Previously, only forward basis distance from the camera was used.
This means that unnecessarily high LOD levels were used for objects located to the side of the camera.
The distance from the camera origin is now used, independently of direction.
This removes the countless small UBO writes we had before
and replaces them with a single large write per render pass.
This results in much faster rendering on low-end devices
but improves speed on all devices.
The flag INSTANCE_DATA_FLAG_MULTIMESH is used for both multimesh and particles instances, this commit adds a new INSTANCE_DATA_FLAG_PARTICLES flag to discriminate between them.
This flag will also be used in the future to properly support TAA in particles.
Instead of updating all viewports, then blitting all viewports
to the backbuffer, then swapping all buffers, we run through
all viewports and render, blit, and swap backbuffer before
going to the next viewport.
Fixes include using proper depth buffer format in 3D (this had previously been fixed already but the changes were lost in a rebase), Remove unused lighting and shadowing code in 2D, and update 2D UBOs using glBufferSubData so that they remain the appropriate size.
Using this command:
```
find -name "thirdparty" -prune -o -name "*.h" -exec sed -i {} -e '/return /! s/\t\([A-Za-z0-9_]* \*[A-Za-z0-9_]*\)\;/\t\1 = nullptr;/g' \;
```
And then reviewing the changes manually to discard the ones that don't
seem correct/safe/good (notably changes to `core` unions).
This allows light sources to be specified in physical light units in addition to the regular energy multiplier. In order to avoid loss of precision at high values, brightness values are premultiplied by an exposure normalization value.
In support of Physical Light Units this PR also renames CameraEffects to CameraAttributes.
Per-light energy gives more control to the user on the final result of
volumetric fog. Specific lights can be fully excluded from volumetric fog
by setting their volumetric fog energy to 0, which improves performance
slightly. This can also be used to prevent short-lived dynamic effects
from poorly interacting with volumetric fog, as it's updated over several
frames by default unless temporal reprojection is disabled.
Volumetric fog shadows now obey Light3D's Shadow Opacity property as well.
The shadow fog fade property was removed as it had little visible impact
on the final scene's rendering.
At this time, it works best in the Vulkan Renderers as they support using multiple samplers with the same texture.
In GLES3 this feature really only allows you to use the screen texture without mipmaps if you want to save the cost of generating them.
This can be used to make shadows translucent for a specific light.
The light distance fade system also uses this to smoothly fade the shadow
when the light fade transition distance is greater than 0.
`shader_uniform` is now consistenly used across both per-shader
and per-instance shader uniform methods. This makes methods easier
to find in the class reference when looking for them.
Mipmap LOD bias can be useful to improve the appearance of distant
textures without increasing anisotropic filtering (or in situations
where anisotropic filtering is not effective).
`fsr_mipmap_bias` was renamed to `texture_mipmap_bias` accordingly.
The property hint now allows for greater precision as well.
Implement built-in classes Vector4, Vector4i and Projection.
* Two versions of Vector4 (float and integer).
* A Projection class, which is a 4x4 matrix specialized in projection types.
These types have been requested for a long time, but given they were very corner case they were not added before.
Because in Godot 4, reimplementing parts of the rendering engine is now possible, access to these types (heavily used by the rendering code) becomes a necessity.
**Q**: Why Projection and not Matrix4?
**A**: Godot does not use Matrix2, Matrix3, Matrix4x3, etc. naming convention because, within the engine, these types always have a *purpose*. As such, Godot names them: Transform2D, Transform3D or Basis. In this case, this 4x4 matrix is _always_ used as a _Projection_, hence the naming.
* Moved preprocessor to Shader and ShaderInclude
* Clean up RenderingServer side
* Preprocessor is separate from parser now, but it emits tokens with include location hints.
* Improved ShaderEditor validation code
* Added include file code completion
* Added notification for all files affected by a broken include.
`rendering/quality/shadows` is now `rendering/quality/positional_shadow`
to explicitly denote that the settings only affect positional light shadows,
not directional light shadows.
Shadow atlas settings now contain the word "atlas" for easier searching.
Soft shadow quality settings were renamed to contain the word "filter".
This makes the settings appear when searching for "filter" in the
project settings dialog, like in Godot 3.x.
This has several benefits:
- Transparency sorting issues inherent to alpha blending no longer occur.
- Alpha hash materials can now cast shadows (also works with
GeometryInstance3D Transparency's property for alpha hash materials).
- Higher performance.
Initial TAA support based on the implementation in Spartan Engine.
Motion vectors are correctly generated for camera and mesh movement, but there is no support for other things like particles or skeleton deformations.
* Map is unnecessary and inefficient in almost every case.
* Replaced by the new HashMap.
* Renamed Map to RBMap and Set to RBSet for cases that still make sense
(order matters) but use is discouraged.
There were very few cases where replacing by HashMap was undesired because
keeping the key order was intended.
I tried to keep those (as RBMap) as much as possible, but might have missed
some. Review appreciated!
Adds a new, cleaned up, HashMap implementation.
* Uses Robin Hood Hashing (https://en.wikipedia.org/wiki/Hash_table#Robin_Hood_hashing).
* Keeps elements in a double linked list for simpler, ordered, iteration.
* Allows keeping iterators for later use in removal (Unlike Map<>, it does not do much
for performance vs keeping the key, but helps replace old code).
* Uses a more modern C++ iterator API, deprecates the old one.
* Supports custom allocator (in case there is a wish to use a paged one).
This class aims to unify all the associative template usage and replace it by this one:
* Map<> (whereas key order does not matter, which is 99% of cases)
* HashMap<>
* OrderedHashMap<>
* OAHashMap<>
fixed and simplified gl_manager_windows
swap buffers now called for all windows
fixed missing pixel format setting in additional windows
this makes them work in OpenGL contexts
changed verbose error printing to write once
this error message happens very frequently while opengl3 is not finished
removed dead code no longer needed after changes
fixed comments that were misinformation
window messages during window creation now handled
these were previously discarded
messages now tunnel the required context
changed failure to create opengl3 window on windows to be more fatal
marked a problem with pen code
conditional compilation of vulkan and opengl3 on windows fixed
windows debug builds now show messages on debug console also
rendering driver selection box now shows only compiled drivers
marked some problematic code
thanks to akien-mga for patiently rewriting my style mistakes
These typedefs don't save much typing compared to the full `Ref<Resource>`
and `Ref<RefCounted>`, yet they sometimes introduce confusion among
new contributors.
This method can be used to get the graphics API version currently in
use (such as Vulkan). It can be used by projects for troubleshooting
or statistical purposes.
Didn't commit all the changes where it wants to initialize a struct
with `{}`. Should be reviewed in a separate PR.
Option `IgnoreArrays` enabled for now to be conservative, can be
disabled to see if it proposes more useful changes.
Also fixed manually a handful of other missing initializations / moved
some from constructors.
Convert method signature parameters to const where it is possible
# Conflicts:
# drivers/gles3/rasterizer_canvas_gles3.cpp
# drivers/gles3/rasterizer_canvas_gles3.h
# editor/plugins/animation_state_machine_editor.cpp
# editor/plugins/animation_state_machine_editor.h
Add "generate_mipmap" font import option.
Add some missing features to the Sprite3D.
Move BiDi override code from Control to TextServer.
Add functions to access TextServer font cache textures.
Add MSDF related flags and shader to the standard material.
Change standard material cache to use HashMap instead of Vector.
3 options are available:
- Light and Sky (default)
- Light Only (new)
- Sky Only (equivalent to `use_in_sky_only = true`)
Co-authored by: clayjohn <claynjohn@gmail.com>
This can be used to fade lights and their shadows in the distance,
similar to Decal nodes. This can bring significant performance
improvements, especially for lights with shadows enabled and when
using higher-than-default shadow quality settings.
While lights can be smoothly faded out over distance, shadows are
currently "all or nothing" since per-light shadow color is no longer
customizable in the Vulkan renderer. This may result in noticeable
pop-in when leaving the shadow cutoff distance, but depending on the
scene, it may not always be that noticeable.
* Adds optional vec4 USERDATA1 .. USERDATA6 to particles, allowing to store custom data.
* This data is allocated on demand, so shaders that do not use it do not cost more.
16-bit shadow atlases are already the default in the project settings,
but low-level methods used 24-bit shadows by default.
This makes low-level methods more consistent with the default project
settings to avoid accidental performance issues when users change
the shadow size at run-time.
This provides more flexibility between performance and quality
adjustments, especially when using SDFGI for small-scale levels
(which can be useful for procedurally generated scenes).
On the only platform where PVRTC is supported (iOS),
ETC2 generally supersedes PVRTC in every possible way. The increased
memory usage is not really a problem thanks to modern iOS' devices
processing power being higher than its Android counterparts.
Using codespell 2.1.0.
Method:
```
$ cat > ../godot-word-whitelist.txt << EOF
ang
ans
ba
curvelinear
dof
doubleclick
fave
findn
gird
inout
leapyear
lod
merchantibility
nd
numer
ois
ony
que
readded
seeked
statics
Applying overlay materials into multi-surface meshes currently
requires adding a next pass material to all the surfaces, which
might be cumbersome when the material is to be applied to a range
of different geometries. This also makes it not trivial to use
AnimationPlayer to control the material in case of visual effects.
The material_override property is not an option as it works
replacing the active material for the surfaces, not adding a new pass.
This commit adds the material_overlay property to GeometryInstance3D
(and therefore MeshInstance3D), having the same reach as
material_override (that is, all surfaces) but adding a new material
pass on top of the active materials, instead of replacing them.
This can be used to distinguish between integrated, dedicated, virtual
and software-emulated GPUs. This in turn can be used to automatically
adjust graphics settings, or warn users about features that may run
slowly on their hardware.
Note, the editor build requires the mbedtls module to be manually
enabled, as it is currently needed as a ResourceUID dependency.
This will need to be addressed in a separate PR.
- Rename OpenGL to GLES3 in the source code per community feedback.
- The renderer is still exposed as "OpenGL 3" to the user.
- Hide renderer selection dropdown until OpenGL support is more mature.
- The renderer can still be changed in the Project Settings or using
the `--rendering-driver opengl` command line argument.
- Remove commented out exporter code.
- Remove some OpenGL/DisplayServer-related debugging prints.
Due to the port to Vulkan and complete redesign of the rendering backend,
the `drivers/gles3` code is no longer usable in this state and is not
planned to be ported to the new architecture.
The GLES2 backend is kept (while still disabled and non-working) as it
will eventually be ported to serve as the low-end renderer for Godot 4.0.
Some GLES3 features might be selectively ported to the updated GLES2
backend if there's a need for them, and extensions we can use for that.
So long, OpenGL driver bugs!
Lots of internal API changes and some docstrings were lost in the conversion.
I manually salvaged many of them but for all the rendering-related ones, an
additional pass is needed.
Added missing enum bindings in BaseMaterial3D and VisualServer.
-Texture renamed to Texture2D
-TextureLayered as base now inherits 2Darray, cubemap and cubemap array
-Removed all references to flags in textures (they will go in the shader)
-Texture3D gone for now (will come back later done properly)
-Create base rasterizer for RenderDevice, RasterizerRD