z_min) {
z_min = min;
}
found_items = true;
}
if (found_items) {
min_distance = MAX(min_distance, z_min);
max_distance = MIN(max_distance, z_max);
}
}
real_t range = max_distance - min_distance;
int splits = 0;
switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) {
case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: splits = 1; break;
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: splits = 2; break;
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: splits = 4; break;
}
real_t distances[5];
distances[0] = min_distance;
for (int i = 0; i < splits; i++) {
distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
};
distances[splits] = max_distance;
real_t texture_size = RSG::scene_render->get_directional_light_shadow_size(light->instance);
bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base);
real_t first_radius = 0.0;
real_t min_distance_bias_scale = pancake_size > 0 ? distances[1] / 10.0 : 0;
for (int i = 0; i < splits; i++) {
RENDER_TIMESTAMP("Culling Directional Light split" + itos(i));
// setup a camera matrix for that range!
CameraMatrix camera_matrix;
real_t aspect = p_cam_projection.get_aspect();
2016-11-19 16:23:37 +00:00
if (p_cam_orthogonal) {
Vector2 vp_he = p_cam_projection.get_viewport_half_extents();
camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
2016-11-19 16:23:37 +00:00
} else {
real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
}
//obtain the frustum endpoints
Vector3 endpoints[8]; // frustum plane endpoints
bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints);
ERR_CONTINUE(!res);
// obtain the light frustm ranges (given endpoints)
Transform transform = light_transform; //discard scale and stabilize light
Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized();
Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized();
Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized();
//z_vec points agsint the camera, like in default opengl
real_t x_min = 0.f, x_max = 0.f;
real_t y_min = 0.f, y_max = 0.f;
real_t z_min = 0.f, z_max = 0.f;
Fix warnings about set but unused variables [-Wunused-but-set-variable] Fixes the following GCC 5 warnings: ``` drivers/gles2/rasterizer_canvas_gles2.cpp:814:8: warning: variable 'rt_size' set but not used [-Wunused-but-set-variable] drivers/gles2/rasterizer_scene_gles2.cpp:2270:11: warning: variable 'vp_height' set but not used [-Wunused-but-set-variable] drivers/gles2/rasterizer_scene_gles2.cpp:2673:22: warning: variable 'e' set but not used [-Wunused-but-set-variable] drivers/gles2/rasterizer_scene_gles2.cpp:715:7: warning: variable 'no_cull' set but not used [-Wunused-but-set-variable] drivers/gles2/shader_gles2.cpp:693:14: warning: variable 'cc' set but not used [-Wunused-but-set-variable] drivers/gles3/rasterizer_canvas_gles3.cpp:1226:8: warning: variable 'rt_size' set but not used [-Wunused-but-set-variable] drivers/gles3/rasterizer_scene_gles3.cpp:3039:10: warning: variable 'contrib' set but not used [-Wunused-but-set-variable] drivers/gles3/rasterizer_scene_gles3.cpp:4504:32: warning: variable 'vp_height' set but not used [-Wunused-but-set-variable] editor/editor_inspector.cpp:272:9: warning: variable 'guide_color' set but not used [-Wunused-but-set-variable] editor/editor_themes.cpp:1067:14: warning: variable 'alpha3' set but not used [-Wunused-but-set-variable] editor/editor_themes.cpp:263:8: warning: variable 'script_bg_color' set but not used [-Wunused-but-set-variable] editor/plugins/collision_shape_2d_editor_plugin.cpp:326:11: warning: variable 'cpoint' set but not used [-Wunused-but-set-variable] editor/plugins/mesh_editor_plugin.cpp:72:9: warning: variable 'size' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:471:12: warning: variable 'mpos' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:89:8: warning: variable 'basetype_color' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:90:8: warning: variable 'type_color' set but not used [-Wunused-but-set-variable] editor/plugins/shader_editor_plugin.cpp:92:8: warning: variable 'string_color' set but not used [-Wunused-but-set-variable] modules/visual_script/visual_script_editor.cpp:2521:7: warning: variable 'seq_connect' set but not used [-Wunused-but-set-variable] platform/android/export/export.cpp:580:12: warning: variable 'styles_count' set but not used [-Wunused-but-set-variable] platform/android/export/export.cpp:584:12: warning: variable 'styles_offset' set but not used [-Wunused-but-set-variable] platform/osx/export/export.cpp:464:9: warning: variable 'zerr' set but not used [-Wunused-but-set-variable] scene/2d/tile_map.cpp:260:10: warning: variable 'tcenter' set but not used [-Wunused-but-set-variable] scene/3d/light.cpp:166:7: warning: variable 'editor_ok' set but not used [-Wunused-but-set-variable] scene/3d/navigation.cpp:566:11: warning: variable 'closest_navmesh' set but not used [-Wunused-but-set-variable] scene/gui/rich_text_label.cpp:869:8: warning: variable 'size' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:705:14: warning: variable 'xform' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:706:8: warning: variable 'ss' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:726:14: warning: variable 'xform' set but not used [-Wunused-but-set-variable] scene/main/viewport.cpp:727:8: warning: variable 'ss' set but not used [-Wunused-but-set-variable] scene/resources/material.cpp:430:7: warning: variable 'using_world' set but not used [-Wunused-but-set-variable] servers/visual/shader_language.cpp:2026:7: warning: variable 'all_const' set but not used [-Wunused-but-set-variable] servers/visual/visual_server_scene.cpp:1383:28: warning: variable 'z_max_cam' set but not used [-Wunused-but-set-variable] ``` Also fixes two [-Wunused-value] warnings: ``` scene/gui/text_edit.cpp:4405:20: warning: statement has no effect [-Wunused-value] servers/visual/visual_server_scene.cpp:905:48: warning: value computed is not used [-Wunused-value] ``` Some of those are bugs and need further work, they are identified with `// FIXME` comments.
2018-09-27 10:07:59 +00:00
// FIXME: z_max_cam is defined, computed, but not used below when setting up
// ortho_camera. Commented out for now to fix warnings but should be investigated.
real_t x_min_cam = 0.f, x_max_cam = 0.f;
real_t y_min_cam = 0.f, y_max_cam = 0.f;
real_t z_min_cam = 0.f;
//real_t z_max_cam = 0.f;
real_t bias_scale = 1.0;
real_t aspect_bias_scale = 1.0;
//used for culling
for (int j = 0; j < 8; j++) {
real_t d_x = x_vec.dot(endpoints[j]);
real_t d_y = y_vec.dot(endpoints[j]);
real_t d_z = z_vec.dot(endpoints[j]);
if (j == 0 || d_x < x_min)
x_min = d_x;
if (j == 0 || d_x > x_max)
x_max = d_x;
if (j == 0 || d_y < y_min)
y_min = d_y;
if (j == 0 || d_y > y_max)
y_max = d_y;
if (j == 0 || d_z < z_min)
z_min = d_z;
if (j == 0 || d_z > z_max)
z_max = d_z;
}
2020-04-09 18:11:15 +00:00
real_t radius = 0;
2020-04-09 18:11:15 +00:00
real_t soft_shadow_expand = 0;
Vector3 center;
{
//camera viewport stuff
for (int j = 0; j < 8; j++) {
center += endpoints[j];
}
center /= 8.0;
//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;
for (int j = 0; j < 8; j++) {
real_t d = center.distance_to(endpoints[j]);
if (d > radius)
radius = d;
}
radius *= texture_size / (texture_size - 2.0); //add a texel by each side
if (i == 0) {
first_radius = radius;
} else {
bias_scale = radius / first_radius;
}
z_min_cam = z_vec.dot(center) - radius;
2020-04-09 18:11:15 +00:00
{
float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE);
if (soft_shadow_angle > 0.0 && pancake_size > 0.0) {
float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam;
soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range;
x_max += soft_shadow_expand;
y_max += soft_shadow_expand;
x_min -= soft_shadow_expand;
y_min -= soft_shadow_expand;
}
}
x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand;
x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand;
y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand;
y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand;
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) {
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
//at the cost of some wasted resolution. Still the quality increase is very well worth it
real_t unit = radius * 2.0 / texture_size;
x_max_cam = Math::stepify(x_max_cam, unit);
x_min_cam = Math::stepify(x_min_cam, unit);
y_max_cam = Math::stepify(y_max_cam, unit);
y_min_cam = Math::stepify(y_min_cam, unit);
}
}
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
Vector<Plane> light_frustum_planes;
light_frustum_planes.resize(6);
//right/left
light_frustum_planes.write[0] = Plane(x_vec, x_max);
light_frustum_planes.write[1] = Plane(-x_vec, -x_min);
//top/bottom
light_frustum_planes.write[2] = Plane(y_vec, y_max);
light_frustum_planes.write[3] = Plane(-y_vec, -y_min);
//near/far
light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6);
light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
int cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
// a pre pass will need to be needed to determine the actual z-near to be used
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
real_t cull_max = 0;
for (int j = 0; j < cull_count; j++) {
real_t min, max;
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
2017-02-16 11:55:11 +00:00
continue;
}
instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max);
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
if (j == 0 || max > cull_max) {
cull_max = max;
}
}
2020-04-09 18:11:15 +00:00
if (cull_max > z_max) {
z_max = cull_max;
2020-04-09 18:11:15 +00:00
}
if (pancake_size > 0) {
z_max = z_vec.dot(center) + radius + pancake_size;
}
if (aspect != 1.0) {
// if the aspect is different, then the radius will become larger.
// if this happens, then bias needs to be adjusted too, as depth will increase
// to do this, compare the depth of one that would have resulted from a square frustum
CameraMatrix camera_matrix_square;
if (p_cam_orthogonal) {
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
if (p_cam_vaspect) {
camera_matrix_square.set_orthogonal(vp_he.x * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
} else {
camera_matrix_square.set_orthogonal(vp_he.y * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
}
} else {
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
if (p_cam_vaspect) {
camera_matrix_square.set_frustum(vp_he.x * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
} else {
camera_matrix_square.set_frustum(vp_he.y * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
}
if (i == 0) {
//print_line("prev he: " + vp_he + " new he: " + camera_matrix_square.get_viewport_half_extents());
}
}
Vector3 endpoints_square[8]; // frustum plane endpoints
res = camera_matrix_square.get_endpoints(p_cam_transform, endpoints_square);
ERR_CONTINUE(!res);
Vector3 center_square;
real_t z_max_square = 0;
for (int j = 0; j < 8; j++) {
center_square += endpoints_square[j];
real_t d_z = z_vec.dot(endpoints_square[j]);
if (j == 0 || d_z > z_max_square)
z_max_square = d_z;
}
if (cull_max > z_max_square) {
z_max_square = cull_max;
}
center_square /= 8.0;
real_t radius_square = 0;
for (int j = 0; j < 8; j++) {
real_t d = center_square.distance_to(endpoints_square[j]);
if (d > radius_square)
radius_square = d;
}
radius_square *= texture_size / (texture_size - 2.0); //add a texel by each side
if (pancake_size > 0) {
z_max_square = z_vec.dot(center_square) + radius_square + pancake_size;
}
real_t z_min_cam_square = z_vec.dot(center_square) - radius_square;
aspect_bias_scale = (z_max - z_min_cam) / (z_max_square - z_min_cam_square);
// this is not entirely perfect, because the cull-adjusted z-max may be different
// but at least it's warranted that it results in a greater bias, so no acne should be present either way.
// pancaking also helps with this.
}
{
CameraMatrix ortho_camera;
real_t half_x = (x_max_cam - x_min_cam) * 0.5;
real_t half_y = (y_max_cam - y_min_cam) * 0.5;
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
2020-04-09 18:11:15 +00:00
Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam));
Transform ortho_transform;
ortho_transform.basis = transform.basis;
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
2020-04-09 18:11:15 +00:00
{
Vector3 max_in_view = p_cam_transform.affine_inverse().xform(z_vec * cull_max);
Vector3 dir_in_view = p_cam_transform.xform_inv(z_vec).normalized();
cull_max = dir_in_view.dot(max_in_view);
}
RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale, z_max, uv_scale);
}
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
}
} break;
case RS::LIGHT_OMNI: {
RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base);
if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !RSG::scene_render->light_instances_can_render_shadow_cube()) {
for (int i = 0; i < 2; i++) {
//using this one ensures that raster deferred will have it
RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i));
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
real_t z = i == 0 ? -1 : 1;
Vector<Plane> planes;
planes.resize(5);
planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius));
planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z);
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
}
}
RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i, 0);
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
}
} else { //shadow cube
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
CameraMatrix cm;
cm.set_perspective(90, 1, 0.01, radius);
for (int i = 0; i < 6; i++) {
RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i));
//using this one ensures that raster deferred will have it
static const Vector3 view_normals[6] = {
Vector3(+1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, +1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, +1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]);
Vector<Plane> planes = cm.get_projection_planes(xform);
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
Plane near_plane(xform.origin, -xform.basis.get_axis(2));
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
}
}
RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0);
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
}
//restore the regular DP matrix
RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0, 0);
}
} break;
case RS::LIGHT_SPOT: {
RENDER_TIMESTAMP("Culling Spot Light");
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
real_t angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
CameraMatrix cm;
cm.set_perspective(angle * 2.0, 1.0, 0.01, radius);
Vector<Plane> planes = cm.get_projection_planes(light_transform);
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
}
}
RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0);
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
} break;
}
return animated_material_found;
}
void RenderingServerScene::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
// render to mono camera
#ifndef _3D_DISABLED
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
/* STEP 1 - SETUP CAMERA */
CameraMatrix camera_matrix;
bool ortho = false;
switch (camera->type) {
case Camera::ORTHOGONAL: {
camera_matrix.set_orthogonal(
camera->size,
p_viewport_size.width / (float)p_viewport_size.height,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = true;
} break;
case Camera::PERSPECTIVE: {
camera_matrix.set_perspective(
camera->fov,
p_viewport_size.width / (float)p_viewport_size.height,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = false;
} break;
case Camera::FRUSTUM: {
camera_matrix.set_frustum(
camera->size,
p_viewport_size.width / (float)p_viewport_size.height,
camera->offset,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = false;
} break;
}
_prepare_scene(camera->transform, camera_matrix, ortho, camera->vaspect, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
_render_scene(p_render_buffers, camera->transform, camera_matrix, ortho, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1);
#endif
2016-11-19 16:23:37 +00:00
}
2020-04-08 14:47:36 +00:00
void RenderingServerScene::render_camera(RID p_render_buffers, Ref<XRInterface> &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
// render for AR/VR interface
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
/* SETUP CAMERA, we are ignoring type and FOV here */
float aspect = p_viewport_size.width / (float)p_viewport_size.height;
CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar);
// We also ignore our camera position, it will have been positioned with a slightly old tracking position.
// Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo!
2020-04-08 14:47:36 +00:00
Transform world_origin = XRServer::get_singleton()->get_world_origin();
Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin);
// For stereo render we only prepare for our left eye and then reuse the outcome for our right eye
2020-04-08 14:47:36 +00:00
if (p_eye == XRInterface::EYE_LEFT) {
// Center our transform, we assume basis is equal.
Transform mono_transform = cam_transform;
2020-04-08 14:47:36 +00:00
Transform right_transform = p_interface->get_transform_for_eye(XRInterface::EYE_RIGHT, world_origin);
mono_transform.origin += right_transform.origin;
mono_transform.origin *= 0.5;
// We need to combine our projection frustums for culling.
// Ideally we should use our clipping planes for this and combine them,
// however our shadow map logic uses our projection matrix.
// Note: as our left and right frustums should be mirrored, we don't need our right projection matrix.
// - get some base values we need
float eye_dist = (mono_transform.origin - cam_transform.origin).length();
float z_near = camera_matrix.get_z_near(); // get our near plane
float z_far = camera_matrix.get_z_far(); // get our far plane
float width = (2.0 * z_near) / camera_matrix.matrix[0][0];
float x_shift = width * camera_matrix.matrix[2][0];
float height = (2.0 * z_near) / camera_matrix.matrix[1][1];
2018-06-23 12:22:57 +00:00
float y_shift = height * camera_matrix.matrix[2][1];
// printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift);
// - calculate our near plane size (horizontal only, right_near is mirrored)
float left_near = -eye_dist - ((width - x_shift) * 0.5);
// - calculate our far plane size (horizontal only, right_far is mirrored)
float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near);
float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near);
if (left_far > left_far_right_eye) {
// on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes.
left_far = left_far_right_eye;
}
// - figure out required z-shift
float slope = (left_far - left_near) / (z_far - z_near);
float z_shift = (left_near / slope) - z_near;
// - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift)
2018-06-23 12:22:57 +00:00
float top_near = (height - y_shift) * 0.5;
top_near += (top_near / z_near) * z_shift;
float bottom_near = -(height + y_shift) * 0.5;
bottom_near += (bottom_near / z_near) * z_shift;
// printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift);
// - generate our frustum
CameraMatrix combined_matrix;
combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift);
// and finally move our camera back
Transform apply_z_shift;
apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards
mono_transform *= apply_z_shift;
// now prepare our scene with our adjusted transform projection matrix
_prepare_scene(mono_transform, combined_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
2020-04-08 14:47:36 +00:00
} else if (p_eye == XRInterface::EYE_MONO) {
// For mono render, prepare as per usual
_prepare_scene(cam_transform, camera_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
}
// And render our scene...
_render_scene(p_render_buffers, cam_transform, camera_matrix, false, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1);
};
void RenderingServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_force_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows) {
// Note, in stereo rendering:
// - p_cam_transform will be a transform in the middle of our two eyes
// - p_cam_projection is a wider frustrum that encompasses both eyes
2016-11-19 16:23:37 +00:00
Scenario *scenario = scenario_owner.getornull(p_scenario);
render_pass++;
uint32_t camera_layer_mask = p_visible_layers;
2016-11-19 16:23:37 +00:00
RSG::scene_render->set_scene_pass(render_pass);
2016-11-19 16:23:37 +00:00
RENDER_TIMESTAMP("Frustum Culling");
//rasterizer->set_camera(camera->transform, camera_matrix,ortho);
2016-11-19 16:23:37 +00:00
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized());
2016-11-19 16:23:37 +00:00
float z_far = p_cam_projection.get_z_far();
/* STEP 2 - CULL */
instance_cull_count = scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL);
light_cull_count = 0;
2016-11-19 16:23:37 +00:00
reflection_probe_cull_count = 0;
2019-10-03 20:39:08 +00:00
gi_probe_cull_count = 0;
2016-11-19 16:23:37 +00:00
//light_samplers_culled=0;
/*
print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0));
print_line("OTO: "+itos(p_scenario->octree.get_octant_count()));
print_line("OTE: "+itos(p_scenario->octree.get_elem_count()));
print_line("OTP: "+itos(p_scenario->octree.get_pair_count()));
*/
/* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */
//removed, will replace with culling
/* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */
for (int i = 0; i < instance_cull_count; i++) {
Instance *ins = instance_cull_result[i];
bool keep = false;
if ((camera_layer_mask & ins->layer_mask) == 0) {
//failure
} else if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) {
2019-04-08 09:03:37 +00:00
if (light_cull_count < MAX_LIGHTS_CULLED) {
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
if (!light->geometries.empty()) {
//do not add this light if no geometry is affected by it..
light_cull_result[light_cull_count] = ins;
light_instance_cull_result[light_cull_count] = light->instance;
if (p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(ins->base)) {
RSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later
}
light_cull_count++;
}
}
} else if (ins->base_type == RS::INSTANCE_REFLECTION_PROBE && ins->visible) {
2016-11-19 16:23:37 +00:00
2019-04-08 09:03:37 +00:00
if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(ins->base_data);
2016-11-19 16:23:37 +00:00
if (p_reflection_probe != reflection_probe->instance) {
2016-11-19 16:23:37 +00:00
//avoid entering The Matrix
if (!reflection_probe->geometries.empty()) {
//do not add this light if no geometry is affected by it..
if (reflection_probe->reflection_dirty || RSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) {
2016-11-19 16:23:37 +00:00
if (!reflection_probe->update_list.in_list()) {
reflection_probe->render_step = 0;
reflection_probe_render_list.add_last(&reflection_probe->update_list);
2016-11-19 16:23:37 +00:00
}
reflection_probe->reflection_dirty = false;
2016-11-19 16:23:37 +00:00
}
if (RSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) {
2019-09-09 20:50:51 +00:00
reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance;
reflection_probe_cull_count++;
}
2016-11-19 16:23:37 +00:00
}
}
}
} else if (ins->base_type == RS::INSTANCE_GI_PROBE && ins->visible) {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(ins->base_data);
2016-12-20 03:21:07 +00:00
if (!gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
2019-10-03 20:39:08 +00:00
if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) {
gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance;
gi_probe_cull_count++;
}
} else if (((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
keep = true;
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(ins->base_data);
2016-11-19 16:23:37 +00:00
if (ins->redraw_if_visible) {
RenderingServerRaster::redraw_request();
}
if (ins->base_type == RS::INSTANCE_PARTICLES) {
//particles visible? process them
if (RSG::storage->particles_is_inactive(ins->base)) {
//but if nothing is going on, don't do it.
keep = false;
} else {
RSG::storage->particles_request_process(ins->base);
//particles visible? request redraw
RenderingServerRaster::redraw_request();
}
}
if (geom->lighting_dirty) {
int l = 0;
//only called when lights AABB enter/exit this geometry
ins->light_instances.resize(geom->lighting.size());
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
ins->light_instances.write[l++] = light->instance;
}
geom->lighting_dirty = false;
}
2016-11-19 16:23:37 +00:00
if (geom->reflection_dirty) {
int l = 0;
2016-11-19 16:23:37 +00:00
//only called when reflection probe AABB enter/exit this geometry
ins->reflection_probe_instances.resize(geom->reflection_probes.size());
for (List<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) {
2016-11-19 16:23:37 +00:00
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data);
2016-11-19 16:23:37 +00:00
ins->reflection_probe_instances.write[l++] = reflection_probe->instance;
2016-11-19 16:23:37 +00:00
}
geom->reflection_dirty = false;
2016-11-19 16:23:37 +00:00
}
2016-12-20 03:21:07 +00:00
if (geom->gi_probes_dirty) {
int l = 0;
2016-12-20 03:21:07 +00:00
//only called when reflection probe AABB enter/exit this geometry
ins->gi_probe_instances.resize(geom->gi_probes.size());
for (List<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) {
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data);
2016-12-20 03:21:07 +00:00
ins->gi_probe_instances.write[l++] = gi_probe->probe_instance;
2016-12-20 03:21:07 +00:00
}
geom->gi_probes_dirty = false;
2016-12-20 03:21:07 +00:00
}
ins->depth = near_plane.distance_to(ins->transform.origin);
ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15);
}
if (!keep) {
// remove, no reason to keep
instance_cull_count--;
SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]);
i--;
ins->last_render_pass = 0; // make invalid
} else {
ins->last_render_pass = render_pass;
}
}
/* STEP 5 - PROCESS LIGHTS */
RID *directional_light_ptr = &light_instance_cull_result[light_cull_count];
directional_light_count = 0;
// directional lights
{
Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size());
int directional_shadow_count = 0;
for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) {
if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) {
break;
}
if (!E->get()->visible)
continue;
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
//check shadow..
if (light) {
if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base)) {
lights_with_shadow[directional_shadow_count++] = E->get();
}
2017-08-25 15:14:33 +00:00
//add to list
directional_light_ptr[directional_light_count++] = light->instance;
}
}
RSG::scene_render->set_directional_shadow_count(directional_shadow_count);
for (int i = 0; i < directional_shadow_count; i++) {
RENDER_TIMESTAMP(">Rendering Directional Light " + itos(i));
_light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario);
RENDER_TIMESTAMP("<Rendering Directional Light " + itos(i));
}
}
2019-09-09 20:50:51 +00:00
if (p_using_shadows) { //setup shadow maps
//SortArray<Instance*,_InstanceLightsort> sorter;
//sorter.sort(light_cull_result,light_cull_count);
for (int i = 0; i < light_cull_count; i++) {
Instance *ins = light_cull_result[i];
if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base))
continue;
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
float coverage = 0.f;
{ //compute coverage
2016-11-19 16:23:37 +00:00
Transform cam_xf = p_cam_transform;
float zn = p_cam_projection.get_z_near();
Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane
// near plane half width and height
Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents();
switch (RSG::storage->light_get_type(ins->base)) {
case RS::LIGHT_OMNI: {
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
//get two points parallel to near plane
Vector3 points[2] = {
ins->transform.origin,
ins->transform.origin + cam_xf.basis.get_axis(0) * radius
};
2016-11-19 16:23:37 +00:00
if (!p_cam_orthogonal) {
//if using perspetive, map them to near plane
for (int j = 0; j < 2; j++) {
if (p.distance_to(points[j]) < 0) {
points[j].z = -zn; //small hack to keep size constant when hitting the screen
}
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
}
}
float screen_diameter = points[0].distance_to(points[1]) * 2;
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
} break;
case RS::LIGHT_SPOT: {
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE);
float w = radius * Math::sin(Math::deg2rad(angle));
float d = radius * Math::cos(Math::deg2rad(angle));
Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d;
Vector3 points[2] = {
base,
base + cam_xf.basis.get_axis(0) * w
};
2016-11-19 16:23:37 +00:00
if (!p_cam_orthogonal) {
//if using perspetive, map them to near plane
for (int j = 0; j < 2; j++) {
if (p.distance_to(points[j]) < 0) {
points[j].z = -zn; //small hack to keep size constant when hitting the screen
}
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
}
}
float screen_diameter = points[0].distance_to(points[1]) * 2;
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
} break;
default: {
ERR_PRINT("Invalid Light Type");
}
}
}
if (light->shadow_dirty) {
light->last_version++;
light->shadow_dirty = false;
}
bool redraw = RSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version);
if (redraw) {
//must redraw!
RENDER_TIMESTAMP(">Rendering Light " + itos(i));
light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario);
RENDER_TIMESTAMP("<Rendering Light " + itos(i));
}
}
}
}
void RenderingServerScene::_render_scene(RID p_render_buffers, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_force_camera_effects, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
/* ENVIRONMENT */
RID environment;
2016-11-19 16:23:37 +00:00
if (p_force_environment.is_valid()) //camera has more environment priority
environment = p_force_environment;
else if (scenario->environment.is_valid())
environment = scenario->environment;
else
environment = scenario->fallback_environment;
RID camera_effects;
if (p_force_camera_effects.is_valid()) {
camera_effects = p_force_camera_effects;
} else {
camera_effects = scenario->camera_effects;
}
/* PROCESS GEOMETRY AND DRAW SCENE */
RENDER_TIMESTAMP("Render Scene ");
RSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass);
2016-11-19 16:23:37 +00:00
}
void RenderingServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) {
#ifndef _3D_DISABLED
Scenario *scenario = scenario_owner.getornull(p_scenario);
RID environment;
if (scenario->environment.is_valid())
environment = scenario->environment;
else
environment = scenario->fallback_environment;
RENDER_TIMESTAMP("Render Empty Scene ");
2020-04-01 23:20:12 +00:00
RSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, environment, RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0);
#endif
}
bool RenderingServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
2016-11-19 16:23:37 +00:00
Scenario *scenario = p_instance->scenario;
ERR_FAIL_COND_V(!scenario, true);
RenderingServerRaster::redraw_request(); //update, so it updates in editor
if (p_step == 0) {
2016-11-19 16:23:37 +00:00
if (!RSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) {
2019-09-09 20:50:51 +00:00
return true; //all full
}
2016-11-19 16:23:37 +00:00
}
if (p_step >= 0 && p_step < 6) {
static const Vector3 view_normals[6] = {
2016-11-19 16:23:37 +00:00
Vector3(+1, 0, 0),
2019-09-09 20:50:51 +00:00
Vector3(-1, 0, 0),
Vector3(0, +1, 0),
2019-09-09 20:50:51 +00:00
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, +1),
Vector3(0, 0, -1),
2019-09-09 20:50:51 +00:00
Vector3(0, -1, 0),
Vector3(0, -1, 0)
2016-11-19 16:23:37 +00:00
};
Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base);
Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base);
float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base);
2016-11-19 16:23:37 +00:00
Vector3 edge = view_normals[p_step] * extents;
float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit
2016-11-19 16:23:37 +00:00
max_distance = MAX(max_distance, distance);
2016-11-19 16:23:37 +00:00
//render cubemap side
CameraMatrix cm;
cm.set_perspective(90, 1, 0.01, max_distance);
2016-11-19 16:23:37 +00:00
Transform local_view;
local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]);
2016-11-19 16:23:37 +00:00
Transform xform = p_instance->transform * local_view;
RID shadow_atlas;
bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base);
2019-09-09 20:50:51 +00:00
if (use_shadows) {
2016-11-19 16:23:37 +00:00
shadow_atlas = scenario->reflection_probe_shadow_atlas;
}
2016-11-19 16:23:37 +00:00
RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step));
_prepare_scene(xform, cm, false, false, RID(), RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, use_shadows);
_render_scene(RID(), xform, cm, false, RID(), RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step);
2016-11-19 16:23:37 +00:00
} else {
//do roughness postprocess step until it believes it's done
RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step));
return RSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance);
}
2016-11-19 16:23:37 +00:00
return false;
}
void RenderingServerScene::render_probes() {
2016-12-20 03:21:07 +00:00
/* REFLECTION PROBES */
2016-12-20 03:21:07 +00:00
SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first();
bool busy = false;
while (ref_probe) {
SelfList<InstanceReflectionProbeData> *next = ref_probe->next();
2016-12-20 03:21:07 +00:00
RID base = ref_probe->self()->owner->base;
switch (RSG::storage->reflection_probe_get_update_mode(base)) {
2016-11-19 16:23:37 +00:00
case RS::REFLECTION_PROBE_UPDATE_ONCE: {
2016-11-19 16:23:37 +00:00
if (busy) //already rendering something
break;
bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step);
2016-11-19 16:23:37 +00:00
if (done) {
2016-12-20 03:21:07 +00:00
reflection_probe_render_list.remove(ref_probe);
2016-11-19 16:23:37 +00:00
} else {
2016-12-20 03:21:07 +00:00
ref_probe->self()->render_step++;
2016-11-19 16:23:37 +00:00
}
busy = true; //do not render another one of this kind
2016-11-19 16:23:37 +00:00
} break;
case RS::REFLECTION_PROBE_UPDATE_ALWAYS: {
2016-11-19 16:23:37 +00:00
int step = 0;
bool done = false;
while (!done) {
done = _render_reflection_probe_step(ref_probe->self()->owner, step);
2016-11-19 16:23:37 +00:00
step++;
}
2016-12-20 03:21:07 +00:00
reflection_probe_render_list.remove(ref_probe);
2016-11-19 16:23:37 +00:00
} break;
}
ref_probe = next;
2016-11-19 16:23:37 +00:00
}
2016-12-20 03:21:07 +00:00
/* GI PROBES */
SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first();
2019-10-03 20:39:08 +00:00
if (gi_probe) {
RENDER_TIMESTAMP("Render GI Probes");
}
while (gi_probe) {
2016-12-20 03:21:07 +00:00
SelfList<InstanceGIProbeData> *next = gi_probe->next();
2016-12-20 03:21:07 +00:00
InstanceGIProbeData *probe = gi_probe->self();
2019-10-03 20:39:08 +00:00
//Instance *instance_probe = probe->owner;
2016-12-20 03:21:07 +00:00
//check if probe must be setup, but don't do if on the lighting thread
2019-10-03 20:39:08 +00:00
bool cache_dirty = false;
int cache_count = 0;
{
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
int light_cache_size = probe->light_cache.size();
const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr();
const RID *instance_caches = probe->light_instances.ptr();
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
int idx = 0; //must count visible lights
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
if (cache_dirty) {
//do nothing, since idx must count all visible lights anyway
} else if (idx >= light_cache_size) {
cache_dirty = true;
} else {
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
const InstanceGIProbeData::LightCache *cache = &caches[idx];
if (
instance_caches[idx] != instance_light->instance ||
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
cache->type != RSG::storage->light_get_type(instance->base) ||
2019-10-03 20:39:08 +00:00
cache->transform != instance->transform ||
cache->color != RSG::storage->light_get_color(instance->base) ||
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
2019-10-03 20:39:08 +00:00
cache_dirty = true;
}
}
2019-10-03 20:39:08 +00:00
idx++;
}
2019-10-03 20:39:08 +00:00
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
2019-10-03 20:39:08 +00:00
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
if (cache_dirty) {
//do nothing, since idx must count all visible lights anyway
} else if (idx >= light_cache_size) {
cache_dirty = true;
} else {
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
const InstanceGIProbeData::LightCache *cache = &caches[idx];
if (
instance_caches[idx] != instance_light->instance ||
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
cache->type != RSG::storage->light_get_type(instance->base) ||
2019-10-03 20:39:08 +00:00
cache->transform != instance->transform ||
cache->color != RSG::storage->light_get_color(instance->base) ||
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
2019-10-03 20:39:08 +00:00
cache_dirty = true;
}
}
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
idx++;
}
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
if (idx != light_cache_size) {
cache_dirty = true;
}
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
cache_count = idx;
}
2016-12-20 03:21:07 +00:00
bool update_lights = RSG::scene_render->gi_probe_needs_update(probe->probe_instance);
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
if (cache_dirty) {
probe->light_cache.resize(cache_count);
probe->light_instances.resize(cache_count);
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
if (cache_count) {
InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw();
RID *instance_caches = probe->light_instances.ptrw();
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
int idx = 0; //must count visible lights
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
2016-12-20 03:21:07 +00:00
}
2019-10-03 20:39:08 +00:00
InstanceGIProbeData::LightCache *cache = &caches[idx];
instance_caches[idx] = instance_light->instance;
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
cache->type = RSG::storage->light_get_type(instance->base);
2019-10-03 20:39:08 +00:00
cache->transform = instance->transform;
cache->color = RSG::storage->light_get_color(instance->base);
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
2019-10-03 20:39:08 +00:00
idx++;
}
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
Instance *instance = E->get();
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
if (!instance->visible) {
continue;
}
2016-12-20 03:21:07 +00:00
2019-10-03 20:39:08 +00:00
InstanceGIProbeData::LightCache *cache = &caches[idx];
instance_caches[idx] = instance_light->instance;
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
cache->type = RSG::storage->light_get_type(instance->base);
2019-10-03 20:39:08 +00:00
cache->transform = instance->transform;
cache->color = RSG::storage->light_get_color(instance->base);
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
2019-10-03 20:39:08 +00:00
idx++;
}
2016-12-20 03:21:07 +00:00
}
2019-10-03 20:39:08 +00:00
update_lights = true;
2019-10-03 20:39:08 +00:00
}
instance_cull_count = 0;
for (List<InstanceGIProbeData::PairInfo>::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) {
if (instance_cull_count < MAX_INSTANCE_CULL) {
Instance *ins = E->get().geometry;
2019-10-31 22:54:21 +00:00
if (!ins->visible) {
continue;
}
InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data;
if (geom->gi_probes_dirty) {
//giprobes may be dirty, so update
int l = 0;
//only called when reflection probe AABB enter/exit this geometry
ins->gi_probe_instances.resize(geom->gi_probes.size());
for (List<Instance *>::Element *F = geom->gi_probes.front(); F; F = F->next()) {
InstanceGIProbeData *gi_probe2 = static_cast<InstanceGIProbeData *>(F->get()->base_data);
ins->gi_probe_instances.write[l++] = gi_probe2->probe_instance;
}
geom->gi_probes_dirty = false;
}
instance_cull_result[instance_cull_count++] = E->get().geometry;
}
2016-12-20 03:21:07 +00:00
}
2019-10-03 20:39:08 +00:00
RSG::scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, instance_cull_count, (RasterizerScene::InstanceBase **)instance_cull_result);
2019-10-03 20:39:08 +00:00
gi_probe_update_list.remove(gi_probe);
2016-12-20 03:21:07 +00:00
gi_probe = next;
2016-12-20 03:21:07 +00:00
}
2016-11-19 16:23:37 +00:00
}
void RenderingServerScene::_update_dirty_instance(Instance *p_instance) {
if (p_instance->update_aabb) {
_update_instance_aabb(p_instance);
}
if (p_instance->update_dependencies) {
p_instance->instance_increase_version();
if (p_instance->base.is_valid()) {
RSG::storage->base_update_dependency(p_instance->base, p_instance);
}
if (p_instance->material_override.is_valid()) {
RSG::storage->material_update_dependency(p_instance->material_override, p_instance);
}
if (p_instance->base_type == RS::INSTANCE_MESH) {
//remove materials no longer used and un-own them
int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base);
p_instance->materials.resize(new_mat_count);
int new_blend_shape_count = RSG::storage->mesh_get_blend_shape_count(p_instance->base);
if (new_blend_shape_count != p_instance->blend_values.size()) {
p_instance->blend_values.resize(new_blend_shape_count);
for (int i = 0; i < new_blend_shape_count; i++) {
p_instance->blend_values.write[i] = 0;
}
}
}
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
bool can_cast_shadows = true;
bool is_animated = false;
if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) {
can_cast_shadows = false;
} else if (p_instance->material_override.is_valid()) {
can_cast_shadows = RSG::storage->material_casts_shadows(p_instance->material_override);
is_animated = RSG::storage->material_is_animated(p_instance->material_override);
} else {
if (p_instance->base_type == RS::INSTANCE_MESH) {
RID mesh = p_instance->base;
2016-11-22 04:26:56 +00:00
if (mesh.is_valid()) {
bool cast_shadows = false;
for (int i = 0; i < p_instance->materials.size(); i++) {
RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i);
2016-11-22 04:26:56 +00:00
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (RSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
RSG::storage->material_update_dependency(mat, p_instance);
2016-11-22 04:26:56 +00:00
}
}
2016-11-22 04:26:56 +00:00
if (!cast_shadows) {
can_cast_shadows = false;
}
}
} else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) {
RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base);
2016-11-22 04:26:56 +00:00
if (mesh.is_valid()) {
2017-02-16 11:55:11 +00:00
bool cast_shadows = false;
2016-11-22 04:26:56 +00:00
int sc = RSG::storage->mesh_get_surface_count(mesh);
for (int i = 0; i < sc; i++) {
2016-11-22 04:26:56 +00:00
RID mat = RSG::storage->mesh_surface_get_material(mesh, i);
2016-11-22 04:26:56 +00:00
if (!mat.is_valid()) {
cast_shadows = true;
2016-11-22 04:26:56 +00:00
} else {
if (RSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
RSG::storage->material_update_dependency(mat, p_instance);
2016-11-22 04:26:56 +00:00
}
}
if (!cast_shadows) {
can_cast_shadows = false;
2016-11-22 04:26:56 +00:00
}
RSG::storage->base_update_dependency(mesh, p_instance);
}
} else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) {
RID mat = RSG::storage->immediate_get_material(p_instance->base);
can_cast_shadows = !mat.is_valid() || RSG::storage->material_casts_shadows(mat);
if (mat.is_valid() && RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
if (mat.is_valid()) {
RSG::storage->material_update_dependency(mat, p_instance);
}
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
bool cast_shadows = false;
int dp = RSG::storage->particles_get_draw_passes(p_instance->base);
for (int i = 0; i < dp; i++) {
RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i);
if (!mesh.is_valid())
continue;
int sc = RSG::storage->mesh_get_surface_count(mesh);
for (int j = 0; j < sc; j++) {
RID mat = RSG::storage->mesh_surface_get_material(mesh, j);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (RSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (RSG::storage->material_is_animated(mat)) {
is_animated = true;
}
RSG::storage->material_update_dependency(mat, p_instance);
}
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
}
}
if (can_cast_shadows != geom->can_cast_shadows) {
//ability to cast shadows change, let lights now
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
geom->can_cast_shadows = can_cast_shadows;
}
geom->material_is_animated = is_animated;
}
if (p_instance->skeleton.is_valid()) {
RSG::storage->skeleton_update_dependency(p_instance->skeleton, p_instance);
}
p_instance->clean_up_dependencies();
}
_instance_update_list.remove(&p_instance->update_item);
_update_instance(p_instance);
p_instance->update_aabb = false;
p_instance->update_dependencies = false;
}
void RenderingServerScene::update_dirty_instances() {
RSG::storage->update_dirty_resources();
2017-02-16 11:55:11 +00:00
while (_instance_update_list.first()) {
_update_dirty_instance(_instance_update_list.first()->self());
}
}
bool RenderingServerScene::free(RID p_rid) {
if (camera_owner.owns(p_rid)) {
Camera *camera = camera_owner.getornull(p_rid);
camera_owner.free(p_rid);
memdelete(camera);
} else if (scenario_owner.owns(p_rid)) {
Scenario *scenario = scenario_owner.getornull(p_rid);
while (scenario->instances.first()) {
instance_set_scenario(scenario->instances.first()->self()->self, RID());
}
RSG::scene_render->free(scenario->reflection_probe_shadow_atlas);
RSG::scene_render->free(scenario->reflection_atlas);
scenario_owner.free(p_rid);
memdelete(scenario);
} else if (instance_owner.owns(p_rid)) {
// delete the instance
update_dirty_instances();
Instance *instance = instance_owner.getornull(p_rid);
instance_set_use_lightmap(p_rid, RID(), RID());
instance_set_scenario(p_rid, RID());
instance_set_base(p_rid, RID());
instance_geometry_set_material_override(p_rid, RID());
instance_attach_skeleton(p_rid, RID());
2016-11-22 04:26:56 +00:00
update_dirty_instances(); //in case something changed this
instance_owner.free(p_rid);
memdelete(instance);
} else {
return false;
}
return true;
}
2020-04-01 23:20:12 +00:00
RenderingServerScene *RenderingServerScene::singleton = nullptr;
2016-12-20 03:21:07 +00:00
RenderingServerScene::RenderingServerScene() {
render_pass = 1;
singleton = this;
}
2016-12-20 03:21:07 +00:00
RenderingServerScene::~RenderingServerScene() {
2016-12-20 03:21:07 +00:00
}