This commit removes a lot of enum values related to the color render pass in favor of a new flag-bases approach. This means instead of hard-coding all the possible option combinations into enums, we can write our logic by checking a bit-mask.
The changes in rendering_device_vulkan.cpp add support for unused attachments. That means RenderingDeviceVulkan::framebuffer_create() can take null RIDs in the attachments vector, which will result in VK_ATTACHMENT_UNUSED entries in the render pass.
This is used in this same PR to establish fixed locations for the color pass attachments (only color and separate specular so far, but TAA will add motion vectors as well). This way the attachment locations in the shader can stay the same regardless of which attachments are actually used.
Right now all the combinations of flags are generated, but we will need to add a way to limit the amount of combinations in the future.
When given roughness is lower than 0.01, d value in original code will
be zero. This can make last return value as NAN because of
divide-by-zero. This is well addressed in issue #56373.
Modified code is referenced on D_GGX function of google/filament
(https://github.com/google/filament/blob/main/shaders/src/brdf.fs#L54-L79)
Signed-off-by: snowapril <sinjihng@gmail.com>
* Adds optional vec4 USERDATA1 .. USERDATA6 to particles, allowing to store custom data.
* This data is allocated on demand, so shaders that do not use it do not cost more.
Found via `codespell -q 3 -S ./thirdparty,*.po,./DONORS.md -L ackward,ang,ans,ba,beng,cas,childs,childrens,dof,doubleclick,expct,fave,findn,gird,hist,inh,inout,leapyear,lod,nd,numer,ois,ony,paket,ro,seeked,sinc,switchs,te,uint,varn,vew`
Sets `AlignOperands` to `DontAlign`.
`clang-format` developers seem to mostly care about space-based indentation and
every other version of clang-format breaks the bad mismatch of tabs and spaces
that it seems to use for operand alignment. So it's better without, so that it
respects our two-tabs `ContinuationIndentWidth`.
Fixes the SHADOW_CASTING_SETTING_OFF setting in
GeometryInstance3D and the "shadows_disabled" render
mode in spatial materials, which were not working
before.
The built-in ALPHA in spatial shaders comes pre-set with a per-instance
transparency value. Multiply by it if you want to keep it.
The transparency value of any given GeometryInstance3D is affected by:
- Its new "transparency" property.
- Its own visiblity range when the new "visibility_range_fade_mode"
property is set to "Self".
- Its parent visibility range when the parent's fade mode is
set to "Dependencies".
The "Self" mode will fade-out the instance when reaching the visibility
range limits, while the "Dependencies" mode will fade-in its
dependencies.
Per-instance transparency is only implemented in the forward clustered
renderer, support for mobile should be added in the future.
Co-authored-by: reduz <reduzio@gmail.com>
This can be used to improve 3D shadow rendering quality at little
performance cost. Unlike the existing Hard setting which is limited
to variable shadow blur only, it works with both fixed blur and
variable blur.
This property was intended to provide a way to have SSAO or VoxelGI
ambient occlusion with a color other than black. However, it was
dropped during the Vulkan renderer development due to the performance
overhead it caused when the feature wasn't used.
OmniLight3D:
* Fixed lack of precision in cube map mode by scaling the projection's
znear.
* Fixed aliasing issues by making the paraboloids use two square regions instead of two half
squares.
* Fixed shadowmap atlas bleeding by adding padding.
* Fixed sihadow blur's inconsistent radius and unclamped sampling.
SpotLight3D:
* Fixed lack of precision by scaling the projection's znear.
* Fixed normal biasing.
Both:
* Tweaked biasing to make sure it works out of the box in most situations.
* Specialization constants used to disable anything not needed to draw
* Added softshadow and projector support on mobile.
This new approach ensures mobile shaders are smaller and more efficient, but relies on more pipeline versions compiled on demand.
As a result, random stalls can ocur like in Godot 3.x. These will be solved by using background compilation and fallbacks eventually (but needs to be tested first).
* Only apply final actions to attachments used in the last pass.
* Fixes to draw list final action (was using continue instead of read/drop).
* Profiling regions inside draw lists now properly throw errors.
* Ability to enable gpu profile printing from project settings. (used to debug).
* Simplified code a lot, bias based on normalized cascade size.
* Lets scale cascades, max distance, etc. without creating acne.
* Fixed normal biasing in directional shadows.
I removed normal biasing in both omni and spot shadows, since the technique can't be easily implemented there.
Will need to be replaced by something else.
Found via `codespell -q 3 -S ./thirdparty,*.po,./DONORS.md -L ackward,ang,ans,ba,beng,cas,childs,childrens,dof,doubleclick,fave,findn,hist,inout,leapyear,lod,nd,numer,ois,ony,paket,seeked,sinc,switchs,te,uint`
* Shadow quality settings now specialization constant.
* Decal and light projector filters can be set.
* Changing those settings forces re-creation of the pipelines.
These changes should help improve performance related to shadow mapping, and allows improving performance by sacrificing decal and light projector quality.
* use valid format for framebuffer: VK_FORMAT_A2B10G10R10_UNORM_PACK32
* Unfortunately cant be used for compute.
* Mobile will need to do refprobe, sky, mipmapblurring using raster.
* Keep track of when projector, softshadow or directional sofshadow were enabled.
* Enable them via specializaton constant where it makes sense.
* Re-implements soft shadows.
* Re-implements light projectors.
* GIProbe is now VoxelGI
* BakedLightmap is now LightmapGI
As godot adds more ways to provide GI (as an example, SDFGI in 4.0), the different techniques (which have different pros/cons) need to be properly named to avoid confusion.
-Mesh2D now works
-MultiMesh2D now works
-Polygon2D now works
-Added hooks for processing 2D particles
-Skeleton2D now works
2D particles still not working, but stuff needed for it is now implemented.
Various fixes to UV2 unwrapping and the GPU lightmapper. Listed here for
context in case of git blame/bisect:
* Fix UV2 unwrapping on import, also cleaned up the unwrap cache code.
* Fix saving of RGBA images in EXR format.
* Fixes to the GPU lightmapper:
- Added padding between atlas elements, avoids bleeding.
- Remove old SDF generation code.
- Fix baked attenuation for Omni/Spot lights.
- Fix baking of material properties onto UV2 (wireframe was
wrongly used before).
- Disable statically baked lights for objects that have a
lightmap texture to avoid applying the same light twice.
- Fix lightmap pairing in RendererSceneCull.
- Fix UV2 array generated from `RenderingServer::mesh_surface_get_arrays()`.
- Port autoexposure fix for OIDN from 3.x.
- Save debug textures as EXR when using floating point format.
-Enable the trails and set the length in seconds
-Provide a mesh with a skeleton and a skin
-Or, alternatively use one of the built-in TubeTrailMesh/RibbonTrailMesh
-Works deterministically
-Fixed particle collisions (were broken)
-Not working in 2D yet (that will happen next)
* Particle shaders now have start() and process()
* Particle collision happens between them.
* The RESTART property is kept, so porting an old shader is still possible.
This fixes the problem of particle collisions not functioning on the first particle frame.
-Used a more consistent set of keywords for the shader
-Remove all harcoded entry points
-Re-wrote the GLSL shader parser, new system is more flexible. Allows any entry point organization.
-Entry point for sky shaders is now sky().
-Entry point for particle shaders is now process().
Inverted the spotlight angle attenuation so a higher value results in
a dimmer light, this makes it more consistent with the distance
attenuation.
Also changed the way spotlighs are computed in SDFGI
and GIPorbes and GPU lightmapper, now it matches the falloff used in the scene rendering
code.
-Always use temporal reproject, it just loos way better than any other filter.
-By always using termporal reproject, the shadowmap reduction can be done away with, massively improving performance.
-Disadvantage of temporal reproject is update latency so..
-Made sure a gaussian filter runs in XY after fog, this allows to keep stability and lower latency.
-Added more finegrained control in RenderingDevice API
-Optimized barriers (use less ones for thee same)
-General optimizations
-Shadows render all together unbarriered
-GI can render together with shadows.
-SDFGI can render together with depth-preoass.
-General fixes
-Added GPU detection
-Removed sync to draw, now everything syncs to draw by default.
-Fixed many validation layer errors.
-Added support for VkImageViewUsageCreateInfo to fix validation layer warnings.
-Texture, buffer, raster and compute functions now all allow spcifying which barriers will be used.
-All shadow rendering is done with raster now (no compute)
-All shadow rendering is done by rendering directly to the shadow atlas
-Improved how buffer clearing is done to optimize the above.
-Ability to set shadows as 16 bits.
-SDFGI direct light is done over many frames
-SDFGI Changed settings for rays/frame
-SDFGI Misc optimizations
-SDFGI Bug fix on probe scroll
-GIProbe was not working, got it to work again
-GIProbe dynamic objects were not working, fixed
-Added a half size GI option.