Contains global variables accessible from everywhere. Use [method get_setting], [method set_setting] or [method has_setting] to access them. Variables stored in [code]project.godot[/code] are also loaded into ProjectSettings, making this object very useful for reading custom game configuration options.
When naming a Project Settings property, use the full path to the setting including the category. For example, [code]"application/config/name"[/code] for the project name. Category and property names can be viewed in the Project Settings dialog.
[b]Feature tags:[/b] Project settings can be overridden for specific platforms and configurations (debug, release, ...) using [url=$DOCS_URL/tutorials/export/feature_tags.html]feature tags[/url].
[b]Overriding:[/b] Any project setting can be overridden by creating a file named [code]override.cfg[/code] in the project's root directory. This can also be used in exported projects by placing this file in the same directory as the project binary. Overriding will still take the base project settings' [url=$DOCS_URL/tutorials/export/feature_tags.html]feature tags[/url] in account. Therefore, make sure to [i]also[/i] override the setting with the desired feature tags if you want them to override base project settings on all platforms and configurations.
Returns the absolute, native OS path corresponding to the localized [param path] (starting with [code]res://[/code] or [code]user://[/code]). The returned path will vary depending on the operating system and user preferences. See [url=$DOCS_URL/tutorials/io/data_paths.html]File paths in Godot projects[/url] to see what those paths convert to. See also [method localize_path].
[b]Note:[/b] [method globalize_path] with [code]res://[/code] will not work in an exported project. Instead, prepend the executable's base directory to the path when running from an exported project:
[codeblock]
var path = ""
if OS.has_feature("editor"):
# Running from an editor binary.
# `path` will contain the absolute path to `hello.txt` located in the project root.
Loads the contents of the .pck or .zip file specified by [param pack] into the resource filesystem ([code]res://[/code]). Returns [code]true[/code] on success.
[b]Note:[/b] If a file from [param pack] shares the same path as a file already in the resource filesystem, any attempts to load that file will use the file from [param pack] unless [param replace_files] is set to [code]false[/code].
[b]Note:[/b] The optional [param offset] parameter can be used to specify the offset in bytes to the start of the resource pack. This is only supported for .pck files.
Returns the localized path (starting with [code]res://[/code]) corresponding to the absolute, native OS [param path]. See also [method globalize_path].
[b]Note:[/b] This method is intended to be used by editor plugins, as modified [ProjectSettings] can't be loaded back in the running app. If you want to change project settings in exported projects, use [method save_custom] to save [code]override.cfg[/code] file.
Saves the configuration to a custom file. The file extension must be [code].godot[/code] (to save in text-based [ConfigFile] format) or [code].binary[/code] (to save in binary format). You can also save [code]override.cfg[/code] file, which is also text, but can be used in exported projects unlike other formats.
If [code]true[/code], scale the boot splash image to the full window size (preserving the aspect ratio) when the engine starts. If [code]false[/code], the engine will leave it at the default pixel size.
If [code]true[/code], displays the image specified in [member application/boot_splash/image] when the engine starts. If [code]false[/code], only displays the plain color specified in [member application/boot_splash/bg_color].
If [code]true[/code], applies linear filtering when scaling the image (recommended for high-resolution artwork). If [code]false[/code], uses nearest-neighbor interpolation (recommended for pixel art).
This user directory is used for storing persistent data ([code]user://[/code] filesystem). If left empty, [code]user://[/code] resolves to a project-specific folder in Godot's own configuration folder (see [method OS.get_user_data_dir]). If a custom directory name is defined, this name will be used instead and appended to the system-specific user data directory (same parent folder as the Godot configuration folder documented in [method OS.get_user_data_dir]).
Icon set in [code].icns[/code] format used on macOS to set the game's icon. This is done automatically on start by calling [method DisplayServer.set_native_icon].
The project's name. It is used both by the Project Manager and by exporters. The project name can be translated by translating its value in localization files. The window title will be set to match the project name automatically on startup.
[b]Note:[/b] Changing this value will also change the user data folder's path if [member application/config/use_custom_user_dir] is [code]false[/code]. After renaming the project, you will no longer be able to access existing data in [code]user://[/code] unless you rename the old folder to match the new project name. See [url=$DOCS_URL/tutorials/io/data_paths.html]Data paths[/url] in the documentation for more information.
Specifies a file to override project settings. For example: [code]user://custom_settings.cfg[/code]. See "Overriding" in the [ProjectSettings] class description at the top for more information.
[b]Note:[/b] Regardless of this setting's value, [code]res://override.cfg[/code] will still be read to override the project settings.
If [code]true[/code], the project will save user data to its own user directory (see [member application/config/custom_user_dir_name]). This setting is only effective on desktop platforms. A name must be set in the [member application/config/custom_user_dir_name] setting for this to take effect. If [code]false[/code], the project will save user data to [code](OS user data directory)/Godot/app_userdata/(project name)[/code].
If [code]true[/code], the project will use a hidden directory ([code].godot[/code]) for storing project-specific data (metadata, shader cache, etc.).
If [code]false[/code], a non-hidden directory ([code]godot[/code]) will be used instead.
[b]Note:[/b] Restart the application after changing this setting.
[b]Note:[/b] Changing this value can help on platforms or with third-party tools where hidden directory patterns are disallowed. Only modify this setting if you know that your environment requires it, as changing the default can impact compatibility with some external tools or plugins which expect the default [code].godot[/code] folder.
Icon set in [code].ico[/code] format used on Windows to set the game's icon. This is done automatically on start by calling [method DisplayServer.set_native_icon].
If [code]true[/code], disables printing to standard error. If [code]true[/code], this also hides error and warning messages printed by [method @GlobalScope.push_error] and [method @GlobalScope.push_warning]. See also [member application/run/disable_stdout].
Changes to this setting will only be applied upon restarting the application.
If [code]true[/code], disables printing to standard output. This is equivalent to starting the editor or project with the [code]--quiet[/code] command line argument. See also [member application/run/disable_stderr].
Changes to this setting will only be applied upon restarting the application.
If [code]true[/code], flushes the standard output stream every time a line is printed. This affects both terminal logging and file logging.
When running a project, this setting must be enabled if you want logs to be collected by service managers such as systemd/journalctl. This setting is disabled by default on release builds, since flushing on every printed line will negatively affect performance if lots of lines are printed in a rapid succession. Also, if this setting is enabled, logged files will still be written successfully if the application crashes or is otherwise killed by the user (without being closed "normally").
[b]Note:[/b] Regardless of this setting, the standard error stream ([code]stderr[/code]) is always flushed when a line is printed to it.
If [code]true[/code], enables low-processor usage mode. This setting only works on desktop platforms. The screen is not redrawn if nothing changes visually. This is meant for writing applications and editors, but is pretty useless (and can hurt performance) in most games.
Audio buses will disable automatically when sound goes below a given dB threshold for a given time. This saves CPU as effects assigned to that bus will no longer do any processing.
Audio buses will disable automatically when sound goes below a given dB threshold for a given time. This saves CPU as effects assigned to that bus will no longer do any processing.
Specifies the audio driver to use. This setting is platform-dependent as each platform supports different audio drivers. If left empty, the default audio driver will be used.
The [code]Dummy[/code] audio driver disables all audio playback and recording, which is useful for non-game applications as it reduces CPU usage. It also prevents the engine from appearing as an application playing audio in the OS' audio mixer.
[b]Note:[/b] The driver in use can be overridden at runtime via the [code]--audio-driver[/code] command line argument.
[b]Note:[/b] If the operating system blocks access to audio input devices (due to the user's privacy settings), audio capture will only return silence. On Windows 10 and later, make sure that apps are allowed to access the microphone in the OS' privacy settings.
Safer override for [member audio/driver/mix_rate] in the Web platform. Here [code]0[/code] means "let the browser choose" (since some browsers do not like forcing the mix rate).
Specifies the preferred output latency in milliseconds for audio. Lower values will result in lower audio latency at the cost of increased CPU usage. Low values may result in audible cracking on slower hardware.
Audio output latency may be constrained by the host operating system and audio hardware drivers. If the host can not provide the specified audio output latency then Godot will attempt to use the nearest latency allowed by the host. As such you should always use [method AudioServer.get_output_latency] to determine the actual audio output latency.
[b]Note:[/b] This setting is ignored on all versions of Windows prior to Windows 10.
The base strength of the panning effect for all AudioStreamPlayer2D nodes. The panning strength can be further scaled on each Node using [member AudioStreamPlayer2D.panning_strength].
The base strength of the panning effect for all AudioStreamPlayer3D nodes. The panning strength can be further scaled on each Node using [member AudioStreamPlayer3D.panning_strength].
The default compression level for gzip. Affects compressed scenes and resources. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level. [code]-1[/code] uses the default gzip compression level, which is identical to [code]6[/code] but could change in the future due to underlying zlib updates.
The default compression level for Zlib. Affects compressed scenes and resources. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level. [code]-1[/code] uses the default gzip compression level, which is identical to [code]6[/code] but could change in the future due to underlying zlib updates.
The default compression level for Zstandard. Affects compressed scenes and resources. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level.
Largest size limit (in power of 2) allowed when compressing using long-distance matching with Zstandard. Higher values can result in better compression, but will require more memory when compressing and decompressing.
If [code]true[/code], enables specific GDScript warnings (see [code]debug/gdscript/warnings/*[/code] settings). If [code]false[/code], disables all GDScript warnings.
If [code]enabled[/code], prints a warning or an error when passing a floating-point value to a function that expects an integer (it will be converted and lose precision).
If [code]enabled[/code], prints a warning or an error when calling a function without using its return value (by assigning it to a variable or using it as a function argument). Such return values are sometimes used to denote possible errors using the [enum Error] enum.
If [code]enabled[/code], prints a warning or an error when defining a local or subclass member variable, signal, or enum that would have the same name as a built-in function or global class name, which possibly shadow it.
If [code]enabled[/code], prints a warning or an error when defining a local or subclass member variable that would shadow a variable at an upper level (such as a member variable).
If [code]enabled[/code], prints a warning or an error when calling an expression that has no effect on the surrounding code, such as writing [code]2 + 2[/code] as a statement.
If [code]enabled[/code], prints a warning or an error when calling a ternary expression that has no effect on the surrounding code, such as writing [code]42 if active else 0[/code] as a statement.
If [code]enabled[/code], prints a warning or an error when assigning a variable using an assignment operator like [code]+=[/code] if the variable wasn't previously assigned.
If [code]enabled[/code], prints a warning or an error when unreachable code is detected (such as after a [code]return[/code] statement that will always be executed).
<membername="debug/settings/crash_handler/message"type="String"setter=""getter=""default=""Please include this when reporting the bug to the project developer."">
Message to be displayed before the backtrace when the engine crashes. By default, this message is only used in exported projects due to the editor-only override applied to this setting.
</member>
<membername="debug/settings/crash_handler/message.editor"type="String"setter=""getter=""default=""Please include this when reporting the bug on: https://github.com/godotengine/godot/issues"">
Editor-only override for [member debug/settings/crash_handler/message]. Does not affect exported projects in debug or release mode.
If [member display/window/vsync/vsync_mode] is set to [code]Enabled[/code] or [code]Adaptive[/code], it takes precedence and the forced FPS number cannot exceed the monitor's refresh rate. See also [member physics/common/physics_ticks_per_second].
This setting is therefore mostly relevant for lowering the maximum FPS below VSync, e.g. to perform non-real-time rendering of static frames, or test the project under lag conditions.
Print more information to standard output when running. It displays information such as memory leaks, which scenes and resources are being loaded, etc. This can also be enabled using the [code]--verbose[/code] or [code]-v[/code] command line argument, even on an exported project. See also [method OS.is_stdout_verbose] and [method @GlobalScope.print_verbose].
If [code]true[/code], allows HiDPI display on Windows, macOS, Android, iOS and Web. If [code]false[/code], the platform's low-DPI fallback will be used on HiDPI displays, which causes the window to be displayed in a blurry or pixelated manner (and can cause various window management bugs). Therefore, it is recommended to make your project scale to [url=$DOCS_URL/tutorials/viewports/multiple_resolutions.html]multiple resolutions[/url] instead of disabling this setting.
[b]Note:[/b] When set to a portrait orientation, this project setting does not flip the project resolution's width and height automatically. Instead, you have to set [member display/window/size/viewport_width] and [member display/window/size/viewport_height] accordingly.
If [code]true[/code], allows per-pixel transparency for the window background. This affects performance, so leave it on [code]false[/code] unless you need it.
Sets the main window to full screen when the project starts. Note that this is not [i]exclusive[/i] fullscreen. On Windows and Linux, a borderless window is used to emulate fullscreen. On macOS, a new desktop is used to display the running project.
Regardless of the platform, enabling fullscreen will change the window size to match the monitor's size. Therefore, make sure your project supports [url=$DOCS_URL/tutorials/rendering/multiple_resolutions.html]multiple resolutions[/url] when enabling fullscreen mode.
Sets the game's main viewport height. On desktop platforms, this is also the initial window height, represented by an indigo-colored rectangle in the 2D editor. Stretch mode settings also use this as a reference when using the [code]canvas_items[/code] or [code]viewport[/code] stretch modes. See also [member display/window/size/viewport_width], [member display/window/size/window_width_override] and [member display/window/size/window_height_override].
Sets the game's main viewport width. On desktop platforms, this is also the initial window width, represented by an indigo-colored rectangle in the 2D editor. Stretch mode settings also use this as a reference when using the [code]canvas_items[/code] or [code]viewport[/code] stretch modes. See also [member display/window/size/viewport_height], [member display/window/size/window_width_override] and [member display/window/size/window_height_override].
On desktop platforms, overrides the game's initial window height. See also [member display/window/size/window_width_override], [member display/window/size/viewport_width] and [member display/window/size/viewport_height].
[b]Note:[/b] By default, or when set to [code]0[/code], the initial window height is the [member display/window/size/viewport_height]. This setting is ignored on iOS, Android, and Web.
On desktop platforms, overrides the game's initial window width. See also [member display/window/size/window_height_override], [member display/window/size/viewport_width] and [member display/window/size/viewport_height].
[b]Note:[/b] By default, or when set to [code]0[/code], the initial window width is the viewport [member display/window/size/viewport_width]. This setting is ignored on iOS, Android, and Web.
If [code]true[/code], requests V-Sync to be disabled when writing a movie (similar to setting [member display/window/vsync/vsync_mode] to [b]Disabled[/b]). This can speed up video writing if the hardware is fast enough to render, encode and save the video at a framerate higher than the monitor's refresh rate.
[b]Note:[/b] [member editor/movie_writer/disable_vsync] has no effect if the operating system or graphics driver forces V-Sync with no way for applications to disable it.
The number of frames per second to record in the video when writing a movie. Simulation speed will adjust to always match the specified framerate, which means the engine will appear to run slower at higher [member editor/movie_writer/fps] values. Certain FPS values will require you to adjust [member editor/movie_writer/mix_rate] to prevent audio from desynchronizing over time.
The audio mix rate to use in the recorded audio when writing a movie (in Hz). This can be different from [member audio/driver/mix_rate], but this value must be divisible by [member editor/movie_writer/fps] to prevent audio from desynchronizing over time.
The JPEG quality to use when writing a video to an AVI file, between [code]0.01[/code] and [code]1.0[/code] (inclusive). Higher [code]quality[/code] values result in better-looking output at the cost of larger file sizes. Recommended [code]quality[/code] values are between [code]0.75[/code] and [code]0.9[/code]. Even at quality [code]1.0[/code], JPEG compression remains lossy.
- AVI container with MJPEG for video and uncompressed audio ([code].avi[/code] file extension). Lossy compression, medium file sizes, fast encoding. The lossy compression quality can be adjusted by changing [member ProjectSettings.editor/movie_writer/mjpeg_quality]. The resulting file can be viewed in most video players, but it must be converted to another format for viewing on the web or by Godot with [VideoStreamPlayer]. MJPEG does not support transparency. AVI output is currently limited to a file of 4 GB in size at most.
- PNG image sequence for video and WAV for audio ([code].png[/code] file extension). Lossless compression, large file sizes, slow encoding. Designed to be encoded to a video file with another tool such as [url=https://ffmpeg.org/]FFmpeg[/url] after recording. Transparency is currently not supported, even if the root viewport is set to be transparent.
If you need to encode to a different format or pipe a stream through third-party software, you can extend this [MovieWriter] class to create your own movie writers.
When using PNG output, the frame number will be appended at the end of the file name. It starts from 0 and is padded with 8 digits to ensure correct sorting and easier processing. For example, if the output path is [code]/tmp/hello.png[/code], the first two frames will be [code]/tmp/hello00000000.png[/code] and [code]/tmp/hello00000001.png[/code]. The audio will be saved at [code]/tmp/hello.wav[/code].
The command-line arguments to append to Godot's own command line when running the project. This doesn't affect the editor itself.
It is possible to make another executable run Godot by using the [code]%command%[/code] placeholder. The placeholder will be replaced with Godot's own command line. Program-specific arguments should be placed [i]before[/i] the placeholder, whereas Godot-specific arguments should be placed [i]after[/i] the placeholder.
For example, this can be used to force the project to run on the dedicated GPU in a NVIDIA Optimus system on Linux:
Text-based file extensions to include in the script editor's "Find in Files" feature. You can add e.g. [code]tscn[/code] if you wish to also parse your scene files, especially if you use built-in scripts which are serialized in the scene files.
Search path for project-specific script templates. Godot will search for script templates both in the editor-specific path and in this project-specific path.
This requires configuring a path to a Blender executable in the editor settings at [code]filesystem/import/blender/blender3_path[/code]. Blender 3.0 or later is required.
If set to [code]true[/code], the default font will have mipmaps generated. This prevents text from looking grainy when a [Control] is scaled down, or when a [Label3D] is viewed from a long distance (if [member Label3D.texture_filter] is set to a mode that displays mipmaps).
Enabling [member gui/theme/default_font_generate_mipmaps] increases font generation time and memory usage. Only enable this setting if you actually need it.
[b]Note:[/b] This setting does not affect custom [Font]s used within the project.
If set to [code]true[/code], the default font will use multichannel signed distance field (MSDF) for crisp rendering at any size. Since this approach does not rely on rasterizing the font every time its size changes, this allows for resizing the font in real-time without any performance penalty. Text will also not look grainy for [Control]s that are scaled down (or for [Label3D]s viewed from a long distance).
MSDF font rendering can be combined with [member gui/theme/default_font_generate_mipmaps] to further improve font rendering quality when scaled down.
[b]Note:[/b] This setting does not affect custom [Font]s used within the project.
Default [InputEventAction] to confirm a focused button, menu or list item, or validate input.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to discard a modal or pending input.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move down in the UI.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go to the end position of a [Control] (e.g. last item in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_END] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to focus the next [Control] in the scene. The focus behavior can be configured via [member Control.focus_next].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to focus the previous [Control] in the scene. The focus behavior can be configured via [member Control.focus_previous].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go to the start position of a [Control] (e.g. first item in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_HOME] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move left in the UI.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go down a page in a [Control] (e.g. in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_PAGEDOWN] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to go up a page in a [Control] (e.g. in an [ItemList] or a [Tree]), matching the behavior of [constant KEY_PAGEUP] on typical desktop UI systems.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to move right in the UI.
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
Default [InputEventAction] to select an item in a [Control] (e.g. in an [ItemList] or a [Tree]).
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
If no selection is currently active, selects the word currently under the caret in text fields. If a selection is currently active, deselects the current selection.
[b]Note:[/b] Currently, this is only implemented in [TextEdit], not [LineEdit].
[b]Note:[/b] Default [code]ui_*[/code] actions cannot be removed as they are necessary for the internal logic of several [Control]s. The events assigned to the action can however be modified.
If [code]true[/code], key/touch/joystick events will be flushed just before every idle and physics frame.
If [code]false[/code], such events will be flushed only once per process frame, between iterations of the engine.
Enabling this can greatly improve the responsiveness to input, specially in devices that need to run multiple physics frames per visible (process) frame, because they can't run at the target frame rate.
[b]Note:[/b] Currently implemented only on Android.
If [code]true[/code], text server break iteration rule sets, dictionaries and other optional data are included in the exported project.
[b]Note:[/b] "ICU / HarfBuzz / Graphite" text server data includes dictionaries for Burmese, Chinese, Japanese, Khmer, Lao and Thai as well as Unicode Standard Annex #29 and Unicode Standard Annex #14 word and line breaking rules. Data is about 4 MB large.
[b]Note:[/b] "Fallback" text server does not use additional data.
The expansion ratio to use during pseudolocalization. A value of [code]0.3[/code] is sufficient for most practical purposes, and will increase the length of each string by 30%.
If [code]true[/code], emulate bidirectional (right-to-left) text when pseudolocalization is enabled. This can be used to spot issues with RTL layout and UI mirroring that will crop up if the project is localized to RTL languages such as Arabic or Hebrew.
Skip placeholders for string formatting like [code]%s[/code] or [code]%f[/code] during pseudolocalization. Useful to identify strings which need additional control characters to display correctly.
If [code]true[/code], enables pseudolocalization for the project. This can be used to spot untranslatable strings or layout issues that may occur once the project is localized to languages that have longer strings than the source language.
[b]Note:[/b] This property is only read when the project starts. To toggle pseudolocalization at run-time, use [member TranslationServer.pseudolocalization_enabled] instead.
"ICU / HarfBuzz / Graphite" is the most advanced text driver, supporting right-to-left typesetting and complex scripts (for languages like Arabic, Hebrew, etc). The "Fallback" text driver does not support right-to-left typesetting and complex scripts.
[b]Note:[/b] The driver in use can be overridden at runtime via the [code]--text-driver[/code] command line argument.
[b]Note:[/b] There is an additional [code]Dummy[/code] text driver available, which disables all text rendering and font-related functionality. This driver is not listed in the project settings, but it can be enabled when running the editor or project using the [code]--text-driver Dummy[/code] command line argument.
This is used by servers when used in multi-threading mode (servers and visual). RIDs are preallocated to avoid stalling the server requesting them on threads. If servers get stalled too often when loading resources in a thread, increase this number.
Maximum number of characters allowed to send as output from the debugger. Over this value, content is dropped. This helps not to stall the debugger connection.
Default size of packet peer stream for deserializing Godot data (in bytes, specified as a power of two). The default value [code]16[/code] is equal to 65,536 bytes. Over this size, data is dropped.
The CA certificates bundle to use for TLS connections. If this is set to a non-empty value, this will [i]override[/i] Godot's default [url=https://github.com/godotengine/godot/blob/master/thirdparty/certs/ca-certificates.crt]Mozilla certificate bundle[/url]. If left empty, the default certificate bundle will be used.
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
If [code]true[/code], the 2D physics server runs on a separate thread, making better use of multi-core CPUs. If [code]false[/code], the 2D physics server runs on the main thread. Running the physics server on a separate thread can increase performance, but restricts API access to only physics process.
Threshold angular velocity under which a 2D physics body will be considered inactive. See [constant PhysicsServer2D.SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD].
Threshold linear velocity under which a 2D physics body will be considered inactive. See [constant PhysicsServer2D.SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD].
Maximum distance a shape can penetrate another shape before it is considered a collision. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_MAX_ALLOWED_PENETRATION].
Maximum distance a shape can be from another before they are considered separated and the contact is discarded. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_MAX_SEPARATION].
Maximum distance a pair of bodies has to move before their collision status has to be recalculated. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_RECYCLE_RADIUS].
Default solver bias for all physics constraints. Defines how much bodies react to enforce constraints. See [constant PhysicsServer2D.SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS].
Individual constraints can have a specific bias value (see [member Joint2D.bias]).
Default solver bias for all physics contacts. Defines how much bodies react to enforce contact separation. See [constant PhysicsServer2D.SPACE_PARAM_CONTACT_DEFAULT_BIAS].
Individual shapes can have a specific bias value (see [member Shape2D.custom_solver_bias]).
Number of solver iterations for all contacts and constraints. The greater the number of iterations, the more accurate the collisions will be. However, a greater number of iterations requires more CPU power, which can decrease performance. See [constant PhysicsServer2D.SPACE_PARAM_SOLVER_ITERATIONS].
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
[b]Note:[/b] Good values are in the range [code]0[/code] to [code]1[/code]. At value [code]0[/code] objects will keep moving with the same velocity. Values greater than [code]1[/code] will aim to reduce the velocity to [code]0[/code] in less than a second e.g. a value of [code]2[/code] will aim to reduce the velocity to [code]0[/code] in half a second. A value equal to or greater than the physics frame rate ([member ProjectSettings.physics/common/physics_ticks_per_second], [code]60[/code] by default) will bring the object to a stop in one iteration.
If [code]true[/code], the 3D physics server runs on a separate thread, making better use of multi-core CPUs. If [code]false[/code], the 3D physics server runs on the main thread. Running the physics server on a separate thread can increase performance, but restricts API access to only physics process.
Threshold angular velocity under which a 3D physics body will be considered inactive. See [constant PhysicsServer3D.SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD].
Threshold linear velocity under which a 3D physics body will be considered inactive. See [constant PhysicsServer3D.SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD].
Maximum distance a shape can penetrate another shape before it is considered a collision. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_MAX_ALLOWED_PENETRATION].
Maximum distance a shape can be from another before they are considered separated and the contact is discarded. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_MAX_SEPARATION].
Maximum distance a pair of bodies has to move before their collision status has to be recalculated. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_RECYCLE_RADIUS].
Default solver bias for all physics contacts. Defines how much bodies react to enforce contact separation. See [constant PhysicsServer3D.SPACE_PARAM_CONTACT_DEFAULT_BIAS].
Individual shapes can have a specific bias value (see [member Shape3D.custom_solver_bias]).
Number of solver iterations for all contacts and constraints. The greater the number of iterations, the more accurate the collisions will be. However, a greater number of iterations requires more CPU power, which can decrease performance. See [constant PhysicsServer3D.SPACE_PARAM_SOLVER_ITERATIONS].
Controls how much physics ticks are synchronized with real time. For 0 or less, the ticks are synchronized. Such values are recommended for network games, where clock synchronization matters. Higher values cause higher deviation of in-game clock and real clock, but allows smoothing out framerate jitters. The default value of 0.5 should be fine for most; values above 2 could cause the game to react to dropped frames with a noticeable delay and are not recommended.
[b]Note:[/b] For best results, when using a custom physics interpolation solution, the physics jitter fix should be disabled by setting [member physics/common/physics_jitter_fix] to [code]0[/code].
The number of fixed iterations per second. This controls how often physics simulation and [method Node._physics_process] methods are run. See also [member debug/settings/fps/force_fps].
[b]Note:[/b] This property is only read when the project starts. To change the physics FPS at runtime, set [member Engine.physics_ticks_per_second] instead.
[b]Note:[/b] Only 8 physics ticks may be simulated per rendered frame at most. If more than 8 physics ticks have to be simulated per rendered frame to keep up with rendering, the game will appear to slow down (even if [code]delta[/code] is used consistently in physics calculations). Therefore, it is recommended not to increase [member physics/common/physics_ticks_per_second] above 240. Otherwise, the game will slow down when the rendering framerate goes below 30 FPS.
Sets the number of MSAA samples to use for 2D/Canvas rendering (as a power of two). MSAA is used to reduce aliasing around the edges of polygons. A higher MSAA value results in smoother edges but can be significantly slower on some hardware. This has no effect on shader-induced aliasing or texture aliasing.
Sets the number of MSAA samples to use for 3D rendering (as a power of two). MSAA is used to reduce aliasing around the edges of polygons. A higher MSAA value results in smoother edges but can be significantly slower on some hardware. See also bilinear scaling 3d [member rendering/scaling_3d/mode] for supersampling, which provides higher quality but is much more expensive. This has no effect on shader-induced aliasing or texture aliasing.
Sets the screen-space antialiasing mode for the default screen [Viewport]. Screen-space antialiasing works by selectively blurring edges in a post-process shader. It differs from MSAA which takes multiple coverage samples while rendering objects. Screen-space AA methods are typically faster than MSAA and will smooth out specular aliasing, but tend to make scenes appear blurry. The blurriness is partially counteracted by automatically using a negative mipmap LOD bias (see [member rendering/textures/default_filters/texture_mipmap_bias]).
Enables Temporal Anti-Aliasing for the default screen [Viewport]. TAA works by jittering the camera and accumulating the images of the last rendered frames, motion vector rendering is used to account for camera and object motion. Enabling TAA can make the image blurrier, which is partially counteracted by automatically using a negative mipmap LOD bias (see [member rendering/textures/default_filters/texture_mipmap_bias]).
Sets the depth of field shape. Can be Box, Hexagon, or Circle. Box is the fastest. Circle is the most realistic, but also the most expensive to compute.
If [code]true[/code], jitters DOF samples to make effect slightly blurrier and hide lines created from low sample rates. This can result in a slightly grainy appearance when used with a low number of samples.
Disables [member rendering/driver/depth_prepass/enable] conditionally for certain vendors. By default, disables the depth prepass for mobile devices as mobile devices do not benefit from the depth prepass due to their unique architecture.
If [code]true[/code], performs a previous depth pass before rendering 3D materials. This increases performance significantly in scenes with high overdraw, when complex materials and lighting are used. However, in scenes with few occluded surfaces, the depth prepass may reduce performance. If your game is viewed from a fixed angle that makes it easy to avoid overdraw (such as top-down or side-scrolling perspective), consider disabling the depth prepass to improve performance. This setting can be changed at run-time to optimize performance depending on the scene currently being viewed.
[b]Note:[/b] Only supported when using the Vulkan Clustered backend or the OpenGL backend. When using Vulkan Mobile there is no depth prepass performed.
Default background clear color. Overridable per [Viewport] using its [Environment]. See [member Environment.background_mode] and [member Environment.background_color] in particular. To change this default color programmatically, use [method RenderingServer.set_default_clear_color].
[Environment] that will be used as a fallback environment in case a scene does not specify its own environment. The default environment is loaded in at scene load time regardless of whether you have set an environment or not. If you do not rely on the fallback environment, you do not need to set this property.
Takes more samples during downsample pass of glow. This ensures that single pixels are captured by glow which makes the glow look smoother and more stable during movement. However, it is very expensive and makes the glow post process take twice as long.
Sets the quality for rough screen-space reflections. Turning off will make all screen space reflections sharp, while higher values make rough reflections look better.
Quality target to use when [member rendering/environment/ssao/quality] is set to [code]ULTRA[/code]. A value of [code]0.0[/code] provides a quality and speed similar to [code]MEDIUM[/code] while a value of [code]1.0[/code] provides much higher quality than any of the other settings at the cost of performance.
Number of blur passes to use when computing screen-space ambient occlusion. A higher number will result in a smoother look, but will be slower to compute and will have less high-frequency detail.
If [code]true[/code], screen-space ambient occlusion will be rendered at half size and then upscaled before being added to the scene. This is significantly faster but may miss small details. If [code]false[/code], screen-space ambient occlusion will be rendered at full size.
Sets the quality of the screen-space ambient occlusion effect. Higher values take more samples and so will result in better quality, at the cost of performance. Setting to [code]ULTRA[/code] will use the [member rendering/environment/ssao/adaptive_target] setting.
Quality target to use when [member rendering/environment/ssil/quality] is set to [code]ULTRA[/code]. A value of [code]0.0[/code] provides a quality and speed similar to [code]MEDIUM[/code] while a value of [code]1.0[/code] provides much higher quality than any of the other settings at the cost of performance. When using the adaptive target, the performance cost scales with the complexity of the scene.
Number of blur passes to use when computing screen-space indirect lighting. A higher number will result in a smoother look, but will be slower to compute and will have less high-frequency detail.
If [code]true[/code], screen-space indirect lighting will be rendered at half size and then upscaled before being added to the scene. This is significantly faster but may miss small details and may result in some objects appearing to glow at their edges.
Sets the quality of the screen-space indirect lighting effect. Higher values take more samples and so will result in better quality, at the cost of performance. Setting to [code]ULTRA[/code] will use the [member rendering/environment/ssil/adaptive_target] setting.
Scales the depth over which the subsurface scattering effect is applied. A high value may allow light to scatter into a part of the mesh or another mesh that is close in screen space but far in depth.
Scales the distance over which samples are taken for subsurface scattering effect. Changing this does not impact performance, but higher values will result in significant artifacts as the samples will become obviously spread out. A lower value results in a smaller spread of scattered light.
Enables filtering of the volumetric fog effect prior to integration. This substantially blurs the fog which reduces fine details but also smooths out harsh edges and aliasing artifacts. Disable when more detail is required.
Number of slices to use along the depth of the froxel buffer for volumetric fog. A lower number will be more efficient but may result in artifacts appearing during camera movement. See also [member Environment.volumetric_fog_length].
Base size used to determine size of froxel buffer in the camera X-axis and Y-axis. The final size is scaled by the aspect ratio of the screen, so actual values may differ from what is set. Set a larger size for more detailed fog, set a smaller size for better performance.
If [code]true[/code], renders [VoxelGI] and SDFGI ([member Environment.sdfgi_enabled]) buffers at halved resolution (e.g. 960×540 when the viewport size is 1920×1080). This improves performance significantly when VoxelGI or SDFGI is enabled, at the cost of artifacts that may be visible on polygon edges. The loss in quality becomes less noticeable as the viewport resolution increases. [LightmapGI] rendering is not affected by this setting.
[b]Note:[/b] This property is only read when the project starts. To set half-resolution GI at run-time, call [method RenderingServer.gi_set_use_half_resolution] instead.
The maximum number of rays that can be thrown per pass when baking lightmaps with [LightmapGI]. Depending on the scene, adjusting this value may result in higher GPU utilization when baking lightmaps, leading to faster bake times.
The maximum number of rays that can be thrown per pass when baking dynamic object lighting in [LightmapProbe]s with [LightmapGI]. Depending on the scene, adjusting this value may result in higher GPU utilization when baking lightmaps, leading to faster bake times.
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_HIGH].
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_LOW].
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_MEDIUM].
The number of rays to use for baking dynamic object lighting in [LightmapProbe]s when [member LightmapGI.quality] is [constant LightmapGI.BAKE_QUALITY_ULTRA].
The framerate-independent update speed when representing dynamic object lighting from [LightmapProbe]s. Higher values make dynamic object lighting update faster. Higher values can prevent fast-moving objects from having "outdated" indirect lighting displayed on them, at the cost of possible flickering when an object moves from a bright area to a shaded area.
Use 16 bits for shadow depth map. Enabling this results in shadows having less precision and may result in shadow acne, but can lead to performance improvements on some devices.
The directional shadow's size in pixels. Higher values will result in sharper shadows, at the cost of performance. The value will be rounded up to the nearest power of 2.
Quality setting for shadows cast by [DirectionalLight3D]s. Higher quality settings use more samples when reading from shadow maps and are thus slower. Low quality settings may result in shadows looking grainy.
[b]Note:[/b] The Soft Very Low setting will automatically multiply [i]constant[/i] shadow blur by 0.75x to reduce the amount of noise visible. This automatic blur change only affects the constant blur factor defined in [member Light3D.shadow_blur], not the variable blur performed by [DirectionalLight3D]s' [member Light3D.light_angular_distance].
[b]Note:[/b] The Soft High and Soft Ultra settings will automatically multiply [i]constant[/i] shadow blur by 1.5× and 2× respectively to make better use of the increased sample count. This increased blur also improves stability of dynamic object shadows.
Lower-end override for [member rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality] on mobile devices, due to performance concerns or driver support.
Use 16 bits for shadow depth map. Enabling this results in shadows having less precision and may result in shadow acne, but can lead to performance improvements on some devices.
Lower-end override for [member rendering/lights_and_shadows/positional_shadow/atlas_size] on mobile devices, due to performance concerns or driver support.
Quality setting for shadows cast by [OmniLight3D]s and [SpotLight3D]s. Higher quality settings use more samples when reading from shadow maps and are thus slower. Low quality settings may result in shadows looking grainy.
[b]Note:[/b] The Soft Very Low setting will automatically multiply [i]constant[/i] shadow blur by 0.75x to reduce the amount of noise visible. This automatic blur change only affects the constant blur factor defined in [member Light3D.shadow_blur], not the variable blur performed by [DirectionalLight3D]s' [member Light3D.light_angular_distance].
[b]Note:[/b] The Soft High and Soft Ultra settings will automatically multiply shadow blur by 1.5× and 2× respectively to make better use of the increased sample count. This increased blur also improves stability of dynamic object shadows.
Lower-end override for [member rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality] on mobile devices, due to performance concerns or driver support.
Enables the use of physically based units for light sources. Physically based units tend to be much larger than the arbitrary units used by Godot, but they can be used to match lighting within Godot to real-world lighting. Due to the large dynamic range of lighting conditions present in nature, Godot bakes exposure into the various lighting quantities before rendering. Most light sources bake exposure automatically at run time based on the active [CameraAttributes] resource, but [LightmapGI] and [VoxelGI] require a [CameraAttributes] resource to be set at bake time to reduce the dynamic range. At run time, Godot will automatically reconcile the baked exposure with the active exposure to ensure lighting remains consistent.
Max number of omnilights and spotlights renderable per object. At the default value of 8, this means that each surface can be affected by up to 8 omnilights and 8 spotlights. This is further limited by hardware support and [member rendering/limits/opengl/max_renderable_lights]. Setting this low will slightly reduce memory usage, may decrease shader compile times, and may result in faster rendering on low-end, mobile, or web devices.
Max number of elements renderable in a frame. If more elements than this are visible per frame, they will not be drawn. Keep in mind elements refer to mesh surfaces and not meshes themselves. Setting this low will slightly reduce memory usage and may decrease shader compile times, particularly on web. For most uses, the default value is suitable, but consider lowering as much as possible on web export.
Max number of positional lights renderable in a frame. If more lights than this number are used, they will be ignored. Setting this low will slightly reduce memory usage and may decrease shader compile times, particularly on web. For most uses, the default value is suitable, but consider lowering as much as possible on web export.
The automatic LOD bias to use for meshes rendered within the [ReflectionProbe]. Higher values will use less detailed versions of meshes that have LOD variations generated. If set to [code]0.0[/code], automatic LOD is disabled. Increase [member rendering/mesh_lod/lod_change/threshold_pixels] to improve performance at the cost of geometry detail.
[b]Note:[/b] [member rendering/mesh_lod/lod_change/threshold_pixels] does not affect [GeometryInstance3D] visibility ranges (also known as "manual" LOD or hierarchical LOD).
[b]Note:[/b] This property is only read when the project starts. To adjust the automatic LOD threshold at runtime, set [member Viewport.mesh_lod_threshold] on the root [Viewport].
The [url=https://en.wikipedia.org/wiki/Bounding_volume_hierarchy]BVH[/url] quality to use when rendering the occlusion culling buffer. Higher values will result in more accurate occlusion culling, at the cost of higher CPU usage.
Higher values will result in more accurate occlusion culling, at the cost of higher CPU usage. The occlusion culling buffer's pixel count is roughly equal to [code]occlusion_rays_per_thread * number_of_logical_cpu_cores[/code], so it will depend on the system's CPU. Therefore, CPUs with fewer cores will use a lower resolution to attempt keeping performance costs even across devices.
If [code]true[/code], [OccluderInstance3D] nodes will be usable for occlusion culling in 3D in the root viewport. In custom viewports, [member Viewport.use_occlusion_culling] must be set to [code]true[/code] instead.
[b]Note:[/b] Enabling occlusion culling has a cost on the CPU. Only enable occlusion culling if you actually plan to use it. Large open scenes with few or no objects blocking the view will generally not benefit much from occlusion culling. Large open scenes generally benefit more from mesh LOD and visibility ranges ([member GeometryInstance3D.visibility_range_begin] and [member GeometryInstance3D.visibility_range_end]) compared to occlusion culling.
Number of cubemaps to store in the reflection atlas. The number of [ReflectionProbe]s in a scene will be limited by this amount. A higher number requires more VRAM.
Lower-end override for [member rendering/reflections/reflection_atlas/reflection_size] on mobile devices, due to performance concerns or driver support.
Use a higher quality variant of the fast filtering algorithm. Significantly slower than using default quality, but results in smoother reflections. Should only be used when the scene is especially detailed.
Sets the number of samples to take when using importance sampling for [Sky]s and [ReflectionProbe]s. A higher value will result in smoother, higher quality reflections, but increases time to calculate radiance maps. In general, fewer samples are needed for simpler, low dynamic range environments while more samples are needed for HDR environments and environments with a high level of detail.
If [code]true[/code], uses texture arrays instead of mipmaps for reflection probes and panorama backgrounds (sky). This reduces jitter noise and upscaling artifacts on reflections, but is significantly slower to compute and uses [member rendering/reflections/sky_reflections/roughness_layers] times more memory.
Lower-end override for [member rendering/reflections/sky_reflections/texture_array_reflections] on mobile devices, due to performance concerns or driver support.
Determines how sharp the upscaled image will be when using the FSR upscaling mode. Sharpness halves with every whole number. Values go from 0.0 (sharpest) to 2.0. Values above 2.0 won't make a visible difference.
Sets the scaling 3D mode. Bilinear scaling renders at different resolution to either undersample or supersample the viewport. FidelityFX Super Resolution 1.0, abbreviated to FSR, is an upscaling technology that produces high quality images at fast framerates by using a spatially aware upscaling algorithm. FSR is slightly more expensive than bilinear, but it produces significantly higher image quality. FSR should be used where possible.
Scales the 3D render buffer based on the viewport size uses an image filter specified in [member rendering/scaling_3d/mode] to scale the output image to the full viewport size. Values lower than [code]1.0[/code] can be used to speed up 3D rendering at the cost of quality (undersampling). Values greater than [code]1.0[/code] are only valid for bilinear mode and can be used to improve 3D rendering quality at a high performance cost (supersampling). See also [member rendering/anti_aliasing/quality/msaa_3d] for multi-sample antialiasing, which is significantly cheaper but only smooths the edges of polygons.
Lower-end override for [member rendering/shading/overrides/force_lambert_over_burley] on mobile devices, due to performance concerns or driver support.
If [code]true[/code], forces vertex shading for all rendering. This can increase performance a lot, but also reduces quality immensely. Can be used to optimize performance on low-end mobile devices.
The filtering quality to use for [Decal] nodes. When using one of the anisotropic filtering modes, the anisotropic filtering level is controlled by [member rendering/textures/default_filters/anisotropic_filtering_level].
Sets the maximum number of samples to take when using anisotropic filtering on textures (as a power of two). A higher sample count will result in sharper textures at oblique angles, but is more expensive to compute. A value of [code]0[/code] forcibly disables anisotropic filtering, even on materials where it is enabled.
The anisotropic filtering level also affects decals and light projectors if they are configured to use anisotropic filtering. See [member rendering/textures/decals/filter] and [member rendering/textures/light_projectors/filter].
[b]Note:[/b] For performance reasons, anisotropic filtering [i]is not enabled by default[/i] on 2D and 3D materials. For this setting to have an effect in 3D, set [member BaseMaterial3D.texture_filter] to [constant BaseMaterial3D.TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC] or [constant BaseMaterial3D.TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC] on materials. For this setting to have an effect in 2D, set [member CanvasItem.texture_filter] to [constant CanvasItem.TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC] or [constant CanvasItem.TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC] on the [CanvasItem] node displaying the texture (or in [CanvasTexture]). However, anisotropic filtering is rarely useful in 2D, so only enable it for textures in 2D if it makes a meaningful visual difference.
Affects the final texture sharpness by reading from a lower or higher mipmap (also called "texture LOD bias"). Negative values make mipmapped textures sharper but grainier when viewed at a distance, while positive values make mipmapped textures blurrier (even when up close).
Enabling temporal antialiasing ([member rendering/anti_aliasing/quality/use_taa]) will automatically apply a [code]-0.5[/code] offset to this value, while enabling FXAA ([member rendering/anti_aliasing/quality/screen_space_aa]) will automatically apply a [code]-0.25[/code] offset to this value. If both TAA and FXAA are enbled at the same time, an offset of [code]-0.75[/code] is applied to this value.
[b]Note:[/b] If [member rendering/scaling_3d/scale] is lower than [code]1.0[/code] (exclusive), [member rendering/textures/default_filters/texture_mipmap_bias] is used to adjust the automatic mipmap bias which is calculated internally based on the scale factor. The formula for this is [code]log2(scaling_3d_scale) + mipmap_bias[/code].
[b]Note:[/b] This property is only read when the project starts. To change the mipmap LOD bias at run-time, set [member Viewport.texture_mipmap_bias] instead.
If [code]true[/code], uses nearest-neighbor mipmap filtering when using mipmaps (also called "bilinear filtering"), which will result in visible seams appearing between mipmap stages. This may increase performance in mobile as less memory bandwidth is used. If [code]false[/code], linear mipmap filtering (also called "trilinear filtering") is used.
The filtering quality to use for [OmniLight3D] and [SpotLight3D] projectors. When using one of the anisotropic filtering modes, the anisotropic filtering level is controlled by [member rendering/textures/default_filters/anisotropic_filtering_level].
The default compression level for lossless WebP. Higher levels result in smaller files at the cost of compression speed. Decompression speed is mostly unaffected by the compression level. Supported values are 0 to 9. Note that compression levels above 6 are very slow and offer very little savings.
If [code]true[/code], the texture importer will import VRAM-compressed textures using the BPTC algorithm. This texture compression algorithm is only supported on desktop platforms, and only when using the Vulkan renderer.
[b]Note:[/b] Changing this setting does [i]not[/i] impact textures that were already imported before. To make this setting apply to textures that were already imported, exit the editor, remove the [code].godot/imported/[/code] folder located inside the project folder then restart the editor (see [member application/config/use_hidden_project_data_directory]).
If [code]true[/code], the texture importer will import VRAM-compressed textures using the Ericsson Texture Compression algorithm. This algorithm doesn't support alpha channels in textures.
[b]Note:[/b] Changing this setting does [i]not[/i] impact textures that were already imported before. To make this setting apply to textures that were already imported, exit the editor, remove the [code].godot/imported/[/code] folder located inside the project folder then restart the editor (see [member application/config/use_hidden_project_data_directory]).
If [code]true[/code], the texture importer will import VRAM-compressed textures using the Ericsson Texture Compression 2 algorithm. This texture compression algorithm is only supported when using the Vulkan renderer.
[b]Note:[/b] Changing this setting does [i]not[/i] impact textures that were already imported before. To make this setting apply to textures that were already imported, exit the editor, remove the [code].godot/imported/[/code] folder located inside the project folder then restart the editor (see [member application/config/use_hidden_project_data_directory]).
If [code]true[/code], the texture importer will import VRAM-compressed textures using the S3 Texture Compression algorithm. This algorithm is only supported on desktop platforms and consoles.
[b]Note:[/b] Changing this setting does [i]not[/i] impact textures that were already imported before. To make this setting apply to textures that were already imported, exit the editor, remove the [code].godot/imported/[/code] folder located inside the project folder then restart the editor (see [member application/config/use_hidden_project_data_directory]).
Set the default Variable Rate Shading (VRS) mode for the main viewport. See [member Viewport.vrs_mode] to change this at runtime, and [enum Viewport.VRSMode] for possible values.