Non-exhaustive list of case-sensitive renames:
GDExtension -> GDNative
GDNATIVE -> GDEXTENSION
gdextension -> gdnative
ExtensionExtension ->Extension (for where there was GDNativeExtension)
EXTENSION_EXTENSION ->EXTENSION (for where there was GDNATIVE_EXTENSION)
gdnlib -> gdextension
gdn_interface -> gde_interface
gdni -> gde_interface
This was a regression from 17b2838f39.
`MarshalUtils` was changed in the source generators to use
`ConvertTo<T>` and `CreateFrom<T>`, which don't support `GodotObject[]`
because it would need reflection.
As such, we need to keep the custom cases for `GodotObject[]` in
`MarshalUtils`.
- Exposes the properties of C# attribute so they can be accessed from
reflection, renaming them to PascalCase to follow .NET conventions.
- Added some documentation to the newly exposed members.
- Made attribute properties readonly to avoid giving the impression that
they could be modified.
This commit replaces most usages of `ConvertManagedObjectToVariant` and
`ConvertVariantToManagedObjectOfType`, by using the `Godot.Variant`
struct instead of `System.Object`.
The most notable change is to the `GetGodotPropertyDefaultValues` method
that's generated for scripts. The dictionary it returns now stores
`Godot.Variant` values.
Remaining usages are:
- The `DelegateUtils` class, for the serialization of closure display
classes during assembly reloading by the editor. These display classes
are compiler generated classes to store values captured by a closure.
Since it's generated by the compiler, the only way we have to access
the fields is through reflection. This leads to using `System.Object`.
- Converting parameters when invoking constructors from the engine.
This will be replaced with source generators in the future.
- Legacy support for old `GetGodotPropertyDefaultValues` return values.
We need to keep supporting the old version of this generated method
for some time. Otherwise, if loading a project built with the previous
version, it could lead to the loss of exported property values.
Ideally, we should remove this legacy support before a stable release.
Its two usages were:
- The Array `ICollection.CopyTo` implementation.
It's possible that this class shouldn't be implementing the
non-generic `ICollection`, but this commit doesn't change that.
The new implementation stores the elements as boxed `Variant` values.
- The `Variant.Obj` property.
I'm not sure if this property's existence is justified, but for now
I rewrote it as a simpler version of `ConvertVariantToManagedObject`.
- Removed `UnicodeAt`
- Removed `EndsWith`
- Removed `LPad` and `RPad`
- Deprecated `BeginsWith` in favor of `string.StartsWith`
- Deprecated `LStrip` and `RStrip` in favor of `string.TrimStart` and `string.TrimEnd`
- Remove `VariantSpanDisposer`, no need to dispose of the Variant Spans
since we are now borrowing the Variants instead of copying them.
- Remove `VariantSpanExtensions.Cleared` that was only used so the
Span was initialized for `VariantSpanDisposer` to know what to dispose.
- Fix stackalloc Spans to use constant VarArgsSpanThreshold
and avoid bound checks.
- Replaced `MD5Buffer`, `MD5Text`, `SHA256Buffer` and `SHA256Text` implementation to use the `System.Security.Cryptography` classes and avoid marshaling.
- Added `SHA1Buffer` and `SHA1Text`.
- Renamed `ToUTF8` to `ToUTF8Buffer`.
- Renamed `ToAscii` to `ToASCIIBuffer`.
- Added `ToUTF16Buffer` and `ToUTF32Buffer`.
- Added `GetStringFromUTF16` and `GetStringFromUTF32`.
- Renamed `IsValidInteger` to `IsValidInt`.
- Added `IsValidFileName`.
- Added `IsValidHexNumber`.
- Added support for IPv6 to `IsValidIPAddress`.
- Added `ValidateNodeName`.
- Updated the documentation of the `IsValid*` methods.
- Moved `GetBaseName` to keep methods alphabetically sorted.
- Removed `Length`, users should just use the Length property.
- Removed `Insert`, string already has a method with the same signature that takes precedence.
- Removed `Erase`.
- Removed `ToLower` and `ToUpper`, string already has methods with the same signature that take precedence.
- Removed `FindLast` in favor of `RFind`.
- Replaced `RFind` and `RFindN` implemenation with a ca ll to `string.LastIndexOf` to avoid marshaling.
- Added `LPad` and `RPad`.
- Added `StripEscapes`.
- Replaced `LStrip` and `RStrip` implementation with a call to `string.TrimStart` and `string.TrimEnd`.
- Added `TrimPrefix` and `TrimSuffix`.
- Renamed `OrdAt` to `UnicodeAt`.
- Added `CountN` and move the `caseSensitive` parameter of `Count` to the end.
- Added `Indent` and `Dedent`.
These callbacks are used for marshaling by callables and generic Godot
collections.
C# generics don't support specialization the way C++ templates do.
I knew NativeAOT could optimize away many type checks when the types
are known at compile time, but I didn't trust the JIT would do as good
a job, so I initially went with cached function pointers.
Well, it turns out the JIT is also very good at optimizing in this
scenario, so I'm changing the methods to do the conversion directly,
rather than returning a function pointer for the conversion.
The methods were moved to `VariantUtils`, and were renamed from
`GetFromVariantCallback/GetToVariantCallback` to `ConvertTo/CreateFrom`.
The new implementation looks like it goes through many `if` checks
at runtime to find the right branch for the type, but in practice it
works pretty much like template specialization. The JIT only generates
code for the relevant branch. Together with inlining, the result is
very close or the same as doing the conversion manually:
```cs
godot_variant variant;
int foo = variant.Int;
int bar = VariantUtils.ConvertTo<int>(variant);
```
If the type is a generic Godot collection, the conversion still goes
through a function pointer call.
The new code happens to be much shorter as well, with the file going
from 1057 lines to 407.
Side note: `Variant.cs` was mistakenly created in the wrong folder,
so I moved it to the `Core` folder.
This allows using generic Godot collections as type arguments for other
generic Godot collections. This also allows generic Godot collections
as parameter or return type in dynamic Callable invocations.
We aim to make the C# API reflection-free, mainly for concerns about
performance, and to be able to target NativeAOT in refletion-free mode,
which reduces the binary size.
One of the main usages of reflection still left was the dynamic
invokation of callable delegates, and for some time I wasn't sure
I would find an alternative solution that I'd be happy with.
The new solution uses trampoline functions to invoke the delegates:
```
static void Trampoline(object delegateObj, NativeVariantPtrArgs args, out godot_variant ret)
{
if (args.Count != 1)
throw new ArgumentException($"Callable expected 1 arguments but received {args.Count}.");
string res = ((Func<int, string>)delegateObj)(
VariantConversionCallbacks.GetToManagedCallback<int>()(args[0])
);
ret = VariantConversionCallbacks.GetToVariantCallback<string>()(res);
}
Callable.CreateWithUnsafeTrampoline((int num) => "Foo" + num, &Trampoline);
```
Of course, this is too much boilerplate for user code. To improve this,
the `Callable.From` methods were added. These are overloads that take
`Action` and `Func` delegates, which covers the most common use cases:
lambdas and method groups:
```
// Lambda
Callable.From((int num) => "Foo" + num);
// Method group
string AppendNum(int num) => "Foo" + num;
Callable.From(AppendNum);
```
Unfortunately, due to limitations in the C# language, implicit
conversions from delegates to `Callable` are not supported.
`Callable.From` does not support custom delegates. These should be
uncommon, but the Godot C# API actually uses them for event signals.
As such, the bindings generator was updated to generate trampoline
functions for event signals. It was also optimized to use `Action`
instead of a custom delegate for parameterless signals, which removes
the need for the trampoline functions for those signals.
The change to reflection-free invokation removes one of the last needs
for `ConvertVariantToManagedObjectOfType`. The only remaining usage is
from calling script constructors with parameters from the engine
(`CreateManagedForGodotObjectScriptInstance`). Once that one is made
reflection-free, `ConvertVariantToManagedObjectOfType` can be removed.
We use collectible AssemblyLoadContexts as that's the only way to allow
reloading assemblies after building. However, collectible assemblies
have some restrictions:
- https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/collectible-assemblies#restrictions-on-collectible-assemblies
Those restrictions can cause issues with third-party code, such as some
mocking libraries.
In order to work around this problem, we're going to load assemblies
as collectible only in Godot editor, and not when running games.
These issues will still exist in the editor, but this will be enough
for some users.
If the delegate target is an Object, the connected signal will be registered in that object instead of the middleman. So when that object is destroyed, the signal will be properly disconnected.
Scripts that are instantiated at some point will always be recreated
if they ever become placeholders to prevent non-tool scripts
instantiated manually by users to become placeholders, if they
do become placeholders due to errors that prevent instantiation
(such as a missing parameterless constructor) these scripts
will also be recreated replacing the temporary placeholder.
If a script is marked as a tool but becomes a non-tool script
in a rebuild, the script will become a placeholder and will
no longer be considered applicable to be replaced by an instance
since the user explicitly removed the Tool attribute.
Vector4 and Vector4i were implemented incorrectly in godot_variant.
They were also missing their respective Variant conversion callbacks
(used for generic collections).
Took the chance to remove unnecessary native calls for creating
Variant from Vector4, as now it can be done from C# (which is faster).
- Replace `IndexOutOfRangeException` with `ArgumentOutOfRangeException`
- Replace `Exception` with a more specific exception
- Add the parameter name to argument exception
- Update documentation for methods that throw exceptions
- Use `StringBuilder` to build exception messages
- Ensure exception messages end with a period
- Remove event as a valid target of `SignalAttribute`
- Stop adding the `[Signal]` attribute to events in bindings_generator
- Make bindings_generator use the `EventHandler` suffix to be consistent with the C# source generator
- Remove obsolete comment about the signal's delegate name
- MustBeVariant attribute can be used to enforce that generic types must
be a marshable from/to Variant.
- Also renames all diagnostic ids to be valid unicode identifiers.
Node methods in C# extended to use generics
now have the optional parameter `includeInternal`
like their non-generic equivalents.
Also, fixed a typo in the `Node.get_child` documentation.
- In cases where both `Xform`/`XformInv` and the `*` operator were
implemented the `Xform`/`XformInv` methods were removed in favor of the
`*` operator.
- In cases where the `Xform`/`XformInv` existed but not the `*` operator,
the `Xform`/`XformInv` methods were replaced with the `*` operator.
- In cases where no method existed, a new `*` operator has been
implemented to support the same operations that are supported in GDScript.
- Fixes the `Transform.Xform` and `Transform.XformInv` with `Rect2`
implementation to use a zero `Rect2` size to start expanding from
(which is how it's implemented in C++).
- Moves interop functions to UnmanagedCallbacks struct that
contains the function pointers and is passed to C#.
- Implements UnmanagedCallbacksGenerator, a C# source generator that
generates the UnmanagedCallbacks struct in C# and the body for the
NativeFuncs methods (their implementation just calls the function
pointer in the UnmanagedCallbacks). The generated methods are needed
because .NET pins byref parameters of native calls, even if they are
'ref struct's, which don't need pinning. The generated methods use
`Unsafe.AsPointer` so that we can benefit from byref parameters
without suffering overhead of pinning.
Co-authored-by: Raul Santos <raulsntos@gmail.com>
We were using it to workaround a limitation of `Unsafe.AsPointer` and
`ref struct`s. However, we can get the same result with some tricks,
since we have control over the declaration of these structs.
This new version does not support the following type arguments:
- Generic types
- Array of Godot Object (Godot.Object[]) or derived types
The new implementation uses delegate pointers to call the Variant
conversion methods. We do type checking only once in the static
constructor to get the conversion delegates.
Now, we no longer need to do type checking every time, and we no
longer have to box value types.
This is the best implementation I could come up with, as C# generics
don't support anything similar to C++ template specializations.
- Array and Dictionary now store `Variant` instead of `System.Object`.
- Removed generic Array and Dictionary.
They cause too much issues, heavily relying on reflection and
very limited by the lack of a generic specialization.
- Removed support for non-Godot collections.
Support for them also relied heavily on reflection for marshaling.
Support for them will likely be re-introduced in the future, but
it will have to rely on source generators instead of reflection.
- Reduced our use of reflection.
The remaining usages will be moved to source generators soon.
The only usage that I'm not sure yet how to replace is dynamic
invocation of delegates.
Changed the signal declaration signal to:
```
// The following generates a MySignal event
[Signal] public delegate void MySignalEventHandler(int param);
```
In the past, the Godot editor distributed the API assemblies and
copied them to project directories for projects to reference them.
This changed with the move to .NET 5/6. Godot no longer copies the
assemblies to project directories. However, the project Sdk still
tried to reference them from the same location.
From now on, the GodotSharp API is distributed as a NuGet package,
which the Sdk can reference.
Added an option to `build_assemblies.py` to copy all Godot NuGet
packages to an existing local NuGet source. This will be needed
during development, while packages are not published to a remote
NuGet repository.
This option also makes sure to remove packages of the same version
installed (~/.nuget/packages). Very useful during development, when
packages change, to make sure the package being used by a project is
the same we just built and not one from a previous build.
A local NuGet source can be created like this:
```
mkdir ~/MyLocalNuGetSource && \
dotnet nuget add source ~/MyLocalNuGetSource/ -n MyLocalNuGetSource
```
Previously, we added source generators for invoking/accessing methods,
properties and fields in scripts. This freed us from the overhead of
reflection. However, the generated code still used our dynamic
marshaling functions, which do runtime type checking and box value
types.
This commit changes the bindings and source generators to include
'static' marshaling. Based on the types known at compile time, now
we generate the appropriate marshaling call for each type.
Previously, for each scripts class instance that was created from code
rather than by the engine, we were constructing, configuring and
assigning a new CSharpScript.
This has changed now and we make sure there's only one CSharpScript
associated to each type.
The editor no longer needs to create temporary instances to get the
default values. The initializer values of the exported properties are
still evaluated at runtime. For example, in the following example,
`GetInitialValue()` will be called when first looks for default values:
```
[Export] int MyValue = GetInitialValue();
```
Exporting fields with a non-supported type now results in a compiler
error rather than a runtime error when the script is used.
This base implementation is still very barebones but it defines the path
for how exporting will work (at least when embedding the .NET runtime).
Many manual steps are still needed, which should be automatized in the
future. For example, in addition to the API assemblies, now you also
need to copy the GodotPlugins assembly to each game project.
Finalizers are longer guaranteed to be called on exit now that
we switched to .NET Core. This results in native instances leaking.
The only solution I can think of so far is to keep a list of all
instances alive to dispose when the AssemblyLoadContext.Unloading
event is raised.
This replaces the way we invoke methods and set/get properties.
This first iteration rids us of runtime type checking in those
cases, as it's now done at compile time.
Later it will also stop needing the use of reflection. After that,
we will only depend on reflection for generic Godot Array and
Dictionary. We're stuck with reflection in generic collections
for now as C# doesn't support generic/template specialization.
This is only the initial implementation. Further iterations are
coming, specially once we switch to the native extension system
which completely changes the way members are accessed/invoked.
For example, with the native extension system we will likely need
to create `UnmanagedCallersOnly` invoke wrapper methods and return
function pointers to the engine.
Other kind of members, like event signals will be receiving the
same treatment in the future.
We're targeting .NET 5 for now to make development easier while
.NET 6 is not yet released.
TEMPORARY REGRESSIONS
---------------------
Assembly unloading is not implemented yet. As such, many Godot
resources are leaked at exit. This will be re-implemented later
together with assembly hot-reloading.
The main focus here was to remove the majority of code that relied on
Mono's embedding APIs, specially the reflection APIs. The embedding
APIs we still use are the bare minimum we need for things to work.
A lot of code was moved to C#. We no longer deal with any managed
objects (`MonoObject*`, and such) in native code, and all marshaling
is done in C#.
The reason for restructuring the code and move away from embedding APIs
is that once we move to .NET Core, we will be limited by the much more
minimal .NET hosting.
PERFORMANCE REGRESSIONS
-----------------------
Some parts of the code were written with little to no concern about
performance. This includes code that calls into script methods and
accesses script fields, properties and events.
The reason for this is that all of that will be moved to source
generators, so any work prior to that would be a waste of time.
DISABLED FEATURES
-----------------
Some code was removed as it no longer makes sense (or won't make sense
in the future).
Other parts were commented out with `#if 0`s and TODO warnings because
it doesn't make much sense to work on them yet as those parts will
change heavily when we switch to .NET Core but also when we start
introducing source generators.
As such, the following features were disabled temporarily:
- Assembly-reloading (will be done with ALCs in .NET Core).
- Properties/fields exports and script method listing (will be
handled by source generators in the future).
- Exception logging in the editor and stack info for errors.
- Exporting games.
- Building of C# projects. We no longer copy the Godot API assemblies
to the project directory, so MSBuild won't be able to find them. The
idea is to turn them into NuGet packages in the future, which could
also be obtained from local NuGet sources during development.
We are moving in the direction of no dynamic code generation,
so this is no longer desired.
The feature can still be easily implemented by any project that
still want it.
We will be progressively moving most code to C#.
The plan is to only use Mono's embedding APIs to set things at launch.
This will make it much easier to later support CoreCLR too which
doesn't have rich embedding APIs.
Additionally the code in C# is more maintainable and makes it easier
to implement new features, e.g.: runtime codegen which we could use to
avoid using reflection for marshaling everytime a field, property or
method is accessed.
SOME NOTES ON INTEROP
We make the same assumptions as GDNative about the size of the Godot
structures we use. We take it a bit further by also assuming the layout
of fields in some cases, which is riskier but let's us squeeze out some
performance by avoiding unnecessary managed to native calls.
Code that deals with native structs is less safe than before as there's
no RAII and copy constructors in C#. It's like using the GDNative C API
directly. One has to take special care to free values they own.
Perhaps we could use roslyn analyzers to check this, but I don't know
any that uses attributes to determine what's owned or borrowed.
As to why we maily use pointers for native structs instead of ref/out:
- AFAIK (and confirmed with a benchmark) ref/out are pinned
during P/Invoke calls and that has a cost.
- Native struct fields can't be ref/out in the first place.
- A `using` local can't be passed as ref/out, only `in`. Calling a
method or property on an `in` value makes a silent copy, so we want
to avoid `in`.
REGARDING THE BUILD SYSTEM
There's no longer a `mono_glue=yes/no` SCons options. We no longer
need to build with `mono_glue=no`, generate the glue and then build
again with `mono_glue=yes`. We build only once and generate the glue
(which is in C# now).
However, SCons no longer builds the C# projects for us. Instead one
must run `build_assemblies.py`, e.g.:
```sh
%godot_src_root%/modules/mono/build_scripts/build_assemblies.py \
--godot-output-dir=%godot_src_root%/bin \
--godot-target=release_debug`
```
We could turn this into a custom build target, but I don't know how
to do that with SCons (it's possible with Meson).
OTHER NOTES
Most of the moved code doesn't follow the C# naming convention and
still has the word Mono in the names despite no longer dealing with
Mono's embedding APIs. This is just temporary while transitioning,
to make it easier to understand what was moved where.
- RPC configurations are now dictionaries.
- Script.get_rpc_methods renamed to Script.get_rpc_config.
- Node.rpc[_id] and Callable.rpc now return an Error.
- Refactor MultiplayerAPI to allow extension.
- New MultiplayerAPI.rpc method with Array argument (for scripts).
- Move the default MultiplayerAPI implementation to a module.
Comments have been added for the following:
modules/mono/glue/GodotSharp/GodotSharp/Core/GodotTaskScheduler.cs
modules/mono/glue/GodotSharp/GodotSharp/Core/GodotSynchronizationContext.cs
modules/mono/glue/GodotSharp/GodotSharp/Core/Attributes/AssemblyHasScriptsAttribute.cs
modules/mono/glue/GodotSharp/GodotSharp/Core/Attributes/DisableGodotGeneratorsAttribute.cs
modules/mono/glue/GodotSharp/GodotSharp/Core/Attributes/ExportAttribute.cs
modules/mono/glue/GodotSharp/GodotSharp/Core/Attributes/GodotMethodAttribute.cs
modules/mono/glue/GodotSharp/GodotSharp/Core/Attributes/ScriptPathAttribute.cs
- Add support for explicit values in properties using `PROPERTY_HINT_FLAGS`
that works the same way it does for enums.
- Fix enums and flags in VisualScriptEditor (it wasn't considering the
explicit value).
- Use `PROPERTY_HINT_FLAGS` for C# enums with the FlagsAttribute instead
of `PROPERTY_HINT_ENUM`.
To keep consistency with GDScript, the method `Quaternion()` is renamed
`GetQuaternion()`, and made `internal` so it's not exposed to scripting.
The documentation references are also fixed.
Also, the methods `GetQuaternion()` and `GetRotationQuaternion()` are
moved below `GetEuler()` to follow alphabetic order.
- Adds documentation to almost every class and member in `GodotSharp`
- Fixes some old documentation to more closely follow the XML comments convention
This commit completely removes the RPC_MODE_MASTER ("master" keyword),
and renames the RPC_MODE_PUPPET to RPC_MODE_AUTHORITY ("auth" keyword).
This commit also renames the "Node.[get|set]_network_master" methods to
"Node.[get|set]_network_authority".
This commit also renames the RPC_MODE_REMOTE constant to RPC_MODE_ANY.
RPC_MODE_MASTER in Godot 3.x meant that a given RPC would be callable by
any puppet peer on the master, while RPC_MODE_PUPPET meant that it would
be callable by the master on any puppet.
Beside proving to be very confusing to the user (referring to where it
could be called instead of who can call it) the RPC_MODE_MASTER is quite
useless. It is almost the same as RPC_MODE_REMOTE (anyone can call) with
the exception that the network master cannot. While this could be useful
to check in some case, in such a function you would anyway need to check
in code who is the caller via get_rpc_sender_id(), so adding the check
there for those rare cases does not warrants a dedicated mode.
Follow up to d9d77291bc.
Renames `String.Extension` -> `String.GetExtension()` and
`String.BaseName()` -> `String.GetBaseName()`.
This makes those methods more consistent with GDScript and with
the `GetBaseDir` method.
- Implements new `KeyValuePairs` and `KeyValuePairAt` internal calls
to get the `key` and the `value` in one call.
- Caches the `DictionaryEntry` to reuse properties without repeating
internal calls.